PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR1

Size: px
Start display at page:

Download "PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR1"

Transcription

1 PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR1 ARTHUR B. OTIS, HERMANN RAHN, MARVIN A. EPSTEIN AND WALLACE 0. FENN From the Department of Physiology, School of Medicine and Dentistry, University of Rochester, Rochester, New York Received for publication December 26, 1945 In a previous report (Rahn et al., 1946) some effects of hyperventilation on performance test scores were described. In these experiments oxygen was breathed at a simulated altitude of 30,000 feet. The results could be related to changes in alveolar carbon dioxide tension alone, since the alveolar oxygen tension never fell below the normal ground level range. The experiments reported below constitute an attempt to relate performance to alveolar gas composition when both the oxygen and carbon dioxide tensions are varied simultaneously and when one or the other is varied singly. METHODS. All experiments were conducted in our high altitude chamber. Alveolar gas tensions were varied by 1, hyperventilation with the aid of the G.E.X. pneumolator; 2, by the addition of dead space (rubber hose) between mask and demand valve, and 3, by change of pressure in the high altitude chamber. Performance was measured bv v the Hecht contrast discrimination test and by a modification of the hand steadiness test described in a previous report (Fenn et al., 1946). In the hand steadiness test, as originally described, the score w as taken as the total number of contacts made by the subject during a 30 second test period. Preliminary experiments showed that this method of scoring may involve a serious error when the subject is very anoxic. Such a subject tends to allow the stylus to remain in contact with the plate for relatively long intervals of time during the test period.2 The number of hits, which tends to be relatively few in such a case, is a poor measure of the subject s steadiness, because it is much easier for a subject to rest the stylus against the side of the hole than to hold it in the hole without touching. This problem has been solved by taking as the score, not the number of hits, but the total time during which the stylus makes contact in a period of 30 seconds. This time was measured in units of & second by an A.C. impulse counter included in a circuit that was closed whenever the stylus made contact with the plate. The general plan for an experiment was as follows. The subject entered the 1 Work done under contract recommended by the Committee on Medical Research between the Office of Research and Development and the University of Rochester. 2 In this test the subject endeavors to hold a stylus in a hole in a brass plate for a period of 30 seconds without making electrical contact with the sides of the hole. The stylus has a diameter of & and the hole t. The elbow rests on the table but not the hand. The hole was l$" above the table in a brass plate tilted at an angle of 45 with the vertical. A very similar apparatus is sold by Stoelting and Co., Chicago, catalogue no

2 208 OTIS, RAHN, EPSTEIN AND FENN high altitude chamber in which the illumination was set at a level which had previously been determined as being suitable for administering the contrast discrimination test. Following a period of 15 minutes, which was allowed for the subject to become adapted to this degree of illumination, the subject put on a mask and breathed air or oxygen from a demand system. The steadiness test and the contrast discrimination test were then administered alternately until three trials of each were completed. The scores thus obtained served as normal control values. In a few flights the control scores were obtained at 16,000 feet breathing oxygen instead of at ground level. In experiments where the use of the pneumolator was anticipated the subject performed the control trials of the 9 steadiness test while temporarily breathing on the pneumolator. This was done so as to have a control on the possible mechanical disturbance caused by the action of the pneumolator. The subject with an observer was then taken to altitude where he proceeded to breathe air or oxygen either from a demand valve, or from a demand valve with added dead space, or from the G.E.X. pneumolator. The maximum altitude used in these experiments was 24,000 feet. After a period of from 5 to 10 minutes, allowed for the subject to become adjusted to the conditions, the tests were administered in the same fashion as at ground level. Upon completion of the second trial of the tests, an alveolar air sample, subsequently analyzed by the Haldane method, was taken. Following this a third trial of the tests was administered. Approximately half an hour was required to complete the series of measurements. Upon completion of the third trial of the tests, the chamber was changed to a new altitude or the setting of the pneum&t,or was changed or a different dead space was substituted, and another series of tests was administered and an alveolar sample was obtained. During these experiments the subject wore electrodes connected to a cardiotachometer, and a heart rate record was obtained during the performance of each contrast discrimination test. In flights where anoxia was involved the subject also wore an ear oximeter. Unfortunately the oximeter readings proved to be so unreliable during most of these flights that it has seemed wise to discard the results. The cause of our difficulty seems to have been a faulty ear piece, since replaced by the manufacturer. Eleven individuals (ten males and one female) served as subjects for these experiments. A total of 85 control runs and 171 experimental runs were completed. RESULTS: One method of presenting the data is shown in figures 1 and 2. Each experimental series of three tests is represented by a symbol on one of these charts. The location of a symbol is determined by the alveolar carbon dioxide and oxygen tensions which existed during the performance. The type of symbol designates the probability, as determined by Fisher s t test, that the subject s scores in an experimental series of three trials of a test were not different from his control scores obtained breathing air or oxygen at ground level. The specific meaning of each type of symbol is indicated in the legend accompanying the figures.

3 I \ IMPAIRED PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR 209 This sort of graph with oxygen and carbon dioxide tensions as coordinates is advantageous in that contour lines representing equivalent altitudes and per cent saturations (nomogram of Henderson 1928) can be drawn readily. A line representing the normal composition of alveolar air from the data of Boothby has been added for reference. 70 t\ -- I \ 80 36_Hs-+ 65% CO2 NARCOSIS cc o?, I 0 0 / -,---r-a-r,rrr, AIR- R.Q. =I. 0 --I- O 0 8 OO 00 REGION OF NORMAL w-w NORMAL AWEOLJR,$O, ~. ANOXIC COLLAPSE PERFORMANCE 20- PERFORMANCE 10-0 C. D. T. 0 \ ACAPNIC SEVERE AC APN I A TETANY \ I I I I I I\I I I\ I I I II 0 IO ALVEOLAR ~02 Fig. 1. Relationship of alveolar gas composition to steadiness test performance. Ordinates: alveolar carbon dioxide tensions in millimeters of Hg. Abscissae: alveolar oxygen tensions in millimeters of Hg. Each type of symbol represents a probability (p) that a subject s experimental score was not different from his control score : The blacker the symbol the lower the probability and the greater the certainty of abnormality. Solid circle with cross, p < 0.01; solid circle, p = 0.01 to 0.05; half solid circle, p = 0.05 to 0.1; open circle with dot, p = 0.1 to 0.5; open circle, p > 0.5. An attempt has been made to divide the charts into regions of normal performance and different sorts of impaired performance. Such regions can be determined only very roughly by the data at hand, and the more uncertain regions are bounded by dotted lines. Certain tentative conclusions are indicated by these diagrams.

