Waves. Wikipedia. hfps://

Size: px
Start display at page:

Download "Waves. Wikipedia. hfps://"

Transcription

1 Waves From your book: All waves are named a5er water waves. Think for a moment about how strange water waves are. Wind pushes up a pile of water, and the pile creates a wave. The wave moves and keeps on moving, carrying energy far from the place where the wave was created. Waves at the coast are frequently an indicator of a distant storm. But the water from that distant storm didn t move very far, just the wave. The wind pushed the water, and the water pushed other water, and the energy traveled for thousands of miles, even though the water only moved a few feet. Wikipedia hfps://

2 Jargon The wave speed is just what it sounds like: the speed that a wave moves. The wave speed depends on the dynamics of the wave. Large waves in deep water and short waves in shallow water are different. Sound waves, waves on a string, electromagnekc waves, all travel at different speeds determined by the dynamics of the wave propagakon.

3 Jargon The wavelength is the distance between two equal parts of the wave. In water waves, the wavelength can vary by many orders of magnitude. You see lifle ripples that are only a millimeter across, and giant tsunami waves that hare 10s of km across! It might bother your English teacher, but wavelength is one word. wavelength

4 Jargon The period is the Kme it takes one wave to go by. The frequency is the number of waves per second that go by. The frequency is 1/period. This is something to consider: the wave speed is just the wavelength divided by the period. So, the speed is also equal to the wavelength Kmes the frequency. wavelength

5 Jargon The period is the Kme it takes one wave to go by. The frequency is the number of waves per second that go by. The frequency is 1/period. This is something to consider: the wave speed is just the wavelength divided by the period. So, the speed is also equal to the wavelength Kmes the frequency. The book calls this the equakon for waves: v = fl It s prefy important, but don t memorize. wavelength

6 Wave packets From your book: Waves can be long with many vibrakons, as when you hum, or they can be short, as in a shout. We call such short waves wave packets. You may have nokced that water waves o5en travel in packets. Splash a rock into a pool, and you ll see a bunch of waves moving out, forming a ring that contains several up and down oscillakons. That s a packet. A shout contains many oscillakons of the air, but these oscillakons are confined to a relakvely small region. So that too is a wave packet. hfps:// Now think about this: short waves act in a way very similar to parkcles. They move and they bounce. They carry energy. If the packet were extremely short, maybe you wouldn t nokce that it was really a wave. Maybe you would think that it was a small parkcle.

7 On-line demo hfp://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html

8 hfps:// Two categories of waves Physicists like to separate waves into two categories: called longitudinal and transverse. Transverse waves are those where the vibrakon is perpendicular to the wave mokon. For example, when you shake a rope like in the previous demo, the wave moves down the length of the rope, but the individual segments of the rope move up and down Longitudinal waves are when the shaking is in line with the mokon of the wave. For example, waves in a slinky:

9 Water waves Water waves are both longitudinal and transverse. If you are swimming or floakng and a water wave passes by, you move slightly back and forth as well as up and down: hfps://

10 Speed of water waves The propagakon of water waves depends on interackon of the wave with the bofom. If the wavelength is larger than, or about the same as, the depth, then the wave is said to be shallow. If the wavelength is smaller than the depth, then the wave is said to be deep. In this context, shallow and deep do not have meaning except comparing the wavelength to the depth.

11 Speed of water waves Shallow water wave speed depends only on the depth D: speed (m/s) 3.1 D Deep water wave speed depends only on the wavelength L: speed (m/s) 1.2 L

12 Speed of water waves Shallow water wave speed depends only on the depth D: speed (m/s) 3.1 D Think about this: Tsunami waves are generally very large, and can exceed 10 km in wavelength. That is longer than the depth of the ocean, so tsunami waves are shallow water waves even in the deep ocean. For a depth of 3 km, we get a speed of 170 m/s, which is half the speed of sound. Can you outrun a tsunami wave?

13 Speed of water waves Deep water wave speed depends only on the wavelength L: speed (m/s) 1.2 L In deep water, longer waves travel faster than shorter ones: hfps://

14 Sound waves From your book: Sound is generated in air when something compresses it in a local region. This could be the vibrakng of vocal cords, a violin string, or a bell. The compressed air expands, and compresses the air next to it. The air never moves very far, but the compression is passed on from one region to the next. hfp:// Each molecule shakes back and forth and doesn t travel very far, but the waves travel forward (at the speed of sound).

15 Speed of sound waves The speed of sound depends on how skff the material is. Air is not very skff, and has a relakvely low speed of sound compared to solids. The speed of sound depends on temperature but not pressure*. However the temperature dependence is weak: Material and Temperature Air at 0 C Air at 20 C Water at 0 C Water at 20 C Steel Speed of sound 331 m/s (one mile in 5 seconds) 343 m/s 1402 m/s = 1.4 km/s 1482 m/s = almost 1 mile/second 5790 m/s = 3.6 miles per second The speed of sound (mostly) does not depend on how loud the sound is! *For gasses at high pressure, the speed of sound can increase.

