Chapter 12: Mechanical Waves and Sound

Size: px
Start display at page:

Download "Chapter 12: Mechanical Waves and Sound"

Transcription

1 Chapter 12 Lecture Chapter 12: Mechanical Waves and Sound

2 Goals for Chapter 12 To describe mechanical waves. To study superposition, standing waves and sound. To present sound as a standing longitudinal wave. To see that waves will interfere (add constructively and destructively). To study sound intensity and beats. To solve for frequency shifts (the Doppler effect). To examine applications of acoustics and musical tones.

3 Mechanical Waves Figure 12.1 Waves in a fluid are the result of a mechanical disturbance. At right, a stone disturbs water and creates visually observable traveling waves.

4 Types of Mechanical Waves Figure 12.2 Transverse the wave disturbance is perpendicular to the direction of propagation. Longitudinal the wave disturbance is parallel to the direction of propagation. Water waves a complex mixture of both.

5 Generating a Longitudinal Wave Figure 12.3 An object undergoing SHM can cause the disturbance and the medium can be a string, cord, or rope under tension.

6 "Time Lapse" Snapshot of a Traveling Wave Figure 12.4 If you follow the original set of markers (3 red dots at top of the figure), you can see the movement as time passes going down from top to bottom. Each fresh sketch as you go downward elapses 1/8 of the period. Recall that 8/8T (all the way from top to bottom) is one period, the time for one complete oscillation to pass.

7 λf = v wave Example 12.1 We know that for any wave, the wavelength (in meters) times the frequency (in 1/s or Hz) will multiply to give the velocity of the wave (in m/s). Sound in air, sound in water, sound in metal, light this relationship will guide us. Refer to the worked example for sound in air at 20 o C.

8 Longitudinal and Transverse Waves Figures 12.5 and 12.6 help us to see the sinusoidal waveform.

9 Waves on a Long Rope Under Tension Example 12.2 Refer to Figure The velocity of the wave will depend on the type and size of rope as well as the tension we add with our geological sample. Follow the example on pages 358 and 359.

10 We Can Solve Equation 12.5 As Needed Figure 12.9 Follow the explanation on pages 360 and 361. We can express the wave in terms of trigonometric functions and observable data.

11 Waves Can Reflect Figure 12.11

12 Waves Can Superimpose Figure Two waves come in from opposite directions. Each wave has amplitude inverted with respect to the other. During the superposition, there is nearly cancellation. After the collision, the outgoing waves resemble those that came in, with the sign of the amplitude inverted. The details are a complex function of time.

13 Waves Become Coherent (Standing) Figure When nodes and antinodes align, there is no destructive interference and a steady-state condition is established. Depending on the shape and size of the medium transmitting the wave, different standing wave patterns are established as a function of energy.

14 Normal Modes for a Linear Resonator Figure The resonator is fixed at both ends. Wave energy increases as you go down the y- axis below.

15 Fundamental Frequencies Figure The fundamental frequency depends on the properties of the resonant medium. If the resonator is a string, cord, or wire, the standing wave pattern is a function of tension, linear mass density, and length.

16 Standing Waves on a String Example 12.3 Refer to the worked example at the bottom of page 367. The bass viol follows the same logic as Quantitative Analysis 12.4.

17 Longitudinal Standing Waves Figure Kundt's tube. A resonator closed at both ends must trap a wave with nodes at both ends (analogous to the transverse waves on a string).

18 Speed of Sound in Hydrogen Example Speed of Sound in Hydrogen Example Refer to Example 12.4 on page 369.

19 A New Resonator, the Organ Pipe Figure With a chamber closed at one end, the With a chamber closed at one end, the resonant waves must have nodes at the

20 A Resonator Open at Both Ends Figure A Resonator Open at Both Ends Figure other such instruments in the orchestra. Since the resonant chamber is open at both ends, the waves therein must have antinodes at both ends. Refer to the worked

21 Human Hearing Figure Refer to pages ,0000 Hz is the approximate range of human hearing. Refer to Below pages that is infrasonic and above ,0000 Note, there are Hz slight is the variations approximate between range animal of human species hearing. Below that is infrasonic and above.

22 Sound Intensity and the Decibel Scale Figure Use Table 12.2 to see logarithmic db examples of common sounds. Use Table 12.2 to see logarithmic db examples of common sounds.

23 Beats and the Beat Frequency Figure Two slightly different tuning forks will ring more loudly at the difference of the frequencies.