4 210 OTIS, RAHN, EPSTEIN AND FENN 1. Following along any given pc0, value from right to left the performance becomes worse, i.e., anoxia does not appear to antagonize acapnia. 2. Starting at a normal pcoz level of 40 mm. and following any given per cent saturation line to lower pco:! values the performance becomes worse and never better, i.e., acapnia does not antagonize anoxia. 3. Thus acapnia and anoxia are additive or synergistic rather than antagonistic intheir effects on these performance tests. 4. On the other hand, if one starts at a normal pcoz value of 40 mm. and follows down a given altitude diagonal to lower pcoz values the performance may improve over a certain range and then grow worse. There is, therefore, an optimum value or region of values of alveola,r gas composition at each altitude for the best performance. w d REGION OF IMPAIREO PERFORMANCE SEVERE ACAPNIA a Q ALVEOLAR p($ Fig. 2. Relationship of alveolar gas composition to contrast discrimination test performance. Co-ordinates and symbols as in figure 1. In general the blacker the symbol the greater the probability that the observed performance differed significantly from normal. It should be emphasized that these conclusions and the regions bounded on the charts are tentative. It is obvious that a much larger number of tests would be needed to establish such a diagram with certainty. Another method of treating the data which leads to the same general conclusions listed above attempts, in addition, to analyze performance impairment

5 PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR 211 into anoxic and acapnic components. Tables 1 and 2 were constructed for this purpose. For these tabulations the mean of the three trials of a test taken under a given set of conditions was taken as the score. TABLE 1 Hand steadiness test scores as related to alveolar air compositions \ \ PC PO2 pco2 po2 Score n pco2 pot Score SDM n pco2 ~02 P-P-- \ P-P Score SDM n pco2 po2 Score SDM n < ~ I The heading of each horizontal row indicates the range of alveolar oxygen tension in millimeters Hg existing when the test scores entered in the row were obtained. The main headings of the vertical columns similarly indicate ranges of alveolar carbon dioxide tension. The sub-headings of the columns have the following meaning. pco,, the average alveolar carbon dioxide tension in millimeters of Hg. ~02, the average alveolar oxygen tension. Score, the mean of all scores in a particular range. SDM, t,he standard deviation of this mean. (Calculated only when the mean was based on 5 or more cases.) n, the number of individual scores (each individual score being the average of three trials) on which the mean score was based. TABLE 2 Contrast discrimination test scores as related to alveolar air composition \ \y2 / <ls PO2 \ \ pc02 1 po2 IScore n pco2 po2 Score SDM TZ pco2 ~02 Score SDM n PC021 poz jscoreisdm/ n P < * I I The legend of table 1 applies. Each value entered in these tables is the average of all scores obtained within the range of conditions indicated by the headings of the vertical columns and the horizontal rows. Examination of the columns of these tables indicates that, in general, performance grows worse as the alveolar oxygen tension is lowered in each of the ranges of alveolar carbon dioxide tension. A similar examination of the horizontal rows shows a tendency for performance to deteriorate as the alveolar carbon dioxide tension falls within each range of alveolar oxygen ten-

6 212 OTIS, RAHN, EPSTEIN AND FENN sions. This suggests the possibility of plotting performance scores against one of the independent variables and indicating the second independent variable by. contour lines. This has been attempted in figures 3 and 4 in which performance test scores are plotted against alveolar oxygen tensions with ranges of W OI: co CD P u) 1500 co s 5 a 1000 P cn so 100 ALVEOLAR,aO, MM. HG. Fig. 3. Steadiness test scores as related to alveolar air composition. Based on the data shown in table 1. Ordinates : Steadiness test scores in & second. Abscissae : Alveolar oxygen tension in millimeters of Hg. The types of symbols designate the range of alveolar carbon dioxide tensions as follows: solid circles, < 15 mm. Hg; half solid circles, mm. Hg; open circle plus center dot, mm. Hg; open circles, mm. Hg. The vertical lines through some of the points indicate the standard deviation of the mean. Since the test trials were 30 seconds in duration, the maximum possible score would be 3600 as indicated by the horizontal line on the graph. alveolar carbon dioxide tensions bounded by contour lines. These graphs show that with lowered oxygen tension, performance becomes worse in all ranges of carbon dioxide tensions. The slope of the lines rapidly becomes steeper as the oxygen tension falls below 40 mm. Hg. The lowest of the family of curves in each graph is of particular interest.

7 .- -- cc.^ PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR 213 These curves may be considered as pure anoxia curves since they fit the points obtained with alveolar carbon dioxide tensions in the mm. range which is within the normal ground level range. The points for the mm. are hardly different. This confirms our previous conclusion (Fenn et al., 1946) that the alveolar carbon dioxide tension may be lowered to mm. in the average I I I 1 I 1 J I f CHANCE SCORE ALVEOLAR PO2 MM. HG. Fig. 4. Contrast discrimination test scores as related to alveolar air composition. Based on the data shown in table 2. Ordinates : Contrast discrimination test score. The maximum possible score is 36. The score that would be obtained by chance is Abscissae: Alveolar oxygen tensions in millimeters of Hg. The meaning of the types of symbols is the same as for figure 3. individual without serious impairment of performance as judged by these particular tests. The points obtained in the ranges of CO2 tensions below 25 mm. are considerably elevated above the pure anoxia curve. The performance impairment represented by these elevated points is due to the combined effects of anoxia and acapnia. The data in the lowest row of tables 1 and 2 show the effect of acapnia alone on performance, because they were obtained with alveolar oxygen tensions of

8 214 OTIS, RAHN, EPSTEIN AND FENN 100 or above. Pure acapnia curves constructed from these data are shown in figures 5 and 6. If the effects of anoxia and acapnia are simply additive, it should be possible to determine how much of the performance impairment represented by any point in figures 3 or 4 is due to anoxia, by subtracting the increment of score that would have been caused by the degree of acapnia existing. Accordingly the following procedure was followed with each score entered in table The pc0, existing when the score was obtained was noted. 2. The increment of score that this pc0, would cause was read from figure This increment was subtracted from the original score. 4. The corrected score was plotted against the alveolar oxygen tension. IO I ALVEOLAR PC09 WY. HO. On Fig. 5 Fig. 6 Fig. 5. The effect of acapnia on contrast discrimination test performance. Plotted from the data of the last row of table 2. Ordinates: Increments of test score above normal. Abscissae : Alveolar carbon dioxide tension in millimeters of Hg. Fig. 6. The effect of acapnia on steadiness test score. Abscissae : Alveolar carbon dioxide tension in millimeters of Hg. Ordinates: The scale on the left gives steadiness test scores as time of contact in units of r-&v second during a 30 second test period and applies to the open circles which represent the data in the last row of table 1. The scale on the right gives steadiness test scores as number of hits during a 30 second test period and applies to the closed circles which represent the data from another series of experiments described in a previous report (Fenn et al., 1946). Those points have been plotted here to show that the two methods of scoring the steadiness test give similar results as far as acapnia is concerned. Figure 7 shows that this procedure has resulted in fitting all the points reasonably well to the pure anoxia curve for the contrast discrimination test. It is justifiable, therefore, to conclude that the effects of acapnia and anoxia on this type of performance are approximately additive. In the case of the steadiness test data, however, the corrected scores gave a much poorer fit. Most of the points lay well above the pure anoxia curve, indicating that the correction for acapnia was inadequate. Consequently, a modified procedure was applied to each of the steadiness test scores entered in table The pc0, existing when the score was obtained was noted. 2. The multiple of the control score that this pc0, would give was determined from figure 6.

9 PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR The original score was divided by this multiple. 4. The corrected score was plotted against the alveolar oxygen tension. The result is shown as figure 8. The fact that this method resulted in a reasonably good fit of all the steadiness test scores to the pure anoxia curve indicates that the steadiness test score is a logarithmic rather than an arithmetic function of performance. Fig. 7 Fig. 8 Fig. 7. The effect of anoxia on contrast discrimination test score. Ordinates : Contrast discrimination test scores. Abscissae : Alveolar oxygen tensions in millimeters of Hg. Open circles: Scores obtained with alveolar carbon dioxide tensions between mm. Hg. Closed circles: Scores obtained with alveolar carbon dioxide tensions below 35 mm. but corrected for the effects of acapnia by the method described in the text. Fig. 8. The effect of anoxia on steadiness test scores. Ordinates : Steadiness test scores as time of contact in units of &J second during a 30 second test period. Abscissae : Alveolar oxygen tensions in millimeters of Hg. Open circles : Scores obtained with alveolar carbon dioxide tensions in the range of mm. Hg. Closed circles: Scores obtained with alveolar carbon dioxide tensions below 35 mm. but corrected for acapnia by the method described in the text. Having separated the effects of acapnia and anoxia and having determined the nature of their combined action on the test scores, it is possible to determine a theoretical score for any combination of alveolar oxygen and carbon dioxide tensions, or to construct isopleths of constant score on a pcoz-~02 grid as has been done in figures 9 and 10. Such lines were constructed as follows: 1. The desired score was chosen. 2. Reference to the pure acapnia curve established the right hand end of the line (at PO2 = 100 mm.). 3. Reference to the pure anoxia curve established the left hand end of the line (at pco2= 40 mm.). 4. Intermediate points were established by choosing an oxygen tension, determining from the pure anoxia curve what score would be obtained at this tension, and then determining from the pure acapnia curve what the pco2 would have to be to give an increment (in the case of the contrast discrimination test) or a multiple (in the case of the steadiness test) that would yield the arbitrarily chosen score when added to or multiplied by the pure anoxia

