# MEASURING VOLUME & MASS

Save this PDF as:

Size: px
Start display at page:

## Transcription

3 Y - axis Mineral Appearance: Mass (g) Volume (ml) Sample 1 Sample Sample Sample Sample Collect the mass and volume data for the second mineral. Mineral Appearance: Mass (g) Volume (ml) Sample 1 Sample Sample Sample Sample PART IV: GRAPHING A BEST-FIT LINE AND DETERMINING SLOPE The best-fit line represents the data (measurements) collected during an experiment when the points are unlikely to fall on the line because of experimental errors made in performing the experiment. When drawing a best-fit line, assume that half of the errors would result in numbers greater than the true value, and half of the errors would be less than the true value. Thus the best-fit line generally has the same number of data points above and below it. The following graph is an example of best-fit line: Best-Fit Straight Line 3 units of Rise Rise 3 units Slope = = = 1.5 Run 2 units 2 units of Run X - axis Measuring Volume & Mass 3

4 DETERMINING THE SLOPE OF A LINE Since the slope of a line is a mathematical relationship, it is not satisfactory to say one line is "quite steep or "not so steep". It is necessary to know as accurately as possible how much the line is slanted from the horizontal. In order to do this the amount of vertical "Rise" for a given amount of horizontal "Run" of the line must be determined. The slope, therefore, is obtained by constructing a right triangle at any segment of the line, determining the Rise and Run on the vertical and horizontal axes, and then finding the ratio of the Rise to the Run for that segment of the line. If, for example, we find that for any given segment of the line there is a rise of 3 units for every 2 units of horizontal distance, then the slope of the line is 1.5. The graph below is a best-fit plot of mass and volume data of four samples of a mineral. The slope of the line is determined using two points located on the best-fit line, not data points. The slope of the line (density of the mineral) is the ratio of the mass and volume (M / V). 200 (65, 200) Volume (ml) Mass (g) Mass (g) (46, 1) Change in mass (Y) = g 1.00 g =.00 g Change in volume (X) = 65.0 ml 46.0 ml = 19.0 ml Slope (Y / X) =.00 g / 19.0 ml = 3.16 g / ml To determine the volume for g of the mineral, a set of perpendicular lines that intersect at the bestfit line are drawn. For this mineral, the sample would occupy a volume of 32.0 ml Volume (ml) Graph your data for both minerals with volume on the X-axis and mass on the Y-axis. Draw a best-fit line for each mineral and determine their densities from the slope of their lines. Label the axes, include units, and add an appropriate title for the graph. Measuring Volume & Mass 4

5 POSTLAB QUESTIONS 1. Prepare a statement that relates the steepness of the graph with the densities of the two minerals. 2. Why is a best-fit line drawn between the points rather than connecting the dots? 3. Attach your graph that includes the work for determining the densities of the minerals. 4. Use the following table and determine the identity of each mineral. Density (g/ml) Borax 1.7 Pyrite 5.0 Quartz 2.65 Hematite 5.26 Talc 2.8 Copper 8.9 Mica 3.0 Gold From your graph determine the volume of a g sample of each mineral. (Show your work on your graph using the procedure described on page 4.) 6. From your graph determine the mass of a 50.0 ml sample of mineral. (Show your work on your graph using the procedure descibed on page 4.) 7. If you had.0 ml of each mineral, which mineral would have the greater mass? 8. If you had.00 g of each mineral, which mineral would occupy the greatest volume? Measuring Volume & Mass 5

6 Check Your Understanding Cylinder #1: ml Cylinder #2: ml Cylinder #3: ml Cylinder #4: ml Measuring Volume & Mass 6

7 Check Your Understanding Balance 1: g Balance 2: g Balance 3: g Balance 4: g Measuring Volume & Mass 7

### Figure 1. Example of volume of water required for an unknown sample

Experiment Three Density Procedure Part 1.The density of a solid Obtain a solid unknown sample from your instructor. Write down the number of the unknown in your notebook. Determine the of your unknown

### Experiment #2. Density and Measurements

Experiment #2. Density and Measurements Goals 1. To measure and record length, volume and mass accurately with the correct number of significant figures 2. To use significant figures correctly in calculations.