24 The Doppler Effect Figure Shifts in observed frequency can be caused by motion of the source, the listener, or both. Refer to Examples

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 14. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 14 Physics, 4 th Edition James S. Walker Chapter 14 Waves and Sound Units of Chapter 14 Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Sound Intensity The

More information

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect

Units of Chapter 14. Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect Units of Chapter 14 Types of Waves Waves on a String Harmonic Wave Functions Sound Waves Standing Waves Sound Intensity The Doppler Effect Units of Chapter 14 Optional Superposition and Interference Beats

More information

Chs. 16 and 17 Mechanical Waves

Chs. 16 and 17 Mechanical Waves Chs. 16 and 17 Mechanical Waves The nature of waves A wave is a traveling disturbance that carries energy from one place to another, and even though matter may be disturbed as a wave travels through a

More information

Physics Mechanics

Physics Mechanics 1 Physics 170 - Mechanics Lecture 33 Waves Wave notion 2 A wave pulse is a disturbance that propagates through a medium. It transfers energy without transferring matter; the energy is a combination of

More information

Slide 2 / 28 Wave Motion. A wave travels along its medium, but the individual particles just move up and down.

Slide 2 / 28 Wave Motion. A wave travels along its medium, but the individual particles just move up and down. Slide 1 / 28 Waves Slide 2 / 28 Wave Motion A wave travels along its medium, but the individual particles just move up and down. Slide 3 / 28 Wave Motion All types of traveling waves transport energy.

More information

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc.

Chapter 15 Wave Motion. Copyright 2009 Pearson Education, Inc. Chapter 15 Wave Motion 15-1 Characteristics of Wave Motion All types of traveling waves transport energy. Study of a single wave pulse shows that it is begun with a vibration and is transmitted through

More information

Similarly to elastic waves, sound and other propagated waves are graphically shown by the graph:

Similarly to elastic waves, sound and other propagated waves are graphically shown by the graph: Phys 300/301 Physics: Algebra/Trig Eugene Hecht, 3e. Prepared 01/24/06 11.0 Waves & Sounds There are two fundamental waves of transporting energy and momentum: particles and waves. While they seem opposites,

More information

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School

Pre AP Physics: Unit 7 Vibrations, Waves, and Sound. Clear Creek High School Pre AP Physics: Unit 7 Vibrations, Waves, and Sound Clear Creek High School Simple Harmonic Motion Simple Harmonic Motion Constant periodic motion of an object. An object oscillates back and forth along

More information

Waves & Interference

Waves & Interference Waves & Interference I. Definitions and Types II. Parameters and Equations III. Sound IV. Graphs of Waves V. Interference - superposition - standing waves The student will be able to: HW: 1 Define, apply,

More information

Define transverse waves and longitudinal waves. Draw a simple diagram of each

Define transverse waves and longitudinal waves. Draw a simple diagram of each AP Physics Study Guide Chapters 11, 12, 24 Waves, Sound, Light & Interference Name Write the equation that defines each quantity, include units for all quantities. wave speed-wavelength equation natural

More information

CHAPTER 16. Waves and Sound

CHAPTER 16. Waves and Sound CHAPTER 16 Waves and Sound Objectives: After completion of this module, you should be able to: Demonstrate your understanding of transverse and longitudinal waves. Define, relate and apply the concepts

More information

Lecture 8. Sound Waves Superposition and Standing Waves

Lecture 8. Sound Waves Superposition and Standing Waves Lecture 8 Sound Waves Superposition and Standing Waves Sound Waves Speed of Sound Waves Intensity of Periodic Sound Waves The Doppler Effect Sound Waves are the most common example of longitudinal waves.

More information

Sound waves... light waves... water waves...