10 216 OTIS, RAHN, EPSTEIN AND FENN Fig. 9. The relationship of contrast discrimination test scores to alveolar air composition and equivalent altitude. Ordinates : Alveolar carbon dioxide tensions in millimeters of Hg. Abscissae : Alveolar oxygen tensions in millimeters of Hg. Curved lines are isopleths of constant score constructed by the method described in the text. Diagonals represent the equivalent altitudes indicated for breathing oxygen and for air when the R.Q. = 1. ALVEOLAR PO2 MM. HG. Fig. 10 Fig. 11 Fig. 10. The relationship of steadiness test scores to alveolar air composition and equivalent altitude. Ordinates : Alveolar carbon dioxide tensions in millimeters of Hg. Abscissae: Alveolar oxygen tensions in millimeters of Hg. Curved lines are isopleths of constant score constructed by the method described in the text. Diagonals represent the equivalent altitudes indicated for breathing oxygen and for air when the R. Q. = 1. Fig. 11. Heart rate increase as a function of alveolar oxygen tension. Plotted from the data in the last main column of table 3. Ordinates: Increase in heart rate above the control rate in beats per minute. Abscissae : Alveolar oxygen tensions in millimeters of Hg. The vertical lines through the points indicate the standard deviation of the mean. By constructing an altitude diagonal which is tangent to an isopleth, the optimal alveolar air composition for this altitude is established by the co-ordinates of the point of tangency. When oxygen is breathed only one altitude

11 PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR 217 diagonal can be drawn tangent to a given isopleth. If air is the inspired gas, however, a multitude of such lines can be drawn, because of the R.Q. effect. The diagonals drawn in figures 9 and 10 represent air breathing altitudes if the R.Q. is equal to 1, or oxygen breathing altitudes at any R.Q. That the two tests employed have different optimums is obvious from a comparison of figures 9 and IO. At the altitude of 47,090 feet, for example, the optimum pco2 for the steadiness test is 27 mm., but for the contrast discrimination test it is at 18 mm. These values should not be taken too seriously as far as their absolute magnitudes are concerned, but it seems fair to draw the conclusion that a degree of hyperventilation greater than the normal for the average individual at altitude will not improve his steadiness test score but will TABLE 3 Heart rate change as related to alveolar air composition PC02 \ PO2 < <15 pco2 ~02 Rate $ $ ALL - PZ pco2 ~02 Rate TZ _ $ $ $ $ PC02 PO2 Rate n $18.6 $17.5 $15.3 $11.8 $6.0 $ PC02 PO2 Rate /ilpol/ Rate 1 I SDM $19.4 $ $18.5 $ $15.2 $ $ $ $ The heading of each horizontal row indicates the range of alveolar oxygen tension in millimeters of Hg existing when the heart rate measurements were obtained. The main headings of the vertical columns similarly indicate ranges of alveolar carbon dioxide tension. The sub-headings of the columns have the following meamngs. pco2, the average alveolar carbon dioxide tension in millimeters of Hg. ~02, the average alveolar oxygen tension. Rate, the mean change with respect t,o normal of all heart rates measured in the indicated range. n, the number of determinations (each determination being the average of three measurements) on which the mean change in heart rate was based. The last main column is a summation of results for all ranges of carbon dioxide tensions. The sub-heading, SD&I, in this column refers to standard deviation of the mean. improve his contrast discrimination test score. There is an optiimum alveolar pco2 at each altitude for a given type of performance, but the optimum for another type of performance is likely to be different. The conclusion that one should not hyperventilate below a pc0, level of 27 mm. at feet is borne out by a series of flights which we have made to and feet Measurements. were made of the alveolar pco2 level and the hand steadiness by the test described. Data are available on 4 subjects at each altitude. At 460b0 feet the steadiness begins to decrease below 25 or 28 mm. Hg pc0, in spite of the concomitant increase of ~0,. Furthermore, for the same pcoz level, the hand is always more unsteady at the higher altitude than at ft. and is more unsteady at ft. at any pc0, level t,han at ground level breathing normally. These results also confirm therefore the idea that anoxia and acapnia are additive in their effects. Relationship of heart rate to alveolar gas tensions. Table 3 shows the mean change in heart rate obtained in various ranges of alveolar oxygen and carbon

12 218 OTIS, RAHN, EPSTEIN AND FENN dioxide tensions. The results show that heart rate is definitely related to alveolar oxygen tension, but is not significantly changed by alterations in the carbon dioxide tension over the limits investigated. Consequently, heart rate increments for all ranges of carbon dioxide tensions within each range of oxygen tension have been averaged as indicated in the extreme right hand column of the table. These values are shown plotted against the alveolar oxygen tension in figure 11. TABLE 4 Summary of experiments in which subjects breathed naturally ALT. pco2 PO2 R.Q. S.T. C.D.T. H.R. SAT. ALft. G.L mm.hg ?ZVLHg min ls.o #et- cent The column headings have the following meanings: Alt., simulated altitude in thousands of feet. n, the number of experiments performed. pco,, the alveolar carbon dioxide tension in millimeters of Hg. ~02, the alveolar oxygen tension in millimeters of Hg. R.Q., the respiratory quotient as calculated from the alveolar oxygen and carbon dioxide tensions. Time, the time in minutes which had been spent at altitude when the alveolar sample was taken. S.T., steadiness test score. C.D.T., contrast discrimination test score. H.R., change in heart rate with respect to normal. y0 Sat., the per-cent saturation of arterial blood as est,imated from the alveolar oxygen and carbon dioxide tensions with the aid of Henderson s nomogram. G. L., ground level. In so far as heart rate increment is a criterion of added circulatory strain, these results indicate that although anoxia may act as a considerable stress acapnia does not. Variations in performance, alveolar gas composition, and heart rate with altitude. Some of the experiments described above were performed with the subject breathing naturally from the demand regulator. The number of such runs at some of the altitudes is small, but it seems worth while to summarize the results briefly, because they indicate what individuals will do at air breathing altitudes when left to their own resources. Table 4 shows the mean values obtained at each altitude for the various quantities measured or calculated, and figure 12 shows the same results in graphic form. The values for per cent saturation are estimated from the alveolar oxygen and carbon dioxide tensions, and are not oximeter readings. As mentioned above the behavior of our oximeter was unsatisfactory during this series of flights.