### 1. Determining Solution Concentration

In this exercise you will determine the concentration of salt solutions by measuring samples with known concentration and making a calibration curve. You will review units of concentration, and how to

### Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

### Read ENTIRE lab up to Disposal Section. MAKE NOTES!!! **For Procedures, Highlight equipment used and circle quantities measured out.

Lab Ch 2 Mass, Volume, & Density Lab Partners: READ Prelab!!! Read ENTIRE lab up to Disposal Section. MAKE NOTES!!! **For Procedures, Highlight equipment used and circle quantities measured out. Density

### CHM 100 / Introductory Laboratory Experiment (r10) 1/11

CHM 100 / 110 - Introductory Laboratory Experiment (r10) 1/11 Purpose This introductory exercise will familiarize you with a few of the measurements we make in the chemistry laboratory and the level of

### 4-3 Rate of Change and Slope. Warm Up. 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2.

Warm Up 1. Find the x- and y-intercepts of 2x 5y = 20. Describe the correlation shown by the scatter plot. 2. Objectives Find rates of change and slopes. Relate a constant rate of change to the slope of

### Experiment P18: Buoyant Force (Force Sensor)

PASCO scientific Physics Lab Manual: P18-1 Experiment P18: (Force Sensor) Concept Time SW Interface Macintosh file Windows file Newton's Laws 45 m 300/500/700 P18 P18_BUOY.SWS EQUIPMENT NEEDED CONSUMABLES

### Experiment 1 Introduction to Some Laboratory Measurements

Experiment 1 Introduction to Some Laboratory Measurements Introduction In this experiment you will familiarize yourself with the English & metric systems of measurement, weigh with a centigram balance,

### Target Density Lab SCIENTIFIC. Density Inquiry Lab Activities. Introduction. Concepts. Materials. Safety Precautions. Preparation

Target Density Lab Density Inquiry Lab Activities SCIENTIFIC Introduction The concept of density is reinforced as students measure the volume and mass of an unknown liquid in a graduated cylinder, graph

### Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point.

Chemistry 1020 Identification of an Unknown Liquid Objective To identify a pure liquid substance using the physical properties of solubility, density, and boiling point. Text reference solubility, density,

### Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15)

Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15) Introduction Which weighs more, a pound of lead or a pound of feathers? If your answer to this question is "a pound of lead", then you are confusing

### CH2250: Techniques in Laboratory Chemistry. Outline Measuring Mass Measuring Volume Significant figures. Mass Measurement

CH2250: Techniques in Laboratory Chemistry Outline Measuring Mass Measuring Volume Significant figures Mass Measurement Mass Measurement Measure mass not weight Mass is measured with a balance (a scale

### Inquiry Module 1: Checking the calibration of a micropipette

Inquiry Module 1: Checking the calibration of a micropipette 1. Introduction Larger volumes (1mL and more) are usually measured using pipets or measuring cylinders. Such cylinders and pipets are labelled

### INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS

INTRODUCTION TO THE SPECTROPHOTOMETER AND PIPETTING SKILLS Section A: Intro to the spectrophotometer A commonly used instrument in the analysis of cellular extracts is the Spectrophotometer. Today you

### Scientific Measurements and Errors: Determination of Density of Glass

Experiment Scientific Measurements and Errors: Determination of Density of Glass II Purposes This experiment has three purposes: 1. Making anumber of measurements, including length, weight, and liquid

### LABORATORY TECHNIQUES. Pouring Liquids

LABORATORY TECHNIQUES Working in the chemistry laboratory you will be handling potentially dangerous substances and performing unfamiliar tasks. This section provides you with a guide to the safe laboratory

### Physics 1021 Experiment 4. Buoyancy

1 Physics 1021 Buoyancy 2 Buoyancy Apparatus and Setup Materials Force probe 1000 ml beaker Vernier Calipers Plastic cylinder String or paper clips Assorted bars and clamps Water Attach the force probe