16 Refrac=on: a property of all waves When waves move in a region where the speed changes, the waves can change direckon! Waves tend to change their direckon by bending their mokon toward the side that has a slower wave speed. faster wave speed slower wave speed

17 Sound waves bend hfp://mateeriaharutus.blogspot.com/2011/08/refraktsioon-ja-diffraktsioon.html

18 Sound waves bend Cool air (slower sound) Warm air (faster sound) Warm air (faster sound) Cool air (slower sound)

19 Sound waves bend Cool air (slower sound) No sound reaches here Warm air (faster sound) Sound is channeled further

20 Be careful! Be careful reading the book about this subject: Morning and evening in California (where the author lives) are quite different from Texas. Also, temperature inversions in Texas are very seasonal. For example, I frequently hear the Texas World Speedway on cold Saturday mornings, as depicted in the plot on the previous slide. However, the author discusses this as evening where he lives.

21 Earthquakes When a fault in the Earth suddenly releases energy, it creates a wave that travels through the Earth. We usually hear earthquakes characterized in terms of their magnitude on the Richter scale. GeoscienKsts actually do not like this characterizakon, because the destruckon resulkng from an earthquake depends on very many things. But so far all the scienksts afempt to use alternakve measures have failed. Just as we are stuck with Fahrenheit, we are stuck with the Richter scale. One magnitude on this scale represents a factor of 30 in energy. Two magnitudes represents a factor of 1000 in energy. Magnitude Energy released 6 15 kilotons of TNT kilotons megaton megatons gigatons

22 Seismic waves Earthquakes release both longitudinal and transverse waves that travel at different speeds. Knowing the difference in these speeds allows seismologists to calculate the distance to the epicenter of an earth quake. Having mulkple seismographs allows triangulakon to find the exact point of the quake. The transverse waves cannot travel in liquid, and this has allowed scienksts to build our current model of the earth as a solid iron core, with a liquid outer core, and a solid mantle.

23 Interference If you have two waves, they can add up. Depending on how they add, the result can be a stronger or weaker wave. Wikipedia

24 Wave Interference hfps://

25 Wave Interference

26 Interference - beats

27 Interference - beats

28 Interference hfps://

29 Light is a wave hfps://

30 The Doppler Effect hfps://

31

32 Review 1 The speed of a wave is the wavelength divided by the period, which is equal to the wavelength mulkplied by the frequency. Waves can be divided into two categories: transverse and longitudinal. VibraKons on a string and light are transverse waves. Sound is a longitudinal wave. Water waves are a combinakon of transverse and longitudinal. Water waves with a wavelength longer than the depth of the water have a speed that depends on the square root of the depth. Water waves with a wavelength less than the depth of the water have a speed that depends on the square root of the wavelength. Tsunami waves typically have very long wavelength -- longer than the depth of the ocean, and move at over a hundred meters per second. The speed of sound waves depends on the material and its temperature. Sound takes about 5 seconds to travel one mile in air, and about 1 second to travel a mile in water.

33 Review 2 Waves bend when their speed changes. Waves bend toward a region of lower speed. When the air near the ground is cold and increses temperature with alktude, sound is focussed near the ground and carries further. When the air near the ground is hofer, sound is bent into the air, and a "shadow" can be produced where the sound waves don't reach. Earthquakes release both longitudinal and transverse waves that travel at different speeds. Each magnitude of an earthquake releases 30 Kmes as much energy. Interference is when waves overlap, and can add or subtract in amplitude. Beats are interference of sound waves; the beat frequency is just the difference of the wave frequency. The Doppler effect is the shi5ing of a wave frequency when the source is in mokon relakve to the observer.

SECTION 1 & 2 WAVES & MECHANICAL WAVES

SECTION 1 & 2 WAVES & MECHANICAL WAVES WAVES!!!! SECTION 1 & 2 WAVES & MECHANICAL WAVES What is a Wave? A wave is a disturbance that travels through space or matter. When undisturbed, the water is found in its equilibrium or rest position.