13 PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR ALVEOLAR pc02 I2 16 ALTITUDE IN THOUSANDS OF FEET I8 Fig. 12. The normal response of individuals to altitude. Graphic representation of the data in table 4. The vertical lines through some of the points indicate the standard deviation of the mean values represented by the points. The values shown for alveolar air composition, in general, are in good agreement with the much more extensive series of Boothby. (See Helmholz et al., 1944.) Our data fail to show any lowering of the pcoft at the 12,000 foot altitude,

14 220 OTIS, RAHN, EPSTEIN AND FENN but this may be due to the fact that the ground level values and the altitude values were not necessarily obtained on the same subjects on the same day. The 12,000 foot altitude shows a small but significant effect on the contrast discrimination test and on heart rate, but leaves the steadiness test score unchanged from the ground level value. The higher altitudes show progressively greater effects on all items measured, with performance deteriorating very rapidly above 18,000 feet. The highest altitude studied, 22,000 feet, is probably close to the maximum at which most unacclimatized individuals will maintain consciousness for a half hour period. Similar effects of altitude have been described by McFarland (1938), who used choice reaction time, a color naming test, a code test, and a memory test as criteria of performance. He found that the mean impairment of performance was not statistically significant at altitudes below 12,000 feet. The question may be asked as to whether the effect of altitude on the performante of individuals breathing n aturally is purely an anoxic effect or whether the hyperventilation which normally accompanies the anoxia at altitudes above 12,000 feet produces significant acapnic effects. A comparison of the results shown in figure 12 with the pure anoxia curves in figures 7 and 8 indicates that the performance impairment of altitude is essentially a matter of anoxia alone. The fact that the alveolar pcoz drops below 30 mm. only at the highest altitude, 22,000 feet, (and only slightly below even at this altitude) would also indicate, on the basis of the pure acapnia curves, that acapnia could be, at most, only a very small factor. It is probable, of course, that a few, relatively rare individuals may spontaneously hyperventilate enough to experience acapnic impai rment, but the large majori.ty will suffer only from anoxia when t heir breathing is guided by their own reflexes at air breathing altitudes. We wish to acknowledge the kindness of Mr. John H. Slough, President of the General Electric X-Ray Corporation, who placed the pneumolator at our disposal. We are grateful also to Dr. Selig He&t for providing c us with the contrast discrimination test used in t,hese studies. It is a pleasure also to offer our thanks to the many subjects who have faithfully and willingly served in these experiments, particularly Mary &dge, Flo- rence Neiman, M. I3rontman and four members of C.P.S. ITnit &. 115, T. IIorvath, H. Mitchell, J. Heil, and A. Culp. SUMMARY 1. Performance (contrast discrimination test and steadiness test) and heart rates of I1 subjects were measured over a wide range of alveolar oxygen and carbon dioxide tensions. A total of 171 half-hour experiments and 85 control runs were made. 2. The results are plotted on an alveolar pco,-~0, grid, and regions of normal performance and of various kinds of impaired performance are indicated. 3. A method for analyzing performance impairment into anosic and acapnic coniponentls is described. 4. The results indicate the following conclusions :

15 PERFORMANCE AS RELATED TO COMPOSITION OF ALVEOLAR AIR 221 a. Acapnia and anoxia are additive rather than antagonistic in their effects on performance. b. There exists at each altitude an optimum alveolar gas composition for best performance. c. This optimum may be different for different types of performance. d. Heart rate is increased by anoxia, but is not consistently affected by acapnia. e. Performance impairment in most individuals breathing naturally at airbreathing altitudes is essentially a matter of anoxia alone. REFERENCES RAHN, H., A. B. OTIS, M. A. EPSTEIN, M. HODGE, S. W. HUNTER AND W. 0. FENN. J. Aviation Med. (In press.) HENDERSON, L. J. Blood. Yale University Press, New Haven, MCFARLAND, R. Report no. 13. Dept. of Commerce, Bureau of Air Commerce, Safetyand Planning Division, May HELMHOLZ, H. F., J. B. BATEMAN AND W. M. BOOTHBY. J. Aviation Medicine 16: 366,194.

A CONCEPT OF MEAN ALVEOLAR AIR AND THE VENTI- LATION -BLOODFLOW RELATIONSHIPS DURING PULMONARY GAS EXCHANGE

A CONCEPT OF MEAN ALVEOLAR AIR AND THE VENTI- LATION -BLOODFLOW RELATIONSHIPS DURING PULMONARY GAS EXCHANGE A CONCEPT OF MEAN ALVEOLAR AIR AND THE VENTI- LATION -BLOODFLOW RELATIONSHIPS DURING PULMONARY GAS EXCHANGE HERMANN RAHN From the Department of Physiology and Vital Economics, University @ Rochester, School

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

A Nomogram Of Performances In Endurance Running Based On Logarithmic Model Of Péronnet-Thibault

A Nomogram Of Performances In Endurance Running Based On Logarithmic Model Of Péronnet-Thibault American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-9, pp-78-85 www.ajer.org Research Paper Open Access A Nomogram Of Performances In Endurance Running

More information

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives exercise 7 Respiratory System Mechanics Objectives 1. To explain how the respiratory and circulatory systems work together to enable gas exchange among the lungs, blood, and body tissues 2. To define respiration,

More information

Douglas and Haldane(2) has shown that the oxygen determinations. since it forms the basis of the "Coefficient of Utilisation" (Krrogh) and

Douglas and Haldane(2) has shown that the oxygen determinations. since it forms the basis of the Coefficient of Utilisation (Krrogh) and THE MEASUREMENT OF THE OXYGEN CONTENT OF THE MIXED VENOUS BLOOD, AND OF THE VOLUME OF BLOOD CIRCULATING PER MINUTE. BY J. BARCROFT, F. J. W. ROUGHTON AND R. SHOJI. (From the Physiological Laboratory, Cambridge.)

More information

(Received 9 September 1940)

(Received 9 September 1940) 257 J. Physiol. (I 94I) 99, 257-264 6I2.2II A METHOD OF RECORDING THE RESPIRATION BY J. H. GADDUM From the College of the Pharmaceutical Society, 17 Bloomsbury Square, London, W.C. 2 (Received 9 September

More information

ALVEOLAR - BLOOD GAS EXCHANGE 1

ALVEOLAR - BLOOD GAS EXCHANGE 1 ALVEOLAR - BLOOD GAS EXCHANGE 1 Summary: These notes examine the general means by which ventilation is regulated in terrestrial mammals. It then moves on to a discussion of what happens when someone over

More information

PCO2 levels apparently differed by less than 5 mm Hg. Fowler [1954] and. Godfrey and Campbell [1969] have shown that it is possible to resume a

PCO2 levels apparently differed by less than 5 mm Hg. Fowler [1954] and. Godfrey and Campbell [1969] have shown that it is possible to resume a Q. Ji exp. Physiol. (1969) 54, 129-140 THE INFLUENCE OF LUNG SHRINKAGE ON BREATH HOLDING TIME. By S. GODFREY, R. H. T. EDWARDS and D. A. WARRELL. From the Department of Medicine, Royal Postgraduate Medical

More information

RESPIRATORY MUSCLES IN HEALTH AND EMPHYSEMA *

RESPIRATORY MUSCLES IN HEALTH AND EMPHYSEMA * THE OXYGEN CONSUMPTION AND EFFICIENCY OF THE RESPIRATORY MUSCLES IN HEALTH AND EMPHYSEMA * BY REUBEN M. CHERNIACK t (From The Winnipeg General Hospital and the Departments of Medicine and Physiology and

More information

plethysmographic methods that when the subject was pinched on the upper

plethysmographic methods that when the subject was pinched on the upper 24 J. Physiol. (I95I) II2, 24-2I 6I2.I5.6II.976 THE DECREASE IN HAND BLOOD FLOW FOLLOWING INFLATION OF AN ARTERIAL OCCLUSION CUFF ON THE OPPOSITE ARM BY IAN C. RODDIE From the Department of Physiology,

More information

THE literature on this subject, which was reviewed recently (CAMPBELL, doses of amytal, and in addition received A.C.E. mixture during the

THE literature on this subject, which was reviewed recently (CAMPBELL, doses of amytal, and in addition received A.C.E. mixture during the -~~ -v GAS TENSIONS IN THE MUCOUS MEMBRANE OF THE STOMACH AND SMALL INTESTINE. By J. ARGYLL CAMPBELL. From the National Institute for Medical Research, Hampstead. (With six figures in the text.) (Received