Sound waves... light waves... water waves... Sound waves... light waves... water waves... 1S-13 Slinky on Stand Creating longitudinal compression waves in a slinky What happens when you pull back and release one end of the slinky? 4/11/2011 Physics

More information

Algebra Based Physics

Algebra Based Physics Algebra Based Physics Waves www.njctl.org Table of Contents Click on the topic to go to that section Types of Waves Standing Waves on a String Table of Contents https://www.njctl.org/video/?v=ywgtos4xmqo

More information

MECHANICAL WAVES AND SOUND

MECHANICAL WAVES AND SOUND MECHANICAL WAVES AND SOUND Waves Substances have a stable equilibrium state Uniform pressure everywhere throughout the substance Atomic springs are at their equilibrium length Can make a wave by disturbing

More information

HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things:

HITES, 2011 Lecture 1 1. You are in a boat out on the ocean watching the waves go by. To fully describe the waves, you need three things: Waves A wave is a that propagates p in a certain direction with a certain speed. 1D 2D 3D Physical medium Waves in water Waves in elastic bodies Sound Empty space (a vacuum) Electromagnetic waves HITES,

More information

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011

Core Concept. PowerPoint Lectures Physical Science, 8e. Chapter 5 Wave Motions and Sound. New Symbols for this Chapter 2/20/2011 PowerPoint Lectures Physical Science, 8e Chapter 5 Wave Motions and Sound New Symbols for this Chapter T-Period f-frequency v-wave speed λ-wavelength A-Amplitude Sound is transmitted as increased and decreased

More information

Waves Multiple Choice

Waves Multiple Choice Waves Multiple Choice PSI Physics Name: 1. The distance traveled by a wave in one period is called? A. Frequency B. Period C. Speed of wave D. Wavelength E. Amplitude 2. Which of the following is the speed

More information

Mechanical Waves. Chapter 15. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman

Mechanical Waves. Chapter 15. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Chapter 15 Mechanical Waves PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 15 To study the properties and

More information

Slide 1 / The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength Amplitude

Slide 1 / The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength Amplitude Slide 1 / 20 1 The distance traveled by a wave in one period is called? Frequency Period Speed of wave Wavelength mplitude Slide 2 / 20 2 Which of the following is the speed of a wave traveling with a

More information

Waves Practice Problems AP Physics In a wave, the distance traveled by a wave during one period is called:

Waves Practice Problems AP Physics In a wave, the distance traveled by a wave during one period is called: Waves Practice Problems AP Physics 1 Name 1. In a wave, the distance traveled by a wave during one period is called: (A) Amplitude (B) Frequency (C) Wavelength (D) Displacement 2. A stretched wire resonates

More information

Lab 2: Superposition of waves on a string

Lab 2: Superposition of waves on a string Lab 2: Superposition of waves on a string Name: Group Members: Date: TA s Name: Apparatus: PASCO mechanical vibrator, PASCO interface, string, mass hanger (50 g) and set of masses, meter stick, electronic

More information

Chapter 14 Waves http://faraday.physics.utoronto.ca/iyearlab/intros/standingwaves/flash/long_wave.html Apr 30 7:11 AM May 5 7:16 AM 1 May 5 7:17 AM May 5 7:17 AM 2 May 5 7:19 AM May 5 7:29 AM 3 May 5 7:30

More information

i-clicker Discussion Question

i-clicker Discussion Question PHY132 Introduction to Physics II Class Class 3 Outline: Outline: Ch. 21, sections 21.1-21.4 The Principle of Superposition Standing Waves Nodes and Antinodes Musical Instruments QuickCheck 1.1 i-clicker

More information

Phys1111K: Superposition of waves on a string Name:

Phys1111K: Superposition of waves on a string Name: Phys1111K: Superposition of waves on a string Name: Group Members: Date: TA s Name: Apparatus: PASCO mechanical vibrator, PASCO interface, string, mass hanger (50 g) and set of masses, meter stick, electronic

More information

Doppler Effect. PHY132H1F Introduction to Physics II Class 3 Outline:

Doppler Effect. PHY132H1F Introduction to Physics II Class 3 Outline: PHY132H1F Introduction to Physics II Class 3 Outline: Doppler Effect Principle of Superposition Standing Waves on a String Standing Sound Waves Wave Interference Beats Survey: How did the reading go that

More information

LAB 10 Waves and Resonance

LAB 10 Waves and Resonance Cabrillo College Physics l0l Name LAB 10 Waves and Resonance Read Hewitt Chapter 19 What to learn and explore Almost all of the information that we receive from our environment comes to us in the form

More information

6. An oscillator makes four vibrations in one second. What is its period and frequency?

6. An oscillator makes four vibrations in one second. What is its period and frequency? Period and Frequency 19.1 The period of a pendulum is the time it takes to move through one cycle. As the ball on the string is pulled to one side and then let go, the ball moves to the side opposite the

More information

Questions. Background. Equipment. Activities LAB 3. WAVES

Questions. Background. Equipment. Activities LAB 3. WAVES Questions LAB 3. WAVES How can we measure the velocity of a wave? How are the wavelength, period, and speed of a wave related? What types of behavior do waves exhibit? Background Consider what happens

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 37: Wave motion II. Slide 37-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 37: Wave motion II. Slide 37-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 37: Wave motion II Slide 37-1 Recap: properties of waves Wavelength λ is the distance over which a wave repeats in space. Period

More information

Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond).