More information

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves CH 17 - MECHANICAL WAVES & SOUND Sec. 17.2 - Mechanical Waves Mechanical Wave - disturbance in matter that carries energy from one place to another. Mechanical waves require matter called a MEDIUM to travel

More information

Table of Contents. Chapter: Waves. Section 1: The Nature of Waves. Section 2: Wave Properties. Section 3: The Behavior of Waves

Table of Contents. Chapter: Waves. Section 1: The Nature of Waves. Section 2: Wave Properties. Section 3: The Behavior of Waves Table of Contents Chapter: Waves Section 1: The Nature of Waves Section 2: Wave Properties Section 3: The Behavior of Waves 1 The Nature of Waves What s in a wave? A wave is a repeating disturbance or

More information

Physical Science Ch. 10: Waves

Physical Science Ch. 10: Waves Physical Science Ch. 10: Waves A wave is a rhythmic disturbance which carries energy NOT matter. A medium is a material through which a wave transfers energy. Some Waves, but not all, require a medium

More information

Lesson 46: Properties of Waves

Lesson 46: Properties of Waves Lesson 46: Properties of Waves Illustration 1: Is that Mr.C??? When you hear the word waves you probably have visions of hanging ten off of Waikiki. Although these are waves, we will be looking at a more

More information

Wave a repeating disturbance or movement that transfers energy through matter or space

Wave a repeating disturbance or movement that transfers energy through matter or space Waves The Nature of Waves Wave a repeating disturbance or movement that transfers energy through matter or space 1. Molecules pass energy on to neighboring molecules. 2. Waves carry energy without transporting

More information

Chapter 20 Study Questions Name: Class:

Chapter 20 Study Questions Name: Class: Chapter 20 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. As the wavelength increases, the frequency a. decreases.

More information

Physical Science Ch. 10: Waves

Physical Science Ch. 10: Waves Physical Science Ch. 10: Waves A wave is a rhythmic disturbance which carries energy NOT matter. Many waves, but not all, require a medium to move between points, these are called mechanical waves. A wave

More information

What is a wave? A wave is a disturbance that transfers energy from place to place.

What is a wave? A wave is a disturbance that transfers energy from place to place. Waves Objectives Determine how matter and energy interact when waves are generated. Identify and understand the three main types of mechanical waves Identify the properties of waves. What is a wave? A

More information

WAVES, WAVE BEHAVIOR, GEOPHYSICS AND SOUND REVIEW ANSWER KEY

WAVES, WAVE BEHAVIOR, GEOPHYSICS AND SOUND REVIEW ANSWER KEY WAVES, WAVE BEHAVIOR, GEOPHYSICS AND SOUND REVIEW ANSWER KEY Instructions: Show all of your work completely in your journal, including the equations used in variable form. Pay attention to sig figs and

More information

Waves. Please get out a sheet of paper for notes.

Waves. Please get out a sheet of paper for notes. Waves Please get out a sheet of paper for notes. In a wave pool, the waves carry energy across the pool. You can see the effects of a wave's energy when the wave lifts people in the water. A wave is a

More information

Chapter 17 Mechanical Waves

Chapter 17 Mechanical Waves Pearson Prentice Hall Physical Science: Concepts in Action Chapter 17 Mechanical Waves 17.1 Mechanical Waves Objectives: 1. Explain what causes mechanical waves 2. Name and describe the three main types

More information

Mechanical Waves and Sound

Mechanical Waves and Sound Mechanical Waves and Sound Mechanical Wave Medium Crest Trough Transverse wave Compression Rarefaction Longitudinal wave Surface wave Some Vocab to Know What are Mechanical Waves? Mechanical wave: disturbance

More information

9.2 Waves. Why learn about waves? wave - a traveling oscillation that has properties of frequency, wavelength, and amplitude.

9.2 Waves. Why learn about waves? wave - a traveling oscillation that has properties of frequency, wavelength, and amplitude. 9.2 Waves A wave is an oscillation that travels from one place to another. A musician s instrument creates waves that carry sound to your ears. When you throw a stone into a pond, the energy of the falling

More information

WAVES. Mr. Banks 8 th Grade Science

WAVES. Mr. Banks 8 th Grade Science WAVES Mr. Banks 8 th Grade Science WAVES A wave is a disturbance that transfers, or carries energy from one place to another. Classified by what they move through For mechanical Waves energy is transferred

More information

Introduction to Waves

Introduction to Waves chapter 9 Introduction to Waves section 3 The Behavior of Waves Before You Read Think about a time when you walked down an empty hallway and heard the echo of your footsteps. Write what you think caused

More information

MS.RAJA ELGADY/WAVES PAPER3

MS.RAJA ELGADY/WAVES PAPER3 1- (a) Fig. 7.1 shows the surface of water in a tank. barrier For Examiner s Use Fig. 7.1 Straight wavefronts are produced at the left-hand end of the tank and travel towards a gap in a barrier. Curved

More information

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves

CH 17 - MECHANICAL WAVES & SOUND. Sec Mechanical Waves CH 17 - MECHANICAL WAVES & SOUND Sec. 17.2 - Mechanical Waves Mechanical Wave - disturbance in matter that carries energy from one place to another. Mechanical waves require matter called a MEDIUM to travel

More information

Waves. What are waves?

Waves. What are waves? Benchmarks SC.A.2.3.1 (pp. 185, 188 191): The student describes and compares the properties of particles and waves; SC.B.1.3.6 Annually Assessed (pp. 188 191, 193): knows the properties of waves ; SC.C.1.3.2

More information

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another.

