LARGE-SCALE TESTING OF TSUNAMI IMPACT FORCES ON BRIDGES

Size: px
Start display at page:

Download "LARGE-SCALE TESTING OF TSUNAMI IMPACT FORCES ON BRIDGES"

Transcription

1 Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons CC BY-NC-ND 4.0 LARGE-SCALE TESTING OF TSUNAMI IMPACT FORCES ON BRIDGES PEDRO LOMONACO 1, DENIS ISTRATI 2, TIM MADDUX 1, IAN BUCKLE 2, SOLOMON YIM 3, TAO XIANG 3 1 Hinsdale Wave Research Laboratory, Oregon State University, USA, pedro.lomonaco@oregonstate.edu 2 Civil and Environmental Engineering Department, University of Nevada, Reno, USA, distratii@unr.edu 3 School of Civil and Construction Engineering, Oregon State University, USA, Solomon.yim@oregonstate.edu ABSTRACT A comprehensive series of experiments have been carried out of a large-scale bridge superstructure subject to impact forces of tsunami-type broken and unbroken waves. Two 1:5 scaled specimens of a bridge superstructure, composed of a reinforced concrete deck supported by multiple steel girders and steel cross-frames, were designed and built at the University of Nevada, Reno, while the tests were conducted in the Large Wave Flume at the HWRL, Oregon State University. The relatively large-scale selected allowed a realistic modelling of the bridge superstructure, which included elastomeric bearings under each girder and springs at the level of the bent cap to represent the different dynamic properties of the bridge substructure (bent cap and piles). The bridge testing configurations included the effect of water depth, tsunami-wave height, bridge angle, horizontal stiffness, bearing connection properties, use of shear keys, use of diaphragms between girders, box girders, and venting of the bridge deck. The experiments aimed to provide a detailed data base for developing empirical predictive models of tsunami loads on bridges, improving the understanding of the wave-structure interaction for a semi-rigid specimen, as well as to become a valuable benchmark series for validation of numerical models of non-linear hydrodynamics and wave-structure interactions. KEWORDS: Bridges, Tsunami forces, Wave-structure interaction, Coastal structure s resilience. 1 INTRODUCTION Bridges are an essential part of the transportation system along the coast, and have a significant role providing escape routes and access to coastal communities before, during and after a tsunami, a hurricane, or almost any coastal hazard event. The 2011 Great East Japan Earthquake and resulting Tohoku Tsunami impacted more than 300 bridges along the Japan s coast, and about 50% were destroyed and washed away. According to the surveys, most of the bridges survived the earthquake but were completely destroyed by the Tsunami, indicating that the current design specification cannot provide bridges with sufficient strength to resist the tsunami loads (Yim and Azadbakht, 2013). Historical reports of modern-design bridge damage and destruction by tsunamis can also be found as well, e.g. the 1946 and 1957 Tsunamis that hit Kauai washed several bridges at Wainiha and Kalihiwai, isolating the communities along the North shore of the island (Pacific Worlds, 2001). This also indicates that, in spite of the awareness of the problem, there is a lack of full understanding of the process, and the difficulties in the implementation of design codes and recommendations for building tsunami-resilient bridges, particularly since some communities are vulnerable to tsunamis, although do not necessarily belong to a seismic hazard zone. Generally speaking, two main bridge failure mechanism are observed during tsunamis: 1) failure of the connections attaching the bridge superstructure (i.e. the bridge deck and supporting girders) to the bridge substructure (i.e. the bridge piers and/or abutments), and 2) scour around bridge abutments and supporting piers, failure of the foundation, failure of the bridge piers, and failure due to debris impact. In this study, the mechanisms inducing the first type of failure are investigated. Figure 1 presents two examples of damaged bridges by Tsunamis, where the connections attaching the bridge superstructure have failed (first type of failure). 1