Transverse waves cause particles to vibrate perpendicularly to the direction of the wave's motion (e.g. waves on a string, ripples on a pond). Waves Introduction A vibration must be the source of a wave. Waves in turn also cause vibrations. They are intrinsically connected. Waves transmit energy. There are different ways in which waves can be

More information

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p

Physics 1-2 Mr. Chumbley Physics: Chapter 11 p Physics 1-2 Mr. Chumbley Physics: Chapter 11 p. 362-401 Section 1 p. 364 371 Section 2 p. 372-377 Simple Harmonic Motion There exist many different situations in which objects oscillate in regular, repeating

More information

PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili

PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili PHYS 102 Quiz Problems Chapter 16 : Waves I Dr. M. F. Al-Kuhaili 1. (TERM 001) A sinusoidal wave traveling in the negative x direction has amplitude of 20.0 cm, a wavelength of 35.0 cm, and a frequency

More information

Chapter 14 Waves. Apr 30 7:11 AM

Chapter 14 Waves.   Apr 30 7:11 AM Chapter 14 Waves http://faraday.physics.utoronto.ca/iyearlab/intros/standingwaves/flash/long_wave.html Apr 30 7:11 AM 1 May 5 7:16 AM 2 May 5 7:17 AM 3 May 5 7:17 AM 4 May 5 7:19 AM 5 May 5 7:29 AM 6 May

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Energy can be transported by particles or waves: Chapter 11 Waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is

More information

Superposition of waves on a string

Superposition of waves on a string Superposition of waves on a string Name: Group Members: Date: TA s Name: Apparatus: PASCO mechanical vibrator, string, mass hanger (50 g) and set of masses, meter stick, electronic scale, signal generator,

More information

Chapter 19: Vibrations And Waves

Chapter 19: Vibrations And Waves Lecture Outline Chapter 19: Vibrations And Waves This lecture will help you understand: Vibrations of a Pendulum Wave Description Wave Speed Transverse Waves Longitudinal Waves Wave Interference Standing

More information

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection Waves Vocabulary mechanical wave pulse continuous periodic wave amplitude wavelength period frequency wave velocity phase transverse wave longitudinal wave intensity displacement wave number phase velocity

More information

is shown in Fig. 5.1.

is shown in Fig. 5.1. 1 The variation with time t of the displacement x of a point in a transverse wave T 1 is shown in Fig. 5.1. 1 x A T 1 1 2 3 4 5 6 t/s -A Fig. 5.1 (a) By reference to displacement and direction of travel

More information

Harmonics and Sound Exam Review

Harmonics and Sound Exam Review Name: Class: _ Date: _ Harmonics and Sound Exam Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following is not an example

More information

23.1 Period and Frequency

23.1 Period and Frequency 23.1 Period and Frequency 23.1 The period of a pendulum is the time it takes to move through one cycle. As the ball on the string is pulled to one side and then let go, the ball moves to the side opposite

More information

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies Wave Motion Vocabulary mechanical waves pulse continuous periodic wave amplitude period wavelength period wave velocity phase transverse wave longitudinal wave intensity displacement amplitude phase velocity

More information

Question. A. Incorrect! Check the definition for period. B. Incorrect! Check the definition for speed.

Question. A. Incorrect! Check the definition for period. B. Incorrect! Check the definition for speed. AP Physics - Problem Drill 11: Vibrations and Waves. Instruction: (1) Read the problem statement and answer choices carefully (2) Work the problems on paper as 1. The following definitions are used to

More information

Date Lab Time Name. Wave Motion

Date Lab Time Name. Wave Motion Objective Wave Motion This laboratory examines the principle on which most musical instruments operate and allows the student to observe standing waves, hear resonance and calculate the velocity of the

More information

Mechanical waves Electromagnetic waves

Mechanical waves Electromagnetic waves Waves Energy can be transported by transfer of matter. For example by a thrown object. Energy can also be transported by wave motion without the transfer of matter. For example by sound waves and electromagnetic