### ARCHIMEDES PRINCIPLE AND THE COMPUTATION OF BUOYANT FORCES. Alexis Rodriguez-Carlson

ARCHIMEDES PRINCIPLE AND THE COMPUTATION OF BUOYANT FORCES Alexis Rodriguez-Carlson September 20, 2006 Purpose: The purpose of this experiment is to show that the buoyant force acting on an object submerged

### Movement and Position

Movement and Position Syllabus points: 1.2 plot and interpret distance-time graphs 1.3 know and use the relationship between average speed, distance moved and 1.4 describe experiments to investigate the

### USE INEQUALITY NOTATION TO SPECIFY SIMPLE ERROR INTERVALS DUE TO TRUNCATION OR ROUNDING (foundation and higher tier)

N15 USE INEQUALITY NOTATION TO SPECIFY SIMPLE ERROR INTERVALS DUE TO TRUNCATION OR ROUNDING (foundation and higher tier) You should be able to find least and greatest value of a number that has been rounded

### PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

### Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method)

Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) L. W. Braile and S. J. Braile (June, 2000) braile@purdue.edu http://web.ics.purdue.edu/~braile Walk

### Chapter 13 Gases. H. Cannon, C. Clapper and T. Guillot Klein High School. Pressure/Temperature Conversions

Chapter 13 Gases Pressure/Temperature Conversions Convert the following: 1. 3.50 atm = kpa 2. 123 atm = mmhg 3. 970.0 mmhg = torr 4. 870.0 torr = kpa 5. 250.0 kpa = atm 6. 205.0 mmhg = kpa 7. 12.4 atm

### Calibration of Volumetric Glassware

Calibration of Volumetric Glassware Introduction This set of laboratory experiments is designed to introduce you to some of the apparatus and operations you will be using during the remainder of this course,

### CHM111 Lab Gas Laws Grading Rubric

Name Team Name CHM111 Lab Gas Laws Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal procedures

### . In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

### 11.1 Dumas Method - Pre-Lab Questions

11.1 Dumas Method - Pre-Lab Questions Name: Instructor: Date: Section/Group: Show all work for full credit. 1. If a 275-mL gas container has pressure of 732.6 mm Hg at -28 C, how many moles of gas are

### AP Lab 11.3 Archimedes Principle

ame School Date AP Lab 11.3 Archimedes Principle Explore the Apparatus We ll use the Buoyancy Apparatus in this lab activity. Before starting this activity check to see if there is an introductory video

### Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

### D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES:

D. De La Matter 2004 Swimming Pool Chemistry STUDENT ACTIVITIES: Good News! Flinn Scientific Inc. has developed a classroom kit of experiments based on these activities. The Kit Catalog # is AP6599. Ordering

### FUNCTIONAL SKILLS MATHEMATICS (level 1)

FUNCTIONAL SKILLS MATHEMATICS (level 1) Detailed Marking Instructions Version: May 2011 Question Marking Scheme Illustrations of evidence No Give for each for awarding a mark 1 (a) Ans: 675 represent:

### To connect the words of Archimedes Principle to the actual behavior of submerged objects.

Archimedes Principle PURPOSE To connect the words of Archimedes Principle to the actual behavior of submerged objects. To examine the cause of buoyancy; that is, the variation of pressure with depth in

### Experiment 8 GAS LAWS

Experiment 8 GAS LAWS FV 6/25/2017 MATERIALS: Amontons Law apparatus, Boyle s Law apparatus, Avogadro s Corollary apparatus, four beakers (2 L), warm-water bath, ice, barometer, digital thermometer, air

### The Decomposition of Potassium Chlorate

The Decomposition of Potassium Chlorate Small quantities of molecular oxygen (O 2 ) can be obtained from the thermal decomposition of certain oxides, peroxides, and salts of oxoacids. Some examples of

### Page 1

Contents: 1. Thrust and Pressure 2. Pressure in Fluids 3. Buoyancy 4. Why objects sink or Float when placed on surface of water? 5. Archimedes Principle 6. Relative Density Learning Objectives: The students

### PRESSURE-TEMPERATURE RELATIONSHIP IN GASES

PRESSURE-TEMPERATURE RELATIONSHIP IN GASES LAB PS2.PALM INTRODUCTION Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The

### 1. Quantity of a gas (moles) 2. Temperature of the gas. 3. Volume occupied by the gas. 4. Pressure exerted by the gas. PV = nrt

Experiment 5 Stoichiometry : Gases Determining the Ideal Gas Constant Lab Owl Announcement: Upon completion of this lab log onto OWL. Your fourth Lab Owl assignment, Lab Owl: Exp 5 should appear there.