2 Figure 1. Remaining piers of the Koizumi Bridge in Japan (left) after the Tohoku Tsunami in 2011, and the Kalihiwai Bridge in Kauai (right) after the 1957 Aleutian Island Tsunami (from EERI, 2011 and Pacific Worlds, 2001, respectively). The behaviour of bridges under the action of hurricane waves and storm surges has been studied over the past few years (cf. Yim and Azadbakht, 2013), but fewer studies are found regarding tsunami loading and the dynamic response of the bridge superstructure. So far, the studies have covered on-site surveys analysing the failure mechanisms, small-scale experiments with rigid bridge models, or numerical model simulations with limited validation where the bridge dynamics might not be included. Bradner et al. (2011) presented an experimental setup for a large-scale bridge superstructure model subjected to regular and random waves over a range of water depths. In their study, a description is made of a unique series of experiments conducted on a realistic 1:5 model scale of a bridge superstructure, where the experimental setup allowed direct control of the stiffness of the horizontal support system to simulate different dynamic properties of the bridge substructure (i.e. bent cap and piles). As a result, it was found that the different dynamic responses of the bridge had a significant effect on the measured peak pressures and resulting forces, particularly on the phase and magnitude of horizontal loads. Moreover, the direct measurement of wave forces could be compared with integrated pressure measurements given the large-scale of the model. This is particularly relevant due to air entrapment under the bridge, which can significantly affect impact pressure measurements in small-scale models, since peak pressures do not scale in accordance to Froude criteria (Note: this is mainly due to the spring-like effect of air compressibility, similar to the dynamic similarity limitations found in oscillating water column wave energy converters, Falcão and Henriques, 2014). The experimental setup from Bradner et al. (2011) served as a reference for the physical model testing described herein, where some mechanical elements and instruments were used again for coherence, simplicity and comparison purposes. Hence, the ultimate goal of this work is to execute a comprehensive series of experiments to assess tsunami-wave impact forces on bridges under realistic conditions, which should include the dynamic response of the bridge, identifying the effect of different parameters, e.g. tsunami-wave height, bridge angle relative to the incident wave, bridge superstructure horizontal stiffness, bearing connection properties, use of shear keys to support the girders, use of diaphragms between girders, opening gaps between girders (box girders), and venting of the bridge deck. For comparison purposes with the results presented by Bradner et al. (2011), the bridge specimens were subject to a range of regular wave conditions as well. However, the discussion regarding regular wave tests lies beyond the scope of the present paper. The data base will allow the development and application of time-domain numerical models describing the dynamic structural response of the bridge under the action of tsunami-waves. The experiments should also provide high quality data for hydrodynamic model calibration and validation, including detailed time series of the free surface elevation, and vertical profiles of the dynamic pressure and flow velocity at different locations along the experimental facility. Furthermore, the data base ought to be the foundation for future development of semi-empirical models, design codes and recommendations for building new and assess existing tsunami-resistant and resilient bridges along the coast. This paper presents a detailed description of the large-scale experiments of tsunami impact forces on bridges, summarizing an overview of the testing facility, the experimental setup, instrumentation, and test program. The paper also includes a sample set of the high quality measurements along with some interpretation of results. 2 TEST FACILITY AND WAVE FLUME BATHYMETRY The experiments were conducted in the Large Wave Flume (LWF) at the O.H. Hinsdale Wave Research Laboratory (HWRL) at Oregon State University. The flume is m long, 3.66 m wide, and 4.57 m deep. The maximum depth for tsunami-type wave generation is 2 m, while the maximum depth for short (wind) wave generation is 2.7 m. The LWF is equipped with a piston-type dry-back wavemaker with a 4.2 m maximum stroke hydraulic actuator assembly, capable of 2

3 generating short- and long- regular and random waves, as well as tsunami-type waves (solitary waves), in a wide range of periods and heights. The maximum regular wave is 1.7 m height, with a period of 5 s and at 2.7 m water depth. The maximum tsunami (solitary wave) is 1.4 m height at 2 m water depth. The flume is also equipped with a powered carriage with full cross-shore traverse and a bridge crane with 6 tons capacity; as well as another carriage with a powered vertical instrument deployment frame; and finally a light-weight carriage for observation, video recording and lightning applications. Further, the flume incorporates a movable/adjustable bathymetry made of 20 square configurable concrete slabs. The flume includes a series of bolt-hole vertical patterns to assemble test specimens as well as to support the concrete bathymetry slabs. Each bolt-hole pattern has a 3.66 m (12 feet) cross-shore separation, starting m from the wave board, the flume incorporates 22 patterns, also known as bays. For these experiments, the bathymetry was configured with the concrete slabs to comprise an impermeable 1:12 slope 7.3 m long, followed by a m long horizontal section, and then another 18.3 m long 1:12 slope to dissipate waves. The top of the horizontal section is 0.84 m from the flume bottom, hence, with 2 m depth at the wavemaker, the horizontal testing section has a water depth of 1.16 m. Figure 2 presents a longitudinal cross-section of the wave flume with the experimental setup, including the modeled bathymetry and the test specimen. Details of the model bridge specimens are included in the following section. Figure 2. Longitudinal cross-section of the Large Wave Flume depicting the modeled bathymetry and the model bridge specimen. 