More information

(fig. 3) must be at the same temperature as the water in this chamber CALORIMETRIC STUDIES OF THE EXTREMITIES

(fig. 3) must be at the same temperature as the water in this chamber CALORIMETRIC STUDIES OF THE EXTREMITIES CALORIMETRIC STUDIES OF THE EXTREMITIES II. EXPERIMENTAL APPARATUS AND PROCEDURES' By ROY KEGERREIS (Received for publication July 1, 1926) The calorimeter used in these experiments is a modification of

More information

Characterizers for control loops

Characterizers for control loops Characterizers for control loops By: F. G. Shinskey (May 1999) Introduction Commercial controllers such as the PID series (proportional, integral, derivative, and their combinations) are linear devices

More information

Hypoxia Following Rapid Decompression to 18,288 m (60,000 ft) Attributable to Alveolar Hypoventilation

Hypoxia Following Rapid Decompression to 18,288 m (60,000 ft) Attributable to Alveolar Hypoventilation Hypoxia Following Rapid Decompression to 18,288 m (60,000 ft) Attributable to Alveolar Hypoventilation Desmond M Connolly PhD QinetiQ Aircrew Systems Senior Medical Officer Timothy J D Oyly BSc Amanda

More information

HUMAN Sample Experiment High Altitude Simulation (a one variable experiment) (version 5/04/06)

HUMAN Sample Experiment High Altitude Simulation (a one variable experiment) (version 5/04/06) HUMAN Sample Experiment High Altitude Simulation (a one variable experiment) (version 5/04/06) Students wish to simulate an ascent to the summit of Mount Mckinley (12,500 ft.), perhaps to compare the simulated

More information

Acknowledgement: Author is indebted to Dr. Jennifer Kaplan, Dr. Parthanil Roy and Dr Ashoke Sinha for allowing him to use/edit many of their slides.

Acknowledgement: Author is indebted to Dr. Jennifer Kaplan, Dr. Parthanil Roy and Dr Ashoke Sinha for allowing him to use/edit many of their slides. Acknowledgement: Author is indebted to Dr. Jennifer Kaplan, Dr. Parthanil Roy and Dr Ashoke Sinha for allowing him to use/edit many of their slides. Topic for this lecture 0Today s lecture s materials

More information

ALTITUDE TRAINING FOR IMPROVING SWIMMING PERFORMANCE AT SEA LEVEL. MITSUMASA MIYASHITA, YOSHITERU MUTOH and YOSHIHARU YAMAMOTO.

ALTITUDE TRAINING FOR IMPROVING SWIMMING PERFORMANCE AT SEA LEVEL. MITSUMASA MIYASHITA, YOSHITERU MUTOH and YOSHIHARU YAMAMOTO. ALTITUDE TRAINING FOR IMPROVING SWIMMING PERFORMANCE AT SEA LEVEL MITSUMASA MIYASHITA, YOSHITERU MUTOH and YOSHIHARU YAMAMOTO Abstract The present study was designed to investigate the effects of low altitude

More information

A Hare-Lynx Simulation Model

A Hare-Lynx Simulation Model 1 A Hare- Simulation Model What happens to the numbers of hares and lynx when the core of the system is like this? Hares O Balance? S H_Births Hares H_Fertility Area KillsPerHead Fertility Births Figure

More information

that, as a means of progression, walking is suitable for lower speeds

that, as a means of progression, walking is suitable for lower speeds 2 6I2 744.22 ENERGY EXPENDITURE IN WALKING AND RUNNING. BY M. OGASAWARA. (From the Department of Industrial Physiology, London School of Hygiene and Tropical Medicine.) (Received February 28, 1934.) IT

More information

W. D. A. SMITH Research Department of Anaesthetics, Royal College of Surgeons of England, London

W. D. A. SMITH Research Department of Anaesthetics, Royal College of Surgeons of England, London Brit. 1. Anaesth. (1962), 34, 136 A METHOD OF RECORDING SYSTOLIC BLOOD PRESSURE BY W. D. A. SMITH Research Department of Anaesthetics, Royal College of Surgeons of England, London The method of recording

More information

Legendre et al Appendices and Supplements, p. 1

Legendre et al Appendices and Supplements, p. 1 Legendre et al. 2010 Appendices and Supplements, p. 1 Appendices and Supplement to: Legendre, P., M. De Cáceres, and D. Borcard. 2010. Community surveys through space and time: testing the space-time interaction

More information

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT

UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION MUST, AT ALL TIMES, ACCEPT THE ENTIRE CARDIAC OUTPUT UNIQUE CHARACTERISTICS OF THE PULMONARY CIRCULATION THE PULMONARY CIRCULATION

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

Homeostasis and Negative Feedback Concepts and Breathing Experiments 1

Homeostasis and Negative Feedback Concepts and Breathing Experiments 1 Homeostasis and Negative Feedback Concepts and Breathing Experiments 1 I. Homeostasis and Negative Feedback Homeostasis refers to the maintenance of relatively constant internal conditions. For example,

More information

CARBON DIOXIDE ELIMINATION FROM SEMICLOSED SYSTEMS

CARBON DIOXIDE ELIMINATION FROM SEMICLOSED SYSTEMS Brit. J. Anaesth. (1956), 28, 196 CARBON DIOXIDE ELIMINATION FROM SEMICLOSED SYSTEMS BY RUSSELL M. DAVIES, I. R. VERNER Queen Victoria Hospital, East Grinstead AND A. BRACKEN Research and Development Centre,

More information

Exploring the relationship between Heart Rate (HR) and Ventilation Rate (R) in humans.

Exploring the relationship between Heart Rate (HR) and Ventilation Rate (R) in humans. Exploring the relationship between Heart Rate (HR) and Ventilation Rate (R) in humans. The Research Question In this investigation I will be considering the following general research question: Does increased

More information

SUBCUTANEOUS GAS EQUILIBRATION IN

SUBCUTANEOUS GAS EQUILIBRATION IN Tho'ax (1960), 15, 37. SUBCUTANEOUS GAS EQUILIBRATION IN CLINICAL PRACTICE BY From the Brook General Hospital, Shooters Hill, London When surgical emphysema is deliberately induced by injecting air under

More information

CHAPTER 9 $LU'HFRPSUHVVLRQ

CHAPTER 9 $LU'HFRPSUHVVLRQ CHAPTER 9 $LU'HFRPSUHVVLRQ 9-1 INTRODUCTION 9-1.1 Purpose. This chapter discusses decompression requirements for air diving operations. 9-1.2 Scope. This chapter discusses five different tables, each with

More information

Section Three Gas transport

Section Three Gas transport Section Three Gas transport Lecture 6: Oxygen transport in blood. Carbon dioxide in blood. Objectives: i. To describe the carriage of O2 in blood. ii. iii. iv. To explain the oxyhemoglobin dissociation

More information

SWIMMING SCIENCE BULLETIN

SWIMMING SCIENCE BULLETIN The Mechanisms of Ultra-short Training 1 SWIMMING SCIENCE BULLETIN Number 45g Produced, edited, and copyrighted by Professor Emeritus Brent S. Rushall, San Diego State University THE MECHANISMS OF ULTRA-SHORT

More information

Equation 1: F spring = kx. Where F is the force of the spring, k is the spring constant and x is the displacement of the spring. Equation 2: F = mg

Equation 1: F spring = kx. Where F is the force of the spring, k is the spring constant and x is the displacement of the spring. Equation 2: F = mg 1 Introduction Relationship between Spring Constant and Length of Bungee Cord In this experiment, we aimed to model the behavior of the bungee cord that will be used in the Bungee Challenge. Specifically,

More information

VOLUNTARY BREATHHOLDING. I. PULMONARY GAS

VOLUNTARY BREATHHOLDING. I. PULMONARY GAS VOLUNTARY BREATHHOLDING. I. PULMONARY GAS EXCHANGE DURING BREATHHOLDING'1 By CHARLES D. STEVENS, EUGENE B. FERRIS, JOSEPH P. WEBB, GEORGE L. ENGEL, AND MYRTLE LOGAN (From the Departments of Internal Medicine

More information

UNDERSTANDING A DIVE COMPUTER. by S. Angelini, Ph.D. Mares S.p.A.