Chapter 20 - Waves. A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another. Section 20.1 - Waves Chapter 20 - Waves A wave - Eg: A musician s instrument; a cell phone call & a stone thrown into a pond A wave carries from one place to another. Waves can change motion, we know that

More information

Earthquake Waves. Purpose: To give students a visual example, using a slinky, of how an energy wave propagates through the Earth.

Earthquake Waves. Purpose: To give students a visual example, using a slinky, of how an energy wave propagates through the Earth. Earthquake Waves Grades 4 & 5 Standards: Follows California Earth Science Standards for grades 4 & 5 Purpose: To give students a visual example, using a slinky, of how an energy wave propagates through

More information

Seismic waves. Seismic waves, like all waves, transfer energy from one place to another without moving material. Seismic Waves 1 Author Paul Denton

Seismic waves. Seismic waves, like all waves, transfer energy from one place to another without moving material. Seismic Waves 1 Author Paul Denton Seismic waves When an earthquake happens deep underground a crack will start to open on a pre-existing line of weakness in the Earth s brittle crust. This crack will then grow larger and larger, relieving

More information

Chapter 17. Mechanical Waves and sound

Chapter 17. Mechanical Waves and sound Chapter 17 Mechanical Waves and sound Section 1 Mechanical Waves A. What are Mechanical Waves 1. Mechanical wave: disturbance in matter that carries ENERGY!! 2. Medium: material wave travels in Can be

More information

Full STEAM Ahead: Waves. Version 1 25 April 2018

Full STEAM Ahead: Waves. Version 1 25 April 2018 Full STEAM Ahead: Waves Version 1 25 April 2018 Full STEAM Ahead! Welcome to Full STEAM Ahead! Today you will be experimenting with the physics of waves. This is a directed and self-directed, self-paced

More information

Organize information about waves. Differentiate two main types of waves.

Organize information about waves. Differentiate two main types of waves. Lesson 1 Waves Scan Lesson 1. Read the lesson titles and bold words. Look at the pictures. Identify three facts you discovered about waves. Record your facts in your Science Journal. What are waves? Organize

More information

Waves, Light, and Sound

Waves, Light, and Sound CHAPTER 14 Waves, Light, and Sound LESSON 1 Waves What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with

More information

a disturbance that transfers energy Carries energy from one place to another Classified by what they move through

a disturbance that transfers energy Carries energy from one place to another Classified by what they move through WAVES WAVES a disturbance that transfers energy Carries energy from one place to another Classified by what they move through 1. Mechanical Waves the energy is transferred by vibrations of medium (medium

More information

Florida Benchmarks. SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials.

Florida Benchmarks. SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials. Unit 3 Lesson 1 Waves Florida Benchmarks SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials. Copyright Houghton Mifflin Harcourt Publishing

More information

17.5 Behavior of Waves

17.5 Behavior of Waves 17.5 Behavior of Waves 17.5 Assessment Quiz Take a minute to look through your notes. Ø Ø Ø Ø There are 15 questions All answers Multiple Choice You do NOT need a calculator or formula sheet Notes CAN

More information

Mechanical Waves. Mechanical waves are created by the vibration of objects. Mechanical waves can be either transverse or longitudinal.

Mechanical Waves. Mechanical waves are created by the vibration of objects. Mechanical waves can be either transverse or longitudinal. Mechanical Waves Mechanical waves are created by the vibration of objects. Mechanical waves can be either transverse or longitudinal. When an object vibrates, its vibrations form mechanical waves that

More information

Types of Waves. Section Section 11.1

Types of Waves. Section Section 11.1 Types of Waves Section Section 11.1 Waves A A disturbance that transmits energy through matter or space Waves Most waves move through matter called a medium. Ex. Waves traveling through water. Types of

More information

Waves, Sounds, and Light

Waves, Sounds, and Light Waves, Sounds, and Light A wave is a disturbance that transmits energy. The particles of a medium do not travel with the wave. Mechanical waves require a medium, but electromagnetic waves do not Particles

More information

CHAPTER 10 WAVES. Section 10.1 Types of Waves

CHAPTER 10 WAVES. Section 10.1 Types of Waves CHAPTER 10 WAVES Section 10.1 Types of Waves What does a wave carry? How are waves generated? What is the difference between a transverse wave and a longitudinal waves? How do the particles in ocean waves

More information

Waves Introduction.notebook November 14, 2014

Waves Introduction.notebook November 14, 2014 Waves 1 Waves Vocabulary 11/4/13 To watch Untamed Science: 1. Log into Pearson Success Net 2. Go To: Interactive Digital Path 3. Go to the Big Question 4. Click 2nd Untamed Science Tab Extreme Waves Wave

More information

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011 PowerPoint Lectures Physical Science, 8e Chapter 5 Wave Motions and Sound New Symbols for this Chapter T-Period f-frequency v-wave speed λ-wavelength A-Amplitude Sound is transmitted as increased and decreased

More information

Directed Reading A. Section: The Nature of Waves WAVE ENERGY. surface of the water does not. Skills Worksheet. 1. What is a wave?