### Multiple Representations of Buoyancy. Meredith Weglarz, Jessica Oliveira, James Vesenka University of New England, Department of Chemistry and Physics

Multiple Representations of Buoyancy Meredith Weglarz, Jessica Oliveira, James Vesenka University of New England, Department of Chemistry and Physics Abstract: A modeling lab exercise, based on multiple,

### Shark Biology Buoyancy by Bill Andrake

Shark Biology Buoyancy by Bill Andrake Science Lesson: Buoyancy - Based on Webisode 45 - Shark Biology Grade Level: 6-8 Time: Four (45-50 minute) class periods Introduction Jonathan narrates an educational

### TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 ELECTRONIC LABORATORY NOTEBOOK (ELN) INSTRUCTIONS Read the directions and

### Boyle s Law: Pressure-Volume Relationship in Gases

Boyle s Law: Pressure-Volume Relationship in Gases The primary objective of this experiment is to determine the relationship between the pressure and volume of a confined gas. The gas we will use is air,

### The Ideal Gas Constant

Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

March Madness Basketball Tournament Math Project COMMON Core Aligned Decimals, Fractions, Percents, Probability, Rates, Algebra, Word Problems, and more! To Use: -Print out all the worksheets. -Introduce

### Evaluation copy. Vapor Pressure of Liquids. computer OBJECTIVES MATERIALS

Vapor Pressure of Liquids Computer 10 In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask

### 1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D non-metallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights

### Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

### Math 10 Lesson 3-3 Interpreting and Sketching Graphs

number of cards Math 10 Lesson 3-3 Interpreting and Sketching Graphs I. Lesson Objectives: 1) Graphs communicate how two things are related to one another. Straight, sloped lines indicate a constant change

### CH 112 Special Assignment #2 Density Layers and Lava Lamps

CH 112 Special Assignment #2 Density Layers and Lava Lamps PRE-LAB ASSIGNMENT: Make sure that you read this handout and bring the essentials to lab with you. Here are the pre-lab questions for this week.

### Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

### In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

### Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 4 Hydraulics Jumps Lecture - 4 Features of Hydraulic Jumps (Refer Slide

### In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

### S0300-A6-MAN-010 CHAPTER 2 STABILITY

CHAPTER 2 STABILITY 2-1 INTRODUCTION This chapter discusses the stability of intact ships and how basic stability calculations are made. Definitions of the state of equilibrium and the quality of stability

### Slide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3?

Slide 1 / 68 1 What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 2 / 68 2 What is the mass of a rectangular shaped ice block with dimensions of 0.04m x 0.05m

### End of Chapter Exercises

End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

### PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

### Process Nature of Process

AP Physics Free Response Practice Thermodynamics 1983B4. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the

### Distillation Design The McCabe-Thiele Method

Distillation Design The McCabe-Thiele Method Distiller diagam Introduction Using rigorous tray-by-tray calculations l is time consuming, and is often unnecessary. One quick method of estimation i for number

### Core practical 14: Investigate the relationship between the pressure and volume of a gas at fixed temperature

Core practical 14 Teacher sheet pressure To measure the volume of a gas at constant temperature but varying pressure Specification links Students should carry out this work with due attention to safety

### Report for Experiment #11 Testing Newton s Second Law On the Moon

Report for Experiment #11 Testing Newton s Second Law On the Moon Neil Armstrong Lab partner: Buzz Aldrin TA: Michael Collins July 20th, 1969 Abstract In this experiment, we tested Newton s second law