UNDERSTANDING A DIVE COMPUTER. by S. Angelini, Ph.D. Mares S.p.A. UNDERSTANDING A DIVE COMPUTER by S. Angelini, Ph.D. Mares S.p.A. Dive Computer UNDERSTANDING A DIVE COMPUTER The decompression algorithm in a dive computer is an attempt to replicate the effects of a dive

More information

PROBLEM SET 9. SOLUTIONS April 23, 2004

PROBLEM SET 9. SOLUTIONS April 23, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

CHAPTER 16 %UHDWKLQJ*DV0L[LQJ3URFHGXUHV

CHAPTER 16 %UHDWKLQJ*DV0L[LQJ3URFHGXUHV CHAPTER 16 %UHDWKLQJ*DV0L[LQJ3URFHGXUHV 16-1 INTRODUCTION 16-1.1 Purpose. The purpose of this chapter is to familiarize divers with the techniques used to mix divers breathing gas. 16-1.2 Scope. This chapter

More information

CONTROL VALVE WHAT YOU NEED TO LEARN?

CONTROL VALVE WHAT YOU NEED TO LEARN? CONTROL VALVE WHAT YOU NEED TO LEARN? i) The control valve characteristics refers to the relationship between the volumetric flowrate F (Y-axis) through the valve AND the valve travel or opening position

More information

29 Pressure, Temperature relationship of a gas

29 Pressure, Temperature relationship of a gas Chemistry Sensors: Loggers: Gas Pressure, Temperature Any EASYSENSE Logging time: EasyLog Teacher s notes 29 Pressure, Temperature relationship of a gas Read The ideal gas laws tell us that if we keep

More information

Wing-Body Combinations

Wing-Body Combinations Wing-Body Combinations even a pencil at an angle of attack will generate lift, albeit small. Hence, lift is produced by the fuselage of an airplane as well as the wing. The mating of a wing with a fuselage

More information

tically by means of a "phoneloscope," made by the Capitol a small shaft on which a mirror is mounted. Movements

tically by means of a phoneloscope, made by the Capitol a small shaft on which a mirror is mounted. Movements BALLISTOCARDIOGRAPHIC STUDY OF CHANGES IN CARDIAC OUTPUT DUE TO RESPIRATION 1 By A. B. OTIS, H. RAHN, M. BRONTMAN, L. J. MULLINS, AND W. 0. FENN (From the Department of Physiology, School of Medicine and

More information

partial pressure is to be applied to the dissociation curve of fully oxygenated

partial pressure is to be applied to the dissociation curve of fully oxygenated 6I2. I27. I THE DETERMINATION OF THE CARBON DIOXIDE CONTENT OF THE MIXED VENOUS BLOOD. Part I. The effect of oxygenation and the critical oxygen tension. BY M. C. G. ISRAELS (Platt Physiological Scholar)

More information

Instruction Guide for using Dive Tables (draft)

Instruction Guide for using Dive Tables (draft) Instruction Guide for using Dive Tables (draft) Revision 1.0 US Navy Tables Rev 6 December 2009 Landis Bullock This guide is intended to supplement the instruction of a qualified SCUBA Instructor, not

More information

Puyallup Tribe of Indians Shellfish Department

Puyallup Tribe of Indians Shellfish Department Puyallup Tribe of Indians Shellfish Department Dungeness crab trap catch efficiency related to escape ring location and size George Stearns* 1, Robert Conrad 2, David Winfrey 1, Nancy Shippentower-Games

More information

Oxygen convulsions are believed by many workers to be caused by an accumulation

Oxygen convulsions are believed by many workers to be caused by an accumulation 272 J. Physiol. (I949) I09, 272-280 6I2.223.II:6I2.26I THE ROLE OF CARBON DIOXIDE IN OXYGEN POISONING BY H. J. TAYLOR From the Royal Naval Physiological Laboratory, Alverstoke, Hants (Received 26 March

More information

Lab Orientation and the Surface to volume ratio in animals

Lab Orientation and the Surface to volume ratio in animals LAB ORIENTATION AND THE SURFACE TO VOLUME RATIO IN ANIMALS - 1 Lab Orientation and the Surface to volume ratio in animals by Antoine Morin and Gabriel Blouin-Demers Lab Orientation Details of your activities

More information

Moisture levels in compressed breathing air. Prepared by QinetiQ Limited for the Health and Safety Executive 2006 RESEARCH REPORT 427

Moisture levels in compressed breathing air. Prepared by QinetiQ Limited for the Health and Safety Executive 2006 RESEARCH REPORT 427 Moisture levels in compressed breathing air Prepared by QinetiQ Limited for the Health and Safety Executive 2006 RESEARCH REPORT 427 Moisture levels in compressed breathing air T G Anthony & P R Clarke

More information

1. What function relating the variables best describes this situation? 3. How high was the balloon 5 minutes before it was sighted?

1. What function relating the variables best describes this situation? 3. How high was the balloon 5 minutes before it was sighted? Hot-Air Balloon At the West Texas Balloon Festival, a hot-air balloon is sighted at an altitude of 800 feet and appears to be descending at a steady rate of 20 feet per minute. Spectators are wondering

More information

6I2.2I6:6I alveolar pressure. It follows that the evident alteration in the respiratory rhythm is an alteration in amplitude.

6I2.2I6:6I alveolar pressure. It follows that the evident alteration in the respiratory rhythm is an alteration in amplitude. 6I2.2I6:6I2.223.11 SOME EFFECTS OF CARBONIC ACID ON THE CHARACTER OF HUMAN RESPIRATION. BY J. BARCROFT AND R. MARGARIA' (Turin). (From the Physiological Laboratory, Cambridge.) THE following facts concerning

More information

Retinal vascular response to breathing increased carbon dioxide and oxygen concentrations. Regina Frayser and John B. Hickam

Retinal vascular response to breathing increased carbon dioxide and oxygen concentrations. Regina Frayser and John B. Hickam Retinal vascular response to breathing increased carbon dioxide and oxygen concentrations Regina Frayser and John B. Hickam The retina has a high rate of oxygen consumption, and the retinal vessels are

More information

By S. GODFREY and E. J. M. CAMPBELL. From the Department of

By S. GODFREY and E. J. M. CAMPBELL. From the Department of Q. Jl exp. Physiol. (1969) 54, 117-128 MECHANICAL AND CHEMICAL CONTROL OF BREATH HOLDING. By S. GODFREY and E. J. M. CAMPBELL. From the Department of Medicine, Royal Postgraduate Medical School, DuCane

More information

RESPIRATORY GAS EXCHANGE

RESPIRATORY GAS EXCHANGE RESPIRATORY GAS EXCHANGE Alveolar PO 2 = 105 mmhg; Pulmonary artery PO 2 = 40 mmhg PO 2 gradient across respiratory membrane 65 mmhg (105 mmhg 40 mmhg) Results in pulmonary vein PO 2 ~100 mmhg Partial

More information

The Aerodynamic Drag of Parafoils

The Aerodynamic Drag of Parafoils The Aerodynamic Drag of Parafoils A. C. Carruthers and A. Filippone The University of Manchester Manchester M60 1QD United Kingdom Introduction The parafoil is an aerodynamic decelerator that uses the

More information

CHAPTER 1 ORGANIZATION OF DATA SETS

CHAPTER 1 ORGANIZATION OF DATA SETS CHAPTER 1 ORGANIZATION OF DATA SETS When you collect data, it comes to you in more or less a random fashion and unorganized. For example, what if you gave a 35 item test to a class of 50 students and collect

More information

PGA Tour Scores as a Gaussian Random Variable

PGA Tour Scores as a Gaussian Random Variable PGA Tour Scores as a Gaussian Random Variable Robert D. Grober Departments of Applied Physics and Physics Yale University, New Haven, CT 06520 Abstract In this paper it is demonstrated that the scoring

More information

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds Preliminary design of a high-altitude kite A flexible membrane kite section at various wind speeds This is the third paper in a series that began with one titled A flexible membrane kite section at high

More information

Kinetic-Molecular Theory

Kinetic-Molecular Theory GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

More information

Pulmonary Circulation Linda Costanzo Ph.D.