More information

Physics 101 Lecture 20 Waves & Sound

Physics 101 Lecture 20 Waves & Sound Physics 101 Lecture 20 Waves & Sound Recall we ve talked about transverse & longitudinal waves: - transverse waves: medium motion is to wave motion - longitudinal (pressure) waves: medium motion is to

More information

i-clicker Discussion Question

i-clicker Discussion Question PHY132 Introduction to Physics II Class Class 3 Outline: Outline: Ch. 21, sections 21.1-21.4 The Principle of Superposition Standing Waves Nodes and Antinodes Musical Instruments QuickCheck 1.1 i-clicker

More information

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π

g L Agenda Chapter 13 Problem 28 Equations of Motion for SHM: What if we have friction or drag? Driven Oscillations; Resonance 4/30/14 k m f = 1 2π Agenda Today: HW quiz, More simple harmonic motion and waves Thursday: More waves Midterm scores will be posted by Thursday. Chapter 13 Problem 28 Calculate the buoyant force due to the surrounding air

More information

Waves Chapter Problems

Waves Chapter Problems Waves Chapter Problems Wave speed, frequency and wavelength 1. A fisherman noticed that a float makes 30 oscillations in 15 seconds. The distance between two consecutive crests is 2 m. What is the period

More information

Ch16Lectures Page 1. Ch16Lectures Thursday, April 16, :22 PM

Ch16Lectures Page 1. Ch16Lectures Thursday, April 16, :22 PM Ch16Lectures Page 1 Ch16Lectures Thursday, April 16, 2009 12:22 PM Ch16Lectures Page 2 Ch16Lectures Page 3 Ch16Lectures Page 4 The following animation illustrates the interference of two wave pulses travelling

More information

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves

Preview. Vibrations and Waves Section 1. Section 1 Simple Harmonic Motion. Section 2 Measuring Simple Harmonic Motion. Section 3 Properties of Waves Vibrations and Waves Section 1 Preview Section 1 Simple Harmonic Motion Section 2 Measuring Simple Harmonic Motion Section 3 Properties of Waves Section 4 Wave Interactions Vibrations and Waves Section

More information

Characteristics of Waves

Characteristics of Waves Chapter 15 Characteristics of Waves Waves disturbances that carry energy through matter or space Waves transfer energy. The energy being transferred may spread out as waves travel. Characteristics of Waves

More information

Chapter # 08 Waves. [WAVES] Chapter # 08

Chapter # 08 Waves. [WAVES] Chapter # 08 Chapter # 08 Waves Q2) Write short answers of the following questions. i) What is the difference between progressive and stationary waves? Answer: Progressive Waves 1 Progressive waves are the result of

More information

LAB 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

LAB 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. LAB 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH A STRING Several basic properties of wave behavior can be demonstrated with

More information

Chapter 19: Vibrations and Waves

Chapter 19: Vibrations and Waves Chapter 19: Vibrations and Waves SIMPLE HARMONIC MOTION ic or Oscillatory motion is called SHM. Start off with the story of Galileo being in the church. PENDULUM Make the following points with a pendulum

More information

CHAPTER 8: MECHANICAL WAVES TRANSMIT ENERGY IN A VARIETY OF WAYS

CHAPTER 8: MECHANICAL WAVES TRANSMIT ENERGY IN A VARIETY OF WAYS CHAPTER 8: MECHANICAL WAVES TRANSMIT ENERGY IN A VARIETY OF WAYS DISCLAIMER FOR MOST QUESTIONS IN THIS CHAPTER Waves are always in motion, as they transmit energy and information from one point to another.

More information

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes

4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes 4.4 WAVE CHARACTERISTICS 4.5 WAVE PROPERTIES Student Notes I. DIFFERENT TYPES OF WAVES A. TRANSVERSE AND LONGITUDINAL WAVES B. WAVE PULSES AND TRAVELLING WAVES C. SOUND AND WATER WAVES II. DEFINING TERMS

More information

Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy.

Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy. Waves & Sound A. Waves 1. The nature of waves a. A wave is a rhythmic disturbance that transfers energy. 2. Mechanical waves need a matter medium to travel through. (sound, water, seismic) 3. Two basic

More information

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse

Waves Physics Waves What is a wave and what does it carry? Types of Waves 1. Transverse Waves Physics 20.1 Waves What is a wave and what does it carry? Types of Waves 1. Transverse A transverse wave has its oscillations/vibrations to the direction the wave moves. 2. Longitudinal A longitudinal

More information

4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium.