Directed Reading A. Section: The Nature of Waves WAVE ENERGY. surface of the water does not. Skills Worksheet. 1. What is a wave? Skills Worksheet Directed Reading A Section: The Nature of Waves 1. What is a wave? WAVE ENERGY 2. A substance through which a wave can travel is a(n). 3. Explain how energy is transmitted through a medium.

More information

Vocabulary. Energy Wave Amplitude Conduction Convection Radiation Color spectrum Wavelength Potential energy

Vocabulary. Energy Wave Amplitude Conduction Convection Radiation Color spectrum Wavelength Potential energy Vocabulary Energy Wave Amplitude Conduction Convection Radiation Color spectrum Wavelength Potential energy Kinetic energy Light energy Chemical energy Mechanical energy What is Energy? Energy is defined

More information

Academic Year First Term. Grade 6 Science Revision Sheet

Academic Year First Term. Grade 6 Science Revision Sheet Academic Year 2017-2018 First Term Grade 6 Science Revision Sheet Name: Grade Date: Section: Part A. Science Practice. Circle the letter of your answer 1. What is a wave? A. a disturbance that transfers

More information

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying energy with it, we call this traveling disturbance a wave.

More information

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves.

Section 1 Types of Waves. Distinguish between mechanical waves and electromagnetic waves. Section 1 Types of Waves Objectives Recognize that waves transfer energy. Distinguish between mechanical waves and electromagnetic waves. Explain the relationship between particle vibration and wave motion.

More information

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another.

Waves. Mechanical Waves A disturbance in matter that carries energy from one place to another. 17.2 - Waves Waves Mechanical Waves A disturbance in matter that carries energy from one place to another. Medium The material through which a wave travels. Medium can be any three states of matter: solid,

More information

Section 1 Types of Waves

Section 1 Types of Waves CHAPTER OUTLINE Section 1 Types of Waves Key Idea questions > What does a wave carry? > How are waves generated? > What is the difference between a transverse wave and a longitudinal wave? > How do the

More information

Parts of Longitudinal Waves A compression

Parts of Longitudinal Waves A compression 1 Waves All substantive material is from Wave Motion and Sound by James Dann. http://www.ck12.org/flexr/ unless otherwise noted. Illustrations are copyright free. Objects in motion that return to the same

More information

9.2 Waves. Why learn about waves? -----,

9.2 Waves. Why learn about waves? -----, -----, CHAPTER 9: WAVES AND SOUND 9.2 Waves A wave is an oscillation that travels from one place to another. A musician's instrument creates waves that carry sound to your ears. When you throw a stone

More information

Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy.

Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy. Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy. 2. Mechanical waves need a matter medium to travel through. (sound, water, seismic) 3. Two basic

More information

19 Waves and Vibrations

19 Waves and Vibrations 19 Waves and Vibrations Answers and Solutions for Chapter 19 Reading Check Questions 1. A wiggle in time is a vibration; a wiggle in space and time is a wave. 2. The source of all waves is a vibration.

More information

How do waves interact with objects? How do waves behave when they move between two media? How do waves interact with other waves?

How do waves interact with objects? How do waves behave when they move between two media? How do waves interact with other waves? CHAPTER 20 3 Wave Interactions SECTION The Energy of Waves BEFORE YOU READ After you read this section, you should be able to answer these questions: How do waves interact with objects? How do waves behave

More information

Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties

Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed : Wave Basics / Wave Properties Waves Mechanical Waves Amplitude Frequency / Period Wavelength Wave Phases Wave Speed 13.1 : Wave Basics / Wave Properties Waves Medium A medium is the material, which a wave travels through (Solid, liquid,

More information

1. What are the differences and similarities among transverse, longitudinal, and surface waves?

1. What are the differences and similarities among transverse, longitudinal, and surface waves? Assignment Waves Reading: Giancoli, Chapters 11, 12, 22, 24 Holt, Chapters 12, 14 Objectives/HW The student will be able to: 1 Define, apply, and give examples of the following concepts: wave, pulse vs.

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Chapter 11 Waves Energy can be transported by particles or waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is a

More information

Sound waves... light waves... water waves...

Sound waves... light waves... water waves... Sound waves... light waves... water waves... 1S-13 Slinky on Stand Creating longitudinal compression waves in a slinky What happens when you pull back and release one end of the slinky? 4/11/2011 Physics

More information

How do waves transfer energy?

How do waves transfer energy? waves chapter 5 167 How do waves transfer energy? Standard 5: Students will understand the properties and applications of waves. Standard 5, Objective 1: Demonstrate an understanding of mechanical waves

More information

Section 1: Types of Waves

Section 1: Types of Waves Waves Section 1 Section 1: Types of Waves Preview Key Ideas Bellringer What Is a Wave? Vibrations and Waves Transverse and Longitudinal Waves Surface Waves Waves Section 1 Key Ideas What does a wave carry?