2.1 Wave propagation and bridge specimen location As the wave propagates over the installed bathymetry, and depending on the wave height and available depth, it shoals and breaks forming a bore that dissipates energy. If the depth remains constant once the wave has broken, the wave will reform when the bore height to depth ratio is about 0.5. Otherwise, it will continue breaking until it reaches the shoreline (e.g. for a sloping bottom). The breaking location and the phase velocity of the bore can be theoretically estimated with relatively high accuracy. However, the transient process from the onset of breaking, wave overturning, plunge point, splash-up (wave bouncing), the secondary plunge and, eventually, the formation of a quasi-steady state bore, has not been described completely. Peregrine (1983) presents a detailed description of the different phases encountered by a plunging wave, including a short discussion about the time and distance travelled by the jet until it plunges ahead. He also indicates the occurrence of several splash-up cycles before the bore actually forms. Another example is the work of Tulin and Waseda (1999), who present a more complex description of steep breaking waves formed by the modulation of wave groups. However, no information has been found about the time required by the wave to evolve from the incipient breaking point to the establishment of the quasi-steady bore, and more importantly, the description of the distance covered by the wave during this process has not been reported explicitly, particularly for a solitary wave. Nevertheless, several numerical and analytical models are capable of producing these results, although the resolution of the available models is insufficient for the accuracy required in this work. For the bathymetry configuration installed in the LWF, it is expected that the wave profile evolves from the deeper section to the shallower testing section, steepening by shoaling and, if the wave height is large enough, start the process of breaking as described above. Yet, it is unknown the distance the wave would travel from the onset of breaking until the stable formation of the bore and, additionally, the quasi-steady bore height is also unknown. For example, considering a simplified definition of the wave celerity, c, of a shallow water wave (or Solitary wave) as: cc = gg(h + ηη) (1) 3

4 Where: g is the acceleration of gravity, h is the local water depth, and η is the instantaneous surface elevation height, with 2 m depth at the wavemaker, the largest tsunami-type wave profile in the Large Wave Flume might be travelling at 5.8 m/s, and at ~5 m/s once the wave have entered the horizontal testing section. As soon as the breaking process starts, the wave profile keeps travelling at a very high but unsteady speed. The change in water depth creates a local variation of momentum at the bottom that is transported vertically, reconfiguring the velocity and pressure profile, adapting them to the corresponding depth. Onset of breaking and a cascade of instabilities will then develop under the right conditions, particularly if the horizontal velocities at the crest are higher than the phase velocity, producing a plunging wave. However, this process takes time (and space) since is governed by the inertia of the fluid. For the design and execution of the bridge tests, the location of the specimens along the flume depends on the tsunamiwave breaking point and the stable formation of a bore with enough height that will actually hit the superstructure of the bridge. To determine the range of wave conditions and water depths to be tested, the breaking point and location of the quasisteady bore, should be simulated beforehand. Indicative numerical model simulations have been performed, providing an estimate of the breaking point and bore formation but, as indicated previously, the details of the bore formation and its height obtained from the numerical model are still uncertain and not accurate enough, and due to the high phase speed of the breaking wave as well as the limited dimensions of the flume, a more precise estimation was required. Hence, a series of preliminary