4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. 4: PROPERTIES OF WAVES Definition of Wave: A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH SLINKIES Several basic properties of wave behavior can be demonstrated with long

More information

This requires a medium!

This requires a medium! Unit 7: Waves Mechanical Wave a disturbance in matter that carries energy from one place to another This requires a medium! 1 Types of Mechanical Waves 1. Transverse Wave a wave that causes matter to vibrate

More information

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying

Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying Vibrations are the sources of waves. A vibration creates a disturbance in a given medium, that disturbance travels away from the source, carrying energy with it, we call this traveling disturbance a wave.

More information

Chapter 16. Waves-I Types of Waves

Chapter 16. Waves-I Types of Waves Chapter 16 Waves-I 16.2 Types of Waves 1. Mechanical waves. These waves have two central features: They are governed by Newton s laws, and they can exist only within a material medium, such as water, air,

More information

Physics 122 Class #7 Outline. Announcements Traveling waves Math of Sinewaves Doppler Effect Superposition Standing Waves Math of Standing Waves

Physics 122 Class #7 Outline. Announcements Traveling waves Math of Sinewaves Doppler Effect Superposition Standing Waves Math of Standing Waves Physics 122 Class #7 Outline Announcements Traveling waves Math of Sinewaves Doppler Effect Superposition Standing Waves Math of Standing Waves Announcements Updated syllabus is posted Exam #1 is in two

More information

Today: waves. Exam Results. Wave Motion. What is moving? Motion of a piece of the rope. Energy transport

Today: waves. Exam Results. Wave Motion. What is moving? Motion of a piece of the rope. Energy transport Exam: Exam scores posted on Learn@UW No homework due next week Exam Results D C BC B AB A Today: waves Have studied Newton s laws, motion of particles, momentum, energy, etc. Laws for describing things

More information

Sinusoidal Waves. Sinusoidal Waves. Sinusoidal Waves

Sinusoidal Waves. Sinusoidal Waves. Sinusoidal Waves Sinusoidal Waves A wave source at x = 0 that oscillates with simple harmonic motion (SHM) generates a sinusoidal wave. 2017 Pearson Education, Inc. Slide 16-1 Sinusoidal Waves Above is a history graph

More information

Waves and Sound. (Chapter 25-26)

Waves and Sound. (Chapter 25-26) Waves and Sound (Chapter 25-26) I can de(ine and use the terms period, wavelength, frequency, amplitude, Hertz, crest, trough, transverse, longitudinal, and standing waves. Waves and Sound (Chapter 25-26)

More information

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4.

Waves-Wave Basics. 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4. Waves-Wave Basics 1. Which type of wave requires a material medium through which to travel? 1. sound 2. television 3. radio 4. x ray 2. A single vibratory disturbance moving through a medium is called

More information

Standing Waves in a String

Standing Waves in a String Standing Waves in a String OBJECTIVE To understand the circumstances necessary to produce a standing wave. To observe and define the quantities associated with a standing wave. To determine the wavelength

More information

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move.

Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move. Waves: Defined as a transfer of energy, in the form of a temporary disturbance of a medium, where the medium itself does not move. Three Classifications of waves: 1. Mechanical waves: These are waves that

More information

SOUND. Pitch: Frequency High Frequency = High Pitch Low Frequency = Low Pitch Loudness: Amplitude. Read Sections 12-1 and 12-4

SOUND. Pitch: Frequency High Frequency = High Pitch Low Frequency = Low Pitch Loudness: Amplitude. Read Sections 12-1 and 12-4 Read Sections 12-1 and 12-4 SOUND Sound: The speed of sound in air at 25 o C is 343 m/s (often rounded to 340 m/s). The speed of sound changes with temperature since the density and elasticity of air change

More information

Section 1: Types of Waves

Section 1: Types of Waves Waves Section 1 Section 1: Types of Waves Preview Key Ideas Bellringer What Is a Wave? Vibrations and Waves Transverse and Longitudinal Waves Surface Waves Waves Section 1 Key Ideas What does a wave carry?

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Today After today s class, you should be able to: Identify different types of waves Calculate wave velocity, period and frequency. Calculate tension or velocity for a wave on a string.