More information

Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages )

Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages ) Exercises 25.1 Vibration of a Pendulum (page 491) 1. The time it takes for one back-and-forth motion of a pendulum is called the. 2. List the two things that determine the period of a pendulum. 3. Circle

More information

2 nd Term Final. Revision Sheet. Students Name: Grade: 10 A/B. Subject: Physics. Teacher Signature

2 nd Term Final. Revision Sheet. Students Name: Grade: 10 A/B. Subject: Physics. Teacher Signature 2 nd Term Final Revision Sheet Students Name: Grade: 10 A/B Subject: Physics Teacher Signature 1 NAME: GRADE: 10 MULTIPLE CHOICES PHYSICS WORKSHEET In the space provided, write the letter of the term or

More information

A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

A It is halved. B It is doubled. C It is quadrupled. D It remains the same. WAVES UNIT REVIEW EN: CALIFORNIA STATE QUESTIONS: 1. A sound wave is produced in a metal cylinder by striking one end. Which of the following occurs as the wave travels along the cylinder? A Its amplitude

More information

Waves and Sound. Honors Physics

Waves and Sound. Honors Physics Waves and Sound Honors Physics Simple Harmonic Motion Refers to repetitive, cyclical motion (like a pendulum or waves) Can be described with sine curve For a pendulum only T 2 L g Example problem The world

More information

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4. Waves-Wave Basics 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4. x ray 2. A single vibratory disturbance moving through a medium is called

More information

CHAPTER 16. Waves and Sound

CHAPTER 16. Waves and Sound CHAPTER 16 Waves and Sound Objectives: After completion of this module, you should be able to: Demonstrate your understanding of transverse and longitudinal waves. Define, relate and apply the concepts

More information

What is a wave? ESS Earthquakes. Doppler shift. Seismic wave radiation. Moving wave sources

What is a wave? ESS Earthquakes. Doppler shift. Seismic wave radiation. Moving wave sources ESS 202 - Earthquakes What is a wave?! A wave is a disturbance that travels far through a medium while particles of the medium move a small amount back and forth and do not experience a net translation.!

More information

Why are both electromagnetic and mechanical waves needed to make movies? Waves. transfer energy but do not carry medium with them.

Why are both electromagnetic and mechanical waves needed to make movies? Waves. transfer energy but do not carry medium with them. Why are both electromagnetic and mechanical waves needed to make movies? S8P4a. Identify the characteristics of electromagnetic and mechanical waves. Name: MEDIUM: any substance through which waves travel.

More information

Introduction to Waves

Introduction to Waves chapter 9 Introduction to Waves section 1 The Nature of Waves What You ll Learn how waves transfer energy but not matter about mechanical, transverse, and longitudinal waves Before You Read Write what

More information

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse Waves Physics 20.1 Waves What is a wave and what does it carry? Types of Waves 1. Transverse A transverse wave has its oscillations/vibrations to the direction the wave moves. 2. Longitudinal A longitudinal

More information

SNAKY SPRING WAVE DEMONSTRATION ITEM # ENERGY - MOTION

SNAKY SPRING WAVE DEMONSTRATION ITEM # ENERGY - MOTION T E A C H E G U I R D S E SNAKY SPRING WAVE DEMONSTRATION ITEM # 3640-00 ENERGY - MOTION Waves are all around us. From sound waves, to electromagnetic waves, to seismic waves, we experience wave motion

More information

MECHANICAL WAVES AND SOUND

MECHANICAL WAVES AND SOUND MECHANICAL WAVES AND SOUND Waves Substances have a stable equilibrium state Uniform pressure everywhere throughout the substance Atomic springs are at their equilibrium length Can make a wave by disturbing

More information

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect Units of Chapter 14 Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect Units of Chapter 14 Optional Superposition and Interference Beats

More information

Check out Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Check out   Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Name: Mr. Willis Conceptual Physics: Date: Unit VII Mechanical Waves & Sound Need extra help? Check out http://www.bayhicoach.com Unit VII Study Guide Multiple Choice Identify the letter of the choice

More information

Cover Sheet-Block 6 Wave Properties

Cover Sheet-Block 6 Wave Properties Cover Sheet-Block 6 Wave Properties Name Standards-Physics 4 a b c d 4a. Students know waves carry energy from one place to another. 4. b. Students know how to identify transverse and longitudinal waves

More information

Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond).

Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond). Waves Introduction A vibration must be the source of a wave. Waves in turn also cause vibrations. They are intrinsically connected. Waves transmit energy. There are different ways in which waves can be

More information

Outline Chapter 7 Waves

Outline Chapter 7 Waves Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9.