undisturbed wave tests (in the absence of the structure) were performed in the flume with different wave heights and water depths to assess the onset of breaking point, the location of the quasi-steady bore, and its height, confirming visually the estimations found with the numerical model. It should be noted that physical modeling of these conditions remains far more efficient than the numerical computations, mainly due to the computational time required for each simulation, as well as the uncertainties introduced by the relatively coarse discretization of the domain. Different solitary waves were executed where, according to the simple solitary wave breaking criteria introduced by Munk (1949), the wave should break when its height to depth ratio (i.e. the breaking index) is larger than Considering the preliminary test conditions, breaking should happen between bay 4 and 5, just at the beginning of the bathymetry installed in the flume. However, it was observed that the onset of breaking actually happens further down, between bays 8 and 9, and the quasi-steady bore is formed after bay 12. Alternate breaking criteria which incorporate a continuous beach slope (e.g. Grilli et al., 1997, Eq. 4 and 5) estimate that the wave breaking index is 2.2 to 2.4 for a 1:12 sloping bottom, with a breaking depth not exceeding 0.63 m, indicating that the solitary wave should not break at the horizontal testing section (with a water depth of 0.96 to 1.16 m, for the tested cases). This discrepancy supports the previous analysis showing that Munk s breaking index actually triggers the breaking process, which is delayed and happens much later due to inertia effects, as interpreted by Grilli s breaking index. The results of the preliminary tests allowed the definition of the optimal location of the bridge model along the flume, where the quasi-steady bore formation and height was observed, ensuring the proper testing of the tsunami impact forces on the bridge specimens. The straight bridge was installed between bays 14 and 15, while the skewed bridge was installed between bays 14 and TEST SPECIMENS The test specimens were designed and fabricated by the University of Nevada, Reno, with a model scale of 1:5, representing a bridge superstructure composed of a reinforced concrete deck slab, supported by standard I steel girders and cross frames. Following Bradner et al., (2011) the geometric scale of 1:5 was again selected to (1) allow for the largest possible test specimen with a representative length to span the width of the flume, (2) take advantage of the existing mechanical elements for testing, and (3) enable direct comparisons between both tests campaigns. In this case, the reaction frame developed previously was salvaged and retrofitted, since it was designed to permit the test specimen to move along the axis of wave propagation. By this means, the bridge substructure flexibility was incorporated in the reaction frame, and can be configured for testing different realistic stiffness constants. The horizontal flexibility of the prototype structure was modeled by a pair of elastic springs installed between the bent caps and the end of the anchorage blocks. As indicated previously, one of the parameters to be analyzed on the dynamic response of the bridge, is the tsunamiwave incident angle, since several examples can be found where the bridge and the tsunami bore presents an oblique angle, particularly if the bridge crosses a channel (or a river) where the margins are made of vertical concrete walls. Under these circumstances, the resulting flow is highly three-dimensional as well as the response of the bridge, where the structure may portray asymmetric vertical and horizontal overturning moments. Therefore, two bridge specimens have been designed, both spanning the full width of the flume, where the longitudinal 4

5 axis of the first specimen is perpendicular to the longitudinal axis of the flume (straight bridge) while the second specimen depicts a 45 degrees angle (skewed bridge). The straight bridge was located in the horizontal section, being its centerline 31.1 m landward of the foreshore bathymetry, 60 m from the wavemaker (see Figure 2). The skewed bridge specimen centerline was located also in the horizontal section, 32.9 m landward of the foreshore bathymetry, 61.8 m from the wavemaker. Figure 3 presents a longitudinal view of the straight bridge specimen and reaction frame. Additional details on the design of the reaction frame can be found in Bradner et al. (2011). Wave m Shear key 10K LC Cross frames Bridge deck Steel bridge girder UNR LC SWL Roller 50K LC Bent cap 20K LC 50K LC Linear Guide Rail Z Test Frame (W18x76) h (1.16m,1.06m) X 0.84 m Adjustable slab Figure 3. Longitudinal view of the straight bridge model and reaction frame. Figure 3 includes the representation of the horizontal section of the bathymetry, the reaction