### SOLUBILITY OF A SOLID IN WATER

1516L Experiment 2 SOLUBILITY OF A SOLID IN WATER Objectives In this experiment you will determine the solubility of potassium nitrate (KNO 3 ) in water at various temperatures. You will prepare a plot

### LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

### Lab. Manual. Fluid Mechanics. The Department of Civil and Architectural Engineering

Lab. Manual of Fluid Mechanics The Department of Civil and Architectural Engineering General Safety rules to be followed in Fluid Mechanics Lab: 1. Always wear shoes before entering lab. 2. Do not touch

### Aerobic Respiration. Evaluation copy

Aerobic Respiration Computer 17 Aerobic cellular respiration is the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. Glucose may be oxidized completely

### Using Darts to Simulate the Distribution of Electrons in a 1s Orbital

NAME: Using Darts to Simulate the Distribution of Electrons in a 1s Orbital Introduction: The quantum theory is based on the mathematical probability of finding an electron in a given three dimensional

### ConcepTest PowerPoints

ConcepTest PowerPoints Chapter 10 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

### Gas Laws. Introduction

Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

### The Determination of the Value for Molar Volume

Objective The Determination of the Value for Molar Volume Using a chemical reaction that produces a gas, measure the appropriate values to allow a determination of the value for molar volume. Brief Overview

### CC Investigation 1: Graphing Proportions

CC Investigation 1: Graphing Proportions DOMAIN: Ratios and Proportional Relationships Problem 1.1 During the first basketball game of the season, Karl made 3 of his 5 free-throw attempts. Karl then made

### Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams.

Heat Engine Equipment: Capstone, 2 large glass beakers (one for ice water, the other for boiling water), temperature sensor, pressure sensor, rotary motion sensor, meter stick, calipers, set of weights,

### BIOMECHANICAL MOVEMENT

SECTION PART 5 5 CHAPTER 12 13 CHAPTER 12: Biomechanical movement Practice questions - text book pages 169-172 1) For which of the following is the athlete s centre of mass most likely to lie outside of

### Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ

Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the

### Predicted Dispense Volume vs. Gravimetric Measurement for the MICROLAB 600. November 2010

Predicted Dispense Volume vs. Gravimetric Measurement for the MICROLAB 600 November 2010 Table of Contents ``Abstract...3 ``Introduction...4 ``Methods & Results...6 ``Data Analysis...9 ``Conclusion...12

### UNIT 10 - GASES. Notes & Worksheets - Honors

Ideal Gas Equation 1 WKSHT 1.) What is the pressure exerted by 2.0 moles of an ideal gas when it occupies a volume of 12.0 L at 373 K? 2.) A flashbulb of volume 2.6 cm 3 contains O 2 gas at a pressure

### LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the

### Overview of Density Worksheet

Name Key formulas/concepts: Overview of Density Worksheet Density Density = Mass divided by Volume (D = M/V). The mass of an object is 25 grams. The volume of an object is 5 cm 3. D = 25g/5cm 3 = 5 g/cm

### Torque Review. 3. What is true about the Torques on an object in rotational equilibrium?

Torque Review 1. Define the following: a. Torque b. Lever arm c. Line of action d. Fulcrum e. Center of mass 2. What can be observed about an object in rotational equilibrium? 3. What is true about the

### Piecewise Functions. Updated: 05/15/10

Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 05/15/ Objectives: Students will review linear functions and their properties and be introduced to piecewise

### Lab Skills Practice: Pipetting Small Volumes. B3 Summer Science Camp at Olympic High School 2016

Lab Skills Practice: Pipetting Small Volumes B3 Summer Science Camp at Olympic High School 2016 Pipetter types Serological and micropipettes are used to accurately transfer small liquid volumes (micro-liter

### Homework 2b: Bathymetric Profiles [based on the Chauffe & Jefferies (2007)]

14 August 2008 HW-2b: - Bathymetric Profiles 1 2-5. BATHYMETRIC PROFILES Homework 2b: Bathymetric Profiles [based on the Chauffe & Jefferies (2007)] A bathymetric profile provides a "skyline view" of the

### Applying Hooke s Law to Multiple Bungee Cords. Introduction

Applying Hooke s Law to Multiple Bungee Cords Introduction Hooke s Law declares that the force exerted on a spring is proportional to the amount of stretch or compression on the spring, is always directed

### Practice Test. 2 What is the area of this figure?

Practice Test 1 Which letter has a line of symmetry? S J R W L 3 Jane's house has a garden which is in the shape of a square. If each side of the garden is 18 feet then what is the perimeter of the garden?