More information

Chapter 10: Waves The Test. Types of Waves: Surface Waves. Wave concepts. Types of Waves: Compression Waves. Types of Waves: Compression Waves

Chapter 10: Waves The Test. Types of Waves: Surface Waves. Wave concepts. Types of Waves: Compression Waves. Types of Waves: Compression Waves Chapter 10: Waves The Test Average score: 25/30 http://ps100.byu.edu/syllabus.aspx 40 Multiple Choice Scores 35 30 25 20 Frequency 15 10 Did you read chapter 10 before coming to class? A. Yes B. No 5 0

More information

Chapters 25: Waves. f = 1 T. v =!f. Text: Chapter 25 Think and Explain: 1-10 Think and Solve: 1-4

Chapters 25: Waves. f = 1 T. v =!f. Text: Chapter 25 Think and Explain: 1-10 Think and Solve: 1-4 Text: Chapter 25 Think and Explain: 1-10 Think and Solve: 1-4 Chapters 25: Waves NAME: Vocabulary: wave, pulse, oscillation, amplitude, wavelength, wave speed, frequency, period, interference, constructive,

More information

Waves. Name and Surname: Class: L E A R N I N G O U T C O M E. What are waves? Why are waves formed?

Waves. Name and Surname: Class: L E A R N I N G O U T C O M E. What are waves? Why are waves formed? L E A R N I N G O U T C O M E What are waves? Why are waves formed? Waves Y E A R 1 0, C H A P T E R 8 G J Z A H R A, B. E D ( H O N S ) Why does a pool filled with water look shallower than it really

More information

25 Vibrations and Waves. Waves transmit energy through space and time.

25 Vibrations and Waves. Waves transmit energy through space and time. Waves transmit energy through space and time. A repeating back-andforth motion about an equilibrium position is a vibration. A disturbance that is transmitted progressively from one place to the next with

More information

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack Waves Recall: Waves = transmitted energy What causes waves? Wind gravity Earthquakes We will talk about all of these, but first Insert wind_wave.wmv Shark attack Types of Waves Body waves transmit energy

More information

SOUND and ENERGY. A wave in which the molecules vibrate in one direction and the wave of energy moves in another is called a transverse wave.

SOUND and ENERGY. A wave in which the molecules vibrate in one direction and the wave of energy moves in another is called a transverse wave. SOUND and ENERGY GY Energy is moving around you all the time energy in the form of sound waves. Sound waves are everywhere. Even on the quietest night you can hear sounds. Close your eyes, hold very still

More information

Monday, December 17th -Liquid Demo -Return Energy Summative -Check & Go Over Lab Waves Stations -Check & Go Over Waves HW -Build a Wave Machine

Monday, December 17th -Liquid Demo -Return Energy Summative -Check & Go Over Lab Waves Stations -Check & Go Over Waves HW -Build a Wave Machine Monday, December 17th -Liquid Demo -Return Energy Summative -Check & Go Over Lab Waves Stations -Check & Go Over Waves HW -Build a Wave Machine -HW Work Time HW = Read pages 694-700 and answer #s 1,3 &

More information

Waves and Sound. (Chapter 25-26)

Waves and Sound. (Chapter 25-26) Waves and Sound (Chapter 25-26) I can de(ine and use the terms period, wavelength, frequency, amplitude, Hertz, crest, trough, transverse, longitudinal, and standing waves. Waves and Sound (Chapter 25-26)

More information

Waves transmit energy through h space and time Vibration of a Pendulum

Waves transmit energy through h space and time Vibration of a Pendulum Waves transmit energy through h space and time. A repeating back-andforth motion about an equilibrium position is a vibration. A disturbance that is transmitted progressively from one place to the next

More information

How do noise-cancelling headphones work? (hint: the answer involves a microphone and a type of interference)

How do noise-cancelling headphones work? (hint: the answer involves a microphone and a type of interference) Name: Period: Cover Requirements: 1. Name of unit 2. Picture of something from the unit Empty Map Questions: Will a speaker vibrate in space? Explain. Why does grabbing a cymbal make it quiet? How do noise-cancelling

More information

Chapter 16 Waves and Sound

Chapter 16 Waves and Sound Chapter 16 WAVES AND SOUND PREVIEW A wave is a disturbance which causes a transfer of energy. Mechanical waves need a medium in which to travel, but electromagnetic waves do not. Waves can be transverse

More information

Waves. Unit 14. Why are waves so important? In this Unit, you will learn: Key words. Previously PHYSICS 305

Waves. Unit 14. Why are waves so important? In this Unit, you will learn: Key words. Previously PHYSICS 305 Previously From Page 288 Sound waves travel through the air from a vibrating source. From Page 294 Light can travel through empty space. Unit 14 Waves Why are waves so important? We can use the idea of