frame, linear guide rail and rollers, load cells, bent cap, shear keys and the bridge specimen. As seen, the bridge specimen rests on top of 4 load cells (LC) which are connected to the bent cap. The bent cap rests over another 3 load cells and its flexibility is restrained by the horizontal bar attached to the anchorage blocks. To modify the horizontal stiffness, the bar is substituted by springs, while the load cell remains to measure the transmitted forces. The load cells below the bent cap rest on 3 rollers, which slide over the rail that is fixed to the reaction frame. Details on the nomenclature of the load cells depicted in Figure 3 are presented in the following section. In addition, the flexibility of the bridge connections to the bent cap was modeled explicitly using elastomeric bearings under each girder (not shown in Figure 3). By comparing the response of the same model with rigid connections and a very stiff substructure, the influence of wave-structure-interaction on tsunami forces could be studied. According to the design presented in Figure 3, the test specimen can be subdivided in three major structural elements: (a) the reaction frame, fixed to the concrete side walls of the flume; (b) the bent cap supported by three elastomeric bearings atop of its corresponding load cells and connected to the reaction frame by high precision ball bearing rollers and a linear guide rail; and (c) the bridge model formed by the concrete deck, 4 steel girders (3 steel girders in the case of the skewed bridge), and steel cross frames, supported by axial load cells and restrained by shear keys on both sides. An image of the straight bridge specimen installed in the Large Wave Flume is presented in Figure 4. To study the dynamic response and sensitivity of the superstructure to the incident impact loads of a tsunami-type wave, different structural elements were changed as part of the test program. On one hand, the horizontal flexibility of the superstructure, and the effect of the connections between the three major structural elements (i.e. the bridge, the bent cap and the reaction frame), provided an insight of the importance of the structural solutions and degrees of freedom incorporated in the prototype superstructure. On the other side, the effect of air trapped and how the developing pressures are released between the different chambers among girders, was included in the test program, allowing the definition of its relation with the destabilizing loads. Table 1 presents the characteristics of the structural elements studied as part of the testing program. The different spring stiffness indicated in Table 1 correspond to a rigid connection (the bent cap is bolted to the end anchorage block), a semi-rigid connection corresponding to a realistic bridge superstructure, and a soft connection to deliberately exaggerate the horizontal motions. Further, a standard solution found in several bridges considers a rigid connection to the substructure, and is achieved by installing steel spacers. The soft bearing connection, which is an alternative solution, was made of standard elastomeric pads 64 mm in diameter and 12 mm high. Finally, the shear keys indicated in Table 1 prevents the horizontal displacement of the steel girders relative to the bent cap, and is again a solution found in some bridges. 5

6 Figure 4. Image of the straight bridge specimen installed in the LWF. Below the bridge, the bent cap is observed in red, resting on top of the axial load cells and the reaction frame. Table 1. Characteristics of the structural elements studied as part of the testing program. Structural Property Parameter Tested values Horizontal flexibility of the superstructure Total spring stiffness, K [kn/m] (fixed), 458, 107 Bent cap connection to the substructure Elastomeric bearing Rigid (steel spacer), soft Bridge connection to bent cap Shear key Installed, not installed Air and water flow between cross frames Diaphragm Installed, not installed Air and water inflow between girders Box girder Installed, not installed Under-pressure development Deck slab venting, Porosity [%] 0, 0.85, 1.70 The diaphragms are non-structural elements to prevent air and water flowing perpendicular to the wave propagation direction, i.e. parallel to the steel girders. Again, depending on the solution implemented in a given bridge design, diaphragms may be present, and its role on the development of destabilizing forces is still unknown. During the tests, plywood diaphragms were fixed by attaching them to each of the cross frames. Moreover, the effect of the water inflow and air-induced pressures was studied by closing the compartments bounded by the steel girders, forming a box girder. Effectively, the box girder changes the cross-sectional profile of the bridge superstructure and prevents water diversion, turbulence and air entrapment, so it is expected to have a significant contribution on the resulting wave loads. In this case, the box girders were formed by attaching precut plywood panels and closing the compartments between the girders. Finally, the pressure development under the deck slab can be controlled by allowing the air-water mixture to flow through the deck. This is done by drilling a series of vent holes, changing its permeability. During the tests, the deck slab permeability was changed by drilling 64 mm diameter holes in a uniformly distributed pattern. The first permeability case had 18 vent holes, while the second case was made of 36 vent holes. 