More information

Section 1 Types of Waves

Section 1 Types of Waves CHAPTER OUTLINE Section 1 Types of Waves Key Idea questions > What does a wave carry? > How are waves generated? > What is the difference between a transverse wave and a longitudinal wave? > How do the

More information

Practice Questions: Waves (AP Physics 1) Multiple Choice Questions:

Practice Questions: Waves (AP Physics 1) Multiple Choice Questions: Practice Questions: Waves (AP Physics 1) Multiple Choice Questions: 28. A transverse wave is traveling on a string. The graph above shows position as a function of time for a point on the string. If the

More information

Practice Problems For 1st Wave Exam

Practice Problems For 1st Wave Exam For 1st Wave Exam 1. Which wave diagram has both wavelength ( ) and amplitude (A) labeled correctly? A) B) C) 5. The energy of a sound wave is most closely related to the wave's A) frequency B) amplitude

More information

WAVES, WAVE BEHAVIOR, GEOPHYSICS AND SOUND REVIEW ANSWER KEY

WAVES, WAVE BEHAVIOR, GEOPHYSICS AND SOUND REVIEW ANSWER KEY WAVES, WAVE BEHAVIOR, GEOPHYSICS AND SOUND REVIEW ANSWER KEY Instructions: Show all of your work completely in your journal, including the equations used in variable form. Pay attention to sig figs and

More information

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2.

Chapter 11 Waves. Waves transport energy without transporting matter. The intensity is the average power per unit area. It is measured in W/m 2. Chapter 11 Waves Energy can be transported by particles or waves A wave is characterized as some sort of disturbance that travels away from a source. The key difference between particles and waves is a

More information

Conceptual Physics. Chapter 25: Vibrations and Waves Mr. Miller

Conceptual Physics. Chapter 25: Vibrations and Waves Mr. Miller Conceptual Physics Chapter 25: Vibrations and Waves Mr. Miller Vibrations A vibration is a wiggle in time A vibration cannot exist in one instant, but needs time to move back and forth. Waves A wave is

More information

Waves and Sound. Honors Physics

Waves and Sound. Honors Physics Waves and Sound Honors Physics Simple Harmonic Motion Refers to repetitive, cyclical motion (like a pendulum or waves) Can be described with sine curve For a pendulum only T 2 L g Example problem The world

More information

Physics 1520, Spring 2014 Quiz 1A, Form: A

Physics 1520, Spring 2014 Quiz 1A, Form: A Physics 1520, Spring 2014 Quiz 1A, Form: A Name: Date: Section 1. Multiple Choice 1. The image below shows two different types of sinusoidal waves produced on a slinky. Which wave is the same type of wave

More information

Physics 1520, Spring 2014 Quiz 1B, Form: A

Physics 1520, Spring 2014 Quiz 1B, Form: A Physics 1520, Spring 2014 Quiz 1B, Form: A Name: Date: Section 1. Multiple Choice Questions 1 2: The equations for two traveling waves traveling on the same string are: Wave 1: y(x, t) = (5.0 cm) cos((2.09

More information

PreClass Notes: Chapter 14, Sections

PreClass Notes: Chapter 14, Sections PreClass Notes: Chapter 14, Sections 14.1-14.4 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by

More information

3: PROPERTIES OF WAVES

3: PROPERTIES OF WAVES 8/2/2005 3: PROPERTIES OF WAVES Definition of Wave A wave is a disturbance traveling in a medium. A. SMALL GROUP ACTIVITIES WITH SLINKIES Several basic properties of wave behavior can be demonstrated with

More information

Lab #21 - ORR: Resonance Tube

Lab #21 - ORR: Resonance Tube Chapter 21 Lab #21 - ORR: Resonance Tube Introduction The vertical resonance apparatus is a device for helping the Physics student understand the principle of waves and resonance. In particular the study

More information

Ch13. Vibrations and Waves HW# 1, 5, 9, 13, 19, 29, 35, 37, 39, 41, 43, 47, 51, 53, 61

Ch13. Vibrations and Waves HW# 1, 5, 9, 13, 19, 29, 35, 37, 39, 41, 43, 47, 51, 53, 61 Ch13. Vibrations and Waves HW# 1, 5, 9, 13, 19, 29, 35, 37, 39, 41, 43, 47, 51, 53, 61 If you displace a system that obeys Hooke s Law, It will follow simple harmonic motion. The system will oscillate.