More information

Modeling Waves Through Various Mediums

Modeling Waves Through Various Mediums Sound waves require a medium to travel. All waves transmit energy, not matter. Nearly all waves travel through matter. Waves are created when a source (force) generates a vibration. Vibrations in materials

More information

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 14 Physics, 4 th Edition James S. Walker Chapter 14 Waves and Sound Units of Chapter 14 Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Sound Intensity The

More information

CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND

CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND Name Period CHAPTER 8 (SECTIONS 8.1 AND 8.2) WAVE PROPERTIES, SOUND 1 ACTIVITY LESSON DESCRIPTION SCORE/POINTS 1. NT NOTES PACKET (notes and study questions ) _ /50 NT NOTES PACKET (vocab definitions &

More information

4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH SLINKIES Several basic properties of wave behavior can be demonstrated with long

More information

Physical Science 1 Chapter 6 WAVES. A wave is a disturbance that is propagated through a system. Waves transfer energy.

Physical Science 1 Chapter 6 WAVES. A wave is a disturbance that is propagated through a system. Waves transfer energy. WAVES Concept of Wave A wave is a disturbance that is propagated through a system. Waves transfer energy. Crest: the highest point on a wave. Trough: the lowest point on a wave. Amplitude: the maximum

More information

20.1 Waves. A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy.

20.1 Waves. A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy. Waves Chapter 20 1 20.1 Waves A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy. 2 Recognizing Waves Waves are present:

More information

LONG METAL SPRING ITEM # ENERGY - MOTION

LONG METAL SPRING ITEM # ENERGY - MOTION T E A C H E G U I R D S E LONG METAL SPRING ITEM # 3638-01 ENERGY - MOTION Waves are all around us. From sound waves, to electromagnetic waves, to seismic waves, we experience wave motion on a daily basis.

More information

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection Waves Vocabulary mechanical wave pulse continuous periodic wave amplitude wavelength period frequency wave velocity phase transverse wave longitudinal wave intensity displacement wave number phase velocity

More information

ConcepTest 15.4 Out to Sea

ConcepTest 15.4 Out to Sea ConcepTest 15.4 Out to Sea A boat is moored in a fixed location, and waves make it move up and down. If the spacing between wave crests is 20 m and the speed of the waves is 5 m/s, how long does it take

More information

3: PROPERTIES OF WAVES

3: PROPERTIES OF WAVES 8/2/2005 3: PROPERTIES OF WAVES Definition of Wave A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH SLINKIES Several basic properties of wave behavior can be demonstrated with

More information

CERT Educational Series Light and Waves Module

CERT Educational Series Light and Waves Module CERT Educational Series Light and Waves Module Quiz Question Bank 1. Maximum distance a wave varies from its rest position a. Integer c. Wave length d. Friction 2. The highest point of a transverse wave

More information

Harmonic Motion: The Pendulum Lab Basic Teacher Version

Harmonic Motion: The Pendulum Lab Basic Teacher Version Harmonic Motion: The Pendulum Lab Basic Teacher Version In this lab you will set up a pendulum using rulers, string, and small weights and measure how different variables affect the period of the pendulum.

More information

Strand E. Waves. Unit 1. Measuring Waves. Text. Types of Wave 2 Measuring Waves 6 Phase 10

Strand E. Waves. Unit 1. Measuring Waves. Text. Types of Wave 2 Measuring Waves 6 Phase 10 Strand E. Waves Unit 1. Measuring Waves Contents Page Types of Wave 2 Measuring Waves 6 Phase 10 E.1.1 Types of Wave Ripples on a pond, sunlight, musical sounds and earthquakes are all wave phenomena.

More information

Characteristics of Waves

Characteristics of Waves Chapter 15 Characteristics of Waves Waves disturbances that carry energy through matter or space Waves transfer energy. The energy being transferred may spread out as waves travel. Characteristics of Waves

More information

Physics Waves & Sound

Physics Waves & Sound Read Page 298 (Wave Characteristics) TQ1. How is a pulse different from a wave? Physics Waves & Sound Day 1 TQ2. What actually moves down a slinky when in the form of a wave? TQ3. What two things happen

More information

Force & Motion. Objective 6.P.1. 6.P.1 Understand the properties of waves and the wavelike property of energy in earthquakes, light and sound.

Force & Motion. Objective 6.P.1. 6.P.1 Understand the properties of waves and the wavelike property of energy in earthquakes, light and sound. Force & Motion Objective 6.P.1 Date: 6.P.1 Understand the properties of waves and the wavelike property of energy in earthquakes, light and sound. 6.P.1.1 Compare the properties of waves to the wavelike

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Energy can be transported by particles or waves: Chapter 11 Waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is

More information

Chs. 16 and 17 Mechanical Waves

Chs. 16 and 17 Mechanical Waves Chs. 16 and 17 Mechanical Waves The nature of waves A wave is a traveling disturbance that carries energy from one place to another, and even though matter may be disturbed as a wave travels through a

More information