Pulmonary Circulation Linda Costanzo Ph.D. Pulmonary Circulation Linda Costanzo Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The differences between pressures in the pulmonary and systemic circulations. 2. How

More information

Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method)

Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) Walk - Run Activity --An S and P Wave Travel Time Simulation ( S minus P Earthquake Location Method) L. W. Braile and S. J. Braile (June, 2000) braile@purdue.edu http://web.ics.purdue.edu/~braile Walk

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE Instant download and all chapters Test Bank Respiratory Care Anatomy and Physiology Foundations for Clinical Practice 3rd Edition Will Beachey https://testbanklab.com/download/test-bank-respiratory-care-anatomy-physiologyfoundations-clinical-practice-3rd-edition-will-beachey/

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

Testing the Vented, 7-Liter Induction Chamber. Report 6 April 2008

Testing the Vented, 7-Liter Induction Chamber. Report 6 April 2008 Report 6 April 2008 Page 1 of 11 Report 6 April 2008 The final review and approval of this document before its release to the client is the responsibility of the following person at Technical Safety Services.

More information

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT 531 CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT Toru KATAYAMA, Graduate School of Engineering, Osaka Prefecture University (Japan) Kentarou TAMURA, Universal Shipbuilding Corporation (Japan) Yoshiho

More information

SURFACE CASING SELECTION FOR COLLAPSE, BURST AND AXIAL DESIGN FACTOR LOADS EXERCISE

SURFACE CASING SELECTION FOR COLLAPSE, BURST AND AXIAL DESIGN FACTOR LOADS EXERCISE SURFACE CASING SELECTION FOR COLLAPSE, BURST AND AXIAL DESIGN FACTOR LOADS EXERCISE Instructions Use the example well data from this document or the powerpoint notes handout to complete the following graphs.

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

Space Suit Inspired CO 2 : Development of standard test methods and exposure requirements

Space Suit Inspired CO 2 : Development of standard test methods and exposure requirements Space Suit Inspired CO 2 : Development of standard test methods and exposure requirements EVA Technology Workshop 2017 October 17, 2017 Omar Bekdash Johnny Conkin, PhD KBRwyle/NASA JSC SK Background NASA

More information

Math 4. Unit 1: Conic Sections Lesson 1.1: What Is a Conic Section?

Math 4. Unit 1: Conic Sections Lesson 1.1: What Is a Conic Section? Unit 1: Conic Sections Lesson 1.1: What Is a Conic Section? 1.1.1: Study - What is a Conic Section? Duration: 50 min 1.1.2: Quiz - What is a Conic Section? Duration: 25 min / 18 Lesson 1.2: Geometry of

More information

Masaji Mochizuki ABSTRACT. ]p(deox). The Haldane effects of [CO2] and [HCO3. ] were obtained by subtracting [CO2]p(ox) from [CO2]p(deox) and [HCO3

Masaji Mochizuki ABSTRACT. ]p(deox). The Haldane effects of [CO2] and [HCO3. ] were obtained by subtracting [CO2]p(ox) from [CO2]p(deox) and [HCO3 Yamagata Med J 2006242)51-58 in vivo Masaji Mochizuki Emeritus Professor of Yamagata University, Yamagata, Japan Geriatric Respiratory Research Center, Nishimaruyama Hospital, Chuo-Ku, Sapporo, Japan Accepted

More information

13. TIDES Tidal waters

13. TIDES Tidal waters Water levels vary in tidal and non-tidal waters: sailors should be aware that the depths shown on the charts do not always represent the actual amount of water under the boat. 13.1 Tidal waters In tidal

More information

Vapor Pressure of Liquids

Vapor Pressure of Liquids Vapor Pressure of Liquids In this experiment, you will investigate the relationship between the vapor pressure of a liquid and its temperature. When a liquid is added to the Erlenmeyer flask shown in Figure

More information

transients' of large amplitude can be imposed on the arterial, cardiac and Since both coughing and the Valsalva manoeuvre raise intrathoracic pressure

transients' of large amplitude can be imposed on the arterial, cardiac and Since both coughing and the Valsalva manoeuvre raise intrathoracic pressure 351 J. Physiol. (I953) I22, 35I-357 EFFECTS OF COUGHING ON INTRATHORACIC PRESSURE, ARTERIAL PRESSURE AND PERIPHERAL BLOOD FLOW BY E. P. SHARPEY-SCHAFER From the Department of Medicine, St Thomas's Hospital

More information

Transportation Engineering - II Dr. Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee. Lecture - 35 Exit Taxiway

Transportation Engineering - II Dr. Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee. Lecture - 35 Exit Taxiway Transportation Engineering - II Dr. Rajat Rastogi Department of Civil Engineering Indian Institute of Technology - Roorkee Lecture - 35 Exit Taxiway Dear students, we are back with the lecture series of

More information

How to Make, Interpret and Use a Simple Plot

How to Make, Interpret and Use a Simple Plot How to Make, Interpret and Use a Simple Plot A few of the students in ASTR 101 have limited mathematics or science backgrounds, with the result that they are sometimes not sure about how to make plots

More information

An Application of Signal Detection Theory for Understanding Driver Behavior at Highway-Rail Grade Crossings

An Application of Signal Detection Theory for Understanding Driver Behavior at Highway-Rail Grade Crossings An Application of Signal Detection Theory for Understanding Driver Behavior at Highway-Rail Grade Crossings Michelle Yeh and Jordan Multer United States Department of Transportation Volpe National Transportation

More information

REAL LIFE GRAPHS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

REAL LIFE GRAPHS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier Mathematics Revision Guides Real Life Graphs Page 1 of 19 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier REAL LIFE GRAPHS Version: 2.1 Date: 20-10-2015 Mathematics Revision Guides

More information

Technical Note. Determining the surface tension of liquids by measurements on pendant drops

Technical Note. Determining the surface tension of liquids by measurements on pendant drops Technical Note Pendant Drop Measurements Technical note: TN316e Industry section: all Author: FT, TW Date: 12/2010 Method: Drop Shape Analyzer DSA100 Keywords: Methods, surface tension, interfacial tension,

More information

Biology Project. Investigate and compare the quantitative effects of changing,

Biology Project. Investigate and compare the quantitative effects of changing, Biology Project Investigate and compare the quantitative effects of changing, (i) the duration of light physical and (ii) the time elapsed since the stopped on the pulse rate of a person. www.mrcjcs.com

More information

March Madness Basketball Tournament

March Madness Basketball Tournament March Madness Basketball Tournament Math Project COMMON Core Aligned Decimals, Fractions, Percents, Probability, Rates, Algebra, Word Problems, and more! To Use: -Print out all the worksheets. -Introduce