More information

PHYS 11 Introduction to Mechanical Waves Heath

PHYS 11 Introduction to Mechanical Waves Heath PHYS 11 Introduction to Mechanical Waves Heath 7.1 7.4 Waves Mechanical Waves are a that transfers from one point to another. Mechanical waves are a special, easily observable type of wave. A mechanical

More information

Physics 11. Unit 7 (Part 1) Wave Motion

Physics 11. Unit 7 (Part 1) Wave Motion Physics 11 Unit 7 (Part 1) Wave Motion 1. Introduction to wave Wave motion is a popular phenomenon that we observe often in our daily lives. For example, light waves, sound waves, radio waves, water waves,

More information

Chapter 14: Waves. What s disturbing you?

Chapter 14: Waves. What s disturbing you? Chapter 14: Waves What s disturbing you? Wave Properties Waves carry energy through matter. The matter can move with the wave, or at right angles to it. Newton s laws and conservation laws govern the behavior

More information

SPH3U Sec.9.2.notebook. November 30, Free End Reflections. Section 9.2 Waves at Media Boundaries

SPH3U Sec.9.2.notebook. November 30, Free End Reflections. Section 9.2 Waves at Media Boundaries Section 9.2 Waves at Media Boundaries Wave speed depends on some of the properties of the medium through which the wave is travelling. For example, the speed of sound in air depends on air temperature,

More information

A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

A It is halved. B It is doubled. C It is quadrupled. D It remains the same. WAVES UNIT REVIEW EN: CALIFORNIA STATE QUESTIONS: 1. A sound wave is produced in a metal cylinder by striking one end. Which of the following occurs as the wave travels along the cylinder? A Its amplitude

More information

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation Lab 1 Standing Waves on a String Learning Goals: To distinguish between traveling and standing waves To recognize how the wavelength of a standing wave is measured To recognize the necessary conditions

More information

Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages )

Exercises Vibration of a Pendulum (page 491) 25.2 Wave Description (pages ) 25.3 Wave Motion (pages ) Exercises 25.1 Vibration of a Pendulum (page 491) 1. The time it takes for one back-and-forth motion of a pendulum is called the. 2. List the two things that determine the period of a pendulum. 3. Circle

More information

Cover Sheet-Block 6 Wave Properties

Cover Sheet-Block 6 Wave Properties Cover Sheet-Block 6 Wave Properties Name Standards-Physics 4 a b c d 4a. Students know waves carry energy from one place to another. 4. b. Students know how to identify transverse and longitudinal waves

More information

Stationary Waves. Question paper 3. Save My Exams! The Home of Revision. International A Level. Exam Board Superposition. Booklet Question paper 3

Stationary Waves. Question paper 3. Save My Exams! The Home of Revision. International A Level. Exam Board Superposition. Booklet Question paper 3 Stationary waves Question paper 3 Level International A Level Subject Physics Exam Board CIE Topic Superposition Sub Topic Stationary Waves Paper Type Theory Booklet Question paper 3 Time Allowed: 57 minutes

More information

Lab 12 Standing Waves

Lab 12 Standing Waves b Lab 12 Standing Waves What You Need To Know: Types of Waves The study of waves is a major part of physics. There are quite a few types of waves that can be studied. Depending on who you have for lecture

More information

Lab 12 Standing Waves

Lab 12 Standing Waves b Lab 12 Standing Waves What You Need To Know: Types of Waves The study of waves is a major part of physics. There are quite a few types of waves that can be studied. Depending on who you have for lecture

More information

NATURE AND PROPERTIES OF WAVES P.1

NATURE AND PROPERTIES OF WAVES P.1 NATURE AND ROERTIES OF WAVES.1 DSE AER IA 218 14. Which of the following statements about waves is/are correct? (1) Longitudinal waves can transmit energy from one place to another but transverse waves

More information

PHYSICS - CLUTCH CH 16: WAVES & SOUND.

PHYSICS - CLUTCH CH 16: WAVES & SOUND. !! www.clutchprep.com CONCEPT: WHAT IS A WAVE? A WAVE is a moving disturbance (oscillation) that carries energy. - A common example is a wave on a string, where the moving string carries energy We re only

More information

20.1 Waves. A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy.

20.1 Waves. A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy. Waves Chapter 20 1 20.1 Waves A wave is an oscillation that travels from one place to another. Because waves can change motion, they are a travelling form on energy. 2 Recognizing Waves Waves are present:

More information