4 INSTRUMENTATION The study of tsunami impact forces on bridges requires detailed measurements of the wave hydrodynamics, pressure distribution and loads acting on the bridge, as well as the dynamic response of the specimen. Those measurements are necessary not only to understand the behavior and response of the bridge, but also to allow the calibration and validation of numerical models simulating the process, used for further understanding of other mechanisms, as well as to simulate reliably different configurations or wave conditions not tested previously. Wave hydrodynamics were measured during the tests with 13 resistive-type wave gauges to capture the tsunami-wave propagation before and after the bridge, including an array of 4 gauges installed to estimate the incident and reflected waves during the regular wave tests. Besides, 5 acoustic probes were installed to describe the bridge overtopping process, and 2 pressure gauges were co-located at 2 of the 4 velocity profiles measured with 16 Vectrino+ ADVs. Table 2 presents the instrument layout used to capture the wave propagation dynamics along the wave flume. Co-located pressure gauges and velocity meters in Table 2 include the elevation of the probe from the local bottom. Interestingly, some ADVs included 6

7 measurement at locations above the still water line, where the velocity intensities are typically unknown. Table 2. Instrument layout along the wave flume for measuring hydrodynamic parameters. Bay Distance to wavemaker (m) Wave gauge (3) - Acoustic probe (5) - Pressure gauge (elevation from bottom, m) ADV (elevation from bottom, m) Pressure and loads acting on the bridge have been measured with 12 pressure gauges (P) installed over and under the bridge deck as well as on the bridge girders, and 16 submersible axial load cells (LC), see Figure 5. Pressure gauges are intended to capture the instantaneous pressure time series which can be integrated to assess the horizontal and vertical forces and compare them with the load cell measurements. LC 10 LC 16 LC 15 LC 14 A1 P6 P12 P7 P13 P11,P14 P4,P3 P10 P12 P7 P8 Wave P9 P6 A2 P13 P14 P9 P10 P4 P11 P3, P5 A3 P8 LC 9 LC 11 LC 12 LC 13 Figure 5. Instrument layout to measure dynamic pressures and loads acting on the bridge specimen. P labels pressure gauges, LC load cells, and A corresponds to the multi-axis accelerometers. Finally, the dynamic response of the bridge was measured with 3 bi-axial accelerometers (longitudinal and vertical) fixed on the bridge deck (A in Figure 5), and 5 position transducers to measure the horizontal and vertical displacements of the bridge (not shown). The accelerometers provide information of the structure vibrations during and after the tsunami-wave impact, and the variations across the flume (along the bridge axis). The position transducers were deployed at different locations during the test program, allowing the assessment of the bridge horizontal displacements, including the asymmetries of the bridge motions, as well as vertical deformations. 7

8 5 TESTING PROGRAM The experiments were organized according to the different geometries and structural elements of the test specimens. Primarily, the test program was divided in two large groups, corresponding to the test specimens themselves, i.e. straight or skewed bridge. Initially, the straight bridge (ST) was installed and tested thoroughly, yielding up to 10 configurations of the structural elements (see Table 1). Each configuration was tested under a series of different wave conditions (solitary and regular waves) and water depths. Overall, the straight bridge was subject to 217 tests. Later, the straight bridge model was removed and the skewed bridge (SK) was installed. Due to the characteristics of the skewed bridge, and availability of time, the skewed bridge was tested under only 4 different configurations, and also subject to solitary and regular waves at different water depths. Overall, 71 tests were conducted with the skewed bridge. Table 3 presents the characteristics of all configurations and hydrodynamic conditions executed during the test program. Table 3. Structure element characteristics and hydrodynamic conditions of the full Test Program (see Table 1 for details on the structure element characteristics). Bridge Orientation Test name Spring stiffness Elastomeric bearing Shear key Diaphragm Box girder Venting Solitary wave height ( 1 ) Regular wave height ( 2 ) Regular wave period Water depth at the wave maker #Tests [kn/m] [%] [m] [m] [s] [m] Straight Skewed ST1 Rigid Yes No No ST2 Soft Yes No No ST3 458 Soft Yes No No ST4 107 Soft Yes No No ST5 Soft Yes Yes No ST6 Soft Yes Yes Yes ST7 Soft Yes Yes No ST9 Soft Yes Yes No ST10 Soft Yes No No N/A N/A ST11 ( 3 ) Soft No No No SK1 Rigid Yes No No SK2 Soft Yes No No SK3 Soft No No No SK4 107 Soft No No No N/A N/A ( 1 ) Solitary wave heights included 0.36, 0.42, 0.55, 0.70, 0.90, 1.00, 1.20, and 1.40 m for 2.0 m water depth at the wave maker for all configurations, and 0.46, 0.52, 0.65, 0.80, 1.00, 1.10 and 1.30 m for 1.9 m water depth at the wave maker for configurations ST1, ST2, ST3 and ST5. ( 2 ) Regular wave heights included 0.40 and 0.60 m, and wave periods 2.0 and 4.0 s for 2.2 m water depth at the wave maker for all configurations except ST10 and SK4. Only configuration ST1 included cases with 0.42 and 0.80 m wave height, and 2.0 and 3.0 s wave periods for 2.0 m water depth at the wave maker. ( 3 ) In the test sequence, ST11 was executed after ST6 for convenience in the perforation of the deck slab venting holes. 6 DATA ACQUISITION AND PROCESSING For the Tsunami bridge impact forces, data were collected on two separated DAQ modules, one (master) sampling at a standard rate of 50 Hz, gathering data from the instruments capturing the hydrodynamic conditions, while the other DAQ module (slave) sampled at a rate of 10,000 Hz, intended to measure the impulsive structural response of the bridge, i.e. impact forces, pressures, accelerations and displacements. Digital communication with Vectrino systems is done over RS-232 serial ports. The HWRL DAQ modules are synchronized by the master DAQ which also generates the Vectrino triggering pulses. Hence, the time stamp for all instruments are the same within the DAQ sample rate. Preliminary data analysis and post-processing was performed on all recorded channels, which included the updating of the metadata to incorporate the instrument locations, the application of calibration coefficients and offset (if applicable), despiking and data cleanup, where the data is now expressed in physical units, referenced to the same coordinate system, all times series have the same duration, and the time origin corresponds to the wave machine start pulse. 8

9 7 EXPERIMENTAL DATA AND OBSERVATIONS The amount of information gathered during the test program created a valuable database which allows detailed analysis on the hydrodynamics of a tsunami-type wave, and the structural response of bridge specimens subject to wave-induced impact forces. Moreover, the different structural configurations provide information on the sensitivity of the major elements tested. Further post-processing and analysis is still undergoing, and will be subject of several future publications. The thorough analysis and interpretation of the results is not part of the present paper, which is limited to the description of the tests performed. Further post-processing and analysis may include studies of wave propagation, breaking evolution and bore formation characteristics; description of velocity profiles below and above the still water line and its relation to the surface elevation phase; correspondence between the dynamic pressure and the surface elevation for non-linear waves; importance of the impact spike observed in pressure measurements at the structure specimen and its relation to the integrated forces transmitted to the supporting structure; as well as the sensitivity to the different structural configurations, e.g. the horizontal flexibility of the superstructure, the stiffness of the bent cap connection, the existence of shear keys, and the presence of diaphragms, panels or vents in the air-water flow underneath the structure and its corresponding pressures and loads transmitted to the substructure. For demonstration purposes, in Figure 6 the time series of selected hydrodynamic and structural parameters are presented. Figure 6 portrays the surface elevation evolution for all wave gauges, including the acoustic probes. Figure 6.b presents a detail of the surface elevation and dynamic pressure at bay 13, while Figure 6.c presents the time series of two pressure gauges on the bridge (P3 and P8) as well as one horizontal load cell (LC10) and one vertical load cell (LC14). The surface elevation time series along the flume provide relevant information like the Tsunami amplitude, celerity, onset of breaking, bore formation, elapsed time bridge impact, and transmitted bore height. Surface elevation (m) bay 4 bay 6 bay 7 bay 8 bay 9 bay 9-10 bay 11 bay bay 12 1 st and last acoustic bay 13 bay Time (s) Surface elevation (m) Surface elevation Pressure Time (s) Pressure (kpa) Pressure (kpa) Time (s) Figure 6. Example times series of hydrodynamic and structural parameters for the bridge configuration ST1 (Straight bridge, solitary wave height of 1.4 m, water depth of 2 m at the wave maker). a) Surface elevation along the wave flume, b) Dynamic pressure and surface elevation at bay 13, and c) Impulsive pressures and forces on the bridge. As seen in Figure 6.c, the horizontal force is only positive (in the direction of the wave propagation), but the vertical force presents an upward spike simultaneous with the pressure and forces exerted, then a downward force and, finally, a long lasting upward force replicating the pseudo-hydrostatic pressure time series. In general, it is observed that a rigid structure (no springs, steel spacers, use of shear keys) induce a short spike several times larger than the subsequent pseudo-static time series. Moreover, changing the stiffness of the structural elements modify the behavior of the impact force time series, but not necessarily reducing the measured loads or displacements. Figure 7 presents a sequence of images of a tsunami-type wave impacting on the straight bridge superstructure, where the bore formation and its impact on the bridge is observed. The images also reveals the large amount of overtopping in the P3 LC10 P8 LC Force (kn) 9

10 form of green and white water, the later formed by the complex mixture of water and air. Figure 7. Sequence of images of a tsunami-type wave impacting on the straight bridge superstructure. It should be noted that several configurations and wave conditions have been repeated to ensure reliability of the database. The preliminary data analysis and observed results confirms the quality and accuracy of the experiments, ensuring its value for the development of bridge design recommendations and validation of numerical models. 8 SUMMARY AND CONCLUSIONS Overall, 288 tests have been carried out successfully of two large-scale bridges subject to impact forces of tsunami-type broken and unbroken waves, as well as regular waves. The model specimens represent a bridge superstructure, composed of a reinforced concrete deck, supported by multiple steel girders and steel cross frames. The measured hydrodynamic parameters during the testing included the surface elevation, dynamic pressure, and 3D flow velocity profiles along the flume, while the structural parameters included dynamic pressure around the bridge specimens, horizontal and vertical forces at the bridge connection with the substructure, horizontal and vertical accelerations of the bridge deck at different locations along the bridge span, and horizontal and vertical displacements of the specimens. The bridges were subject to different tsunami-wave amplitudes, as well as different regular wave heights and periods, at varying water depths. The bridge configurations also included variations on the superstructure vertical connection stiffness, substructure flexibility, superstructure horizontal blocking, lateral and horizontal flow blocking among the bridge girders, and venting of the bridge deck. As indicated previously, the database not only will provide a deep insight to understand the complex wave-structure interaction, but also will be the base on the development of design codes for design and construction of tsunami-resistant bridges. Furthermore, the database represent a valuable source for development, calibration, and validation of hydrodynamic and fluid-structure interaction numerical and analytical models. ACKNOWLEDGEMENTS The work presented in this paper was funded by the Federal Highway Administration under Contract No. DTFH C Acknowledgement is made of the oversight given by Contract Officer s Representatives: Dr. Wen-huei (Phillip) Yen, Mr. Fred Faridazar, and Ms Sheila Duwadi. REFERENCES Bradner, C., Schumacher, T., Cox, D., and Higgins, C., Experimental Setup for a Large-Scale Bridge Superstructure Model Subjected to Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 137, No. 1, EERI Special Earthquake Report-October 2011, Learning from Earthquakes: Bridge Performance in the Mw 9.0 Tohoku, Japan, Earthquake of March 11, Falcão, A. and Henriques, J., Model-prototype similarity of oscillating-water-column wave energy converters. International Journal of Marine Energy, Vol. 6, Grilli, S.T., Svendsen, I.A., and Subramanya, R., Breaking Criterion and Characteristics for Solitary Waves on Slopes. Journal of Waterway, Port, Coastal, and Ocean Engineering. Vol. 123, No. 3, Munk, W. H., The solitary wave theory and its applications to surf problems. Annals of the New York Academy of Sciences. Vol. 51, Pacific Worlds, Tsunamis. Peregrine, D.H., Breaking Waves on Beaches. Annual Review of Fluid Mechanics. Vol. 15, Tulin, M.P. and Waseda, T., Laboratory observations of wave group evolution, including breaking effects. Journal of Fluid Mechanics, Vol. 378, Yim, S. and Azadbakht