### Card 1 Chapter 17. Card 2. Chapter 17

Card 1 Card 2 Liquid A - 1.4 g/ml; Liquid B -.82 g/ml; Liquid C - 1.0 g/ml; one liquid you know. What is it? Also how will they stack? Where will a 1.6 g/ml object end up? Find the density of a 5 milliliter,

### Potential and Kinetic Energy: The Roller Coaster Lab Student Version

Potential and Kinetic Energy: The Roller Coaster Lab Student Version Key Concepts: Energy is the ability of a system or object to perform work. It exists in various forms. Potential Energy is the energy

### 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same

### 2. investigate the effect of solute concentration on water potential as it relates to living plant tissues.

In this lab you will: 1. investigate the processes of diffusion and osmosis in a model membrane system, and 2. investigate the effect of solute concentration on water potential as it relates to living

### Physics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B

Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.

### Student Exploration: Distance-Time and Velocity-Time Graphs

Name: Date: Student Exploration: Distance-Time and Velocity-Time Graphs [NOTE TO TEACHERS AND STUDENTS: This lesson was designed as a follow-up to the Distance-Time Graphs Gizmo. We recommend you complete

### Vocabulary: Objectives: Materials: For Each Station: (Have 2 stations for each liquid; 8 stations total, in student groups of 3-4) Students will:

Author: Ms. Adrienne Maribel López Date Created: August 2007 Subject: Properties of Matter Level: 6 th 8 th grade Standards: NYS Learning Standards for Mathematics, Science, and Technology-- Intermediate

### Adam Equipment. DENSITY DETERMINATION KIT for AFP, AAA and AAA/LE SERIES BALANCES OPERATOR S MANUAL

Adam Equipment DENSITY DETERMINATION KIT for AFP, AAA and AAA/LE SERIES BALANCES OPERATOR S MANUAL Adam Equipment Company 2002 ADAM EQUIPMENT CO. LTD. pn. 4144 Rev. A, October 2002 Adam Equipment Company

### Practice Questions: Waves (AP Physics 1) Multiple Choice Questions:

Practice Questions: Waves (AP Physics 1) Multiple Choice Questions: 28. A transverse wave is traveling on a string. The graph above shows position as a function of time for a point on the string. If the

### Measuring Lung Capacity

Name Class Date Chapter 37 Circulatory and Respiratory Systems Measuring Lung Capacity Introduction The amount of air that you move in and out of your lungs depends on how quickly you are breathing. The

### By Syed Ahmed Amin Shah 4 th semester Class No 8 Submitted To Engr. Saeed Ahmed

EXPERIMENT # 01 DEMONSTRATION OF VARIOUS PARTS OF HYDRAULIC BENCH. HYDRAULIC BENCH Hydraulic bench is a very useful apparatus in hydraulics and fluid mechanics it is involved in majority of experiments

### A Study of Olympic Winning Times

Connecting Algebra 1 to Advanced Placement* Mathematics A Resource and Strategy Guide Updated: 05/15/ A Study of Olympic Winning Times Objective: Students will graph data, determine a line that models

### Lab 7 Rotational Equilibrium - Torques

Lab 7 Rotational Equilibrium - Torques Objective: < To test the hypothesis that a body in rotational equilibrium is subject to a net zero torque and to determine the typical tension force that the biceps

### For a tennis ball brand to be approved for tournament play

L A B 12 ANALYZING A BOUNCING TENNIS BALL Infinite Series For a tennis ball brand to be approved for tournament play by the United States Tennis Association (USTA), it must satisfy several specifications.