More information

Experiment 8: Minor Losses

Experiment 8: Minor Losses Experiment 8: Minor Losses Purpose: To determine the loss factors for flow through a range of pipe fittings including bends, a contraction, an enlargement and a gate-valve. Introduction: Energy losses

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller CHEMICAL ENGINEERING LABORATORY CHEG 239W Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller Objective The experiment involves tuning a commercial process controller for temperature

More information

THE COLLEGE OF AERONAUTICS CRANFIELD

THE COLLEGE OF AERONAUTICS CRANFIELD THE COLLEGE OF AERONAUTICS CRANFIELD AERODYNAMIC CHARACTERISTICS OF A 40 SWEPT BACK WING OF ASPECT RATIO 4.5 by P. S. BARNA NOTE NO. 65 MAY, 1957 CRANFIELD A preliminary report on the aerodynamic characteristics

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

The Variation of Muscle Oxygen Consumption With Velocity of Shortening

The Variation of Muscle Oxygen Consumption With Velocity of Shortening The Variation of Muscle Oxygen Consumption With Velocity of Shortening R.J. BASKIN From the Department of Zoology, University of California, Davis ABSTRACT Total oxygen consumption following contraction

More information

have expressed widely varying opinions on this topic (Catterall and Snow, 1960; Catterall, 1960;

have expressed widely varying opinions on this topic (Catterall and Snow, 1960; Catterall, 1960; An evaluation Thorax (1967), 22, 221. of oxygen therapy equipment Experimental study of various devices on the human subject D. W. BETHUNE AND J. M. COLLIS From the Department of Anaesthesia, St. Bartholomew's

More information

APPENDIX. working blood volume was also rather large; Evans, Grande, and. equilibrated to the new mixture is partially dependent upon the rate

APPENDIX. working blood volume was also rather large; Evans, Grande, and. equilibrated to the new mixture is partially dependent upon the rate 612.172-5 APPENDIX A SIMPLIFIED HEART OXYGENATOR CIRCUIT FOR BLOOD- FED HEARTS. By J. YULE BOG-UE and R. A. GREGORY.' SINCE 1934 studies on the carbohydrate metabolism of the blood-fed heart without lungs

More information

A NEW METHOD FOR ASSURING ALVEOLAR-EQUILIBRATED BREATH ALCOHOL SAMPLES. A. Slemeyer, Ph.D.* SYNOPSIS

A NEW METHOD FOR ASSURING ALVEOLAR-EQUILIBRATED BREATH ALCOHOL SAMPLES. A. Slemeyer, Ph.D.* SYNOPSIS A NEW METHOD FOR ASSURING ALVEOLAR-EQUILIBRATED BREATH ALCOHOL SAMPLES A. Slemeyer, Ph.D.* SYNOPSIS Reproducibility is one of the most important figures of merit in breath alcohol analysis. A number of

More information

Using such a method, Morawitz and Siebeck (1) found that the. composition of the alveolar air or of the blood. Unless the obstruc- 483

Using such a method, Morawitz and Siebeck (1) found that the. composition of the alveolar air or of the blood. Unless the obstruc- 483 THE EFFECT OF SOME PATHOLOGICAL CONDITIONS UPON DYSPNEA DURING EXERCISE I. ARTIFICIAL STENOSIS BY A. W. HEWLETT, J. K. LEWIS AND ANNA FRANKLIN (From the Department of Medicine, Stanford Medical School)

More information

exchange of carbon dioxide and of oxygen between the blood and the air in

exchange of carbon dioxide and of oxygen between the blood and the air in M. M. HENRY WILLIAMS, JR.*Cardiorespiratory Laboratory, Grasslands WILLIAMS, JR.* Hospital, Valhalla, New York SOME APPLICATIONS OF PULMONARY PHYSIOLOGY TO CLINICAL MEDICINE During the past ten years a

More information

analyses, it seemed that the pressure of alveolar carbon dioxide was less

analyses, it seemed that the pressure of alveolar carbon dioxide was less VARIATIONS IN ALVEOLAR CARBON DIOXIDE PRESSURE IN RELATION TO MEALS1. By (From the Bland-Sutton Institute qf Pathology, Middlesex Hospital.) THE investigation described below arose in the following manner.

More information

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE Hypoxia Office COL Brian W. Smalley DO, MSPH, CPE Or this Or even this Hypoxia State of oxygen deficiency in the blood cells and tissues sufficient to cause impairment of function 4 Types Hypoxic Hypemic

More information

CHM Basics of Gases (r14) Charles Taylor 1/9

CHM Basics of Gases (r14) Charles Taylor 1/9 CHM 110 - Basics of Gases (r14)- 2014 Charles Taylor 1/9 Introduction The gas phase is noticeably different from the other two phases of matter. Here are some of the more obvious differences. Gases are

More information

Wind Flow Validation Summary

Wind Flow Validation Summary IBHS Research Center Validation of Wind Capabilities The Insurance Institute for Business & Home Safety (IBHS) Research Center full-scale test facility provides opportunities to simulate natural wind conditions

More information

PSY201: Chapter 5: The Normal Curve and Standard Scores

PSY201: Chapter 5: The Normal Curve and Standard Scores PSY201: Chapter 5: The Normal Curve and Standard Scores Introduction: Normal curve + a very important distribution in behavior sciences + three principal reasons why... - 1. many of the variables measured

More information

technique which have led to increased precision

technique which have led to increased precision THE ACCURACY OF DIRECT DETERMINATIONS OF OXYGEN AND CARBON DIOXIDE TENSIONS IN HUMAN BLOOD IN VITRO 1 By GILES F. FILLEY, ESTHER GAY, AND GEORGE W. WRIGHT (From the Department of Physiology, the Edwtvard

More information

throughout. The constant-flow respiration was administered through a intravenously at appropriate intervals (in addition to the general

throughout. The constant-flow respiration was administered through a intravenously at appropriate intervals (in addition to the general 414 6I2.22I:6I2.2I5.5 GASEOUS INTERCHANGES THROUGH THE VISCERAL PLEURA OF THE CAT. By M. KREMER, A. T. WILSON AND SAMSON WRIGHT. (Department of Physiology, Middlesex Hospital Medical School.) (Received

More information

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles

Experimental Analysis on Vortex Tube Refrigerator Using Different Conical Valve Angles International Journal of Engineering Research and Development e-issn: 7-067X, p-issn: 7-00X, www.ijerd.com Volume 3, Issue 4 (August ), PP. 33-39 Experimental Analysis on Vortex Tube Refrigerator Using

More information

Calculation of Trail Usage from Counter Data

Calculation of Trail Usage from Counter Data 1. Introduction 1 Calculation of Trail Usage from Counter Data 1/17/17 Stephen Martin, Ph.D. Automatic counters are used on trails to measure how many people are using the trail. A fundamental question

More information

Denise L Seman City of Youngstown

Denise L Seman City of Youngstown Denise L Seman City of Youngstown The control chart is one of the most important tools of quality control for laboratory data. A control chart is a specific kind of run chart that allows unusual change

More information

SOLAR 93 THE 1993 AMERICAN SOLAR ENERGY SOCIETY ANNUAL CONFERENCE. Washington, DC April 22028,1993. Editors: S. M. Burley M. E.

SOLAR 93 THE 1993 AMERICAN SOLAR ENERGY SOCIETY ANNUAL CONFERENCE. Washington, DC April 22028,1993. Editors: S. M. Burley M. E. SOLAR 93 THE 1993 AMERICAN SOLAR ENERGY SOCIETY ANNUAL CONFERENCE Washington, DC April 22028,1993 Editors: S. M. Burley M. E. Arden American Solar Energy Society U.S. Section of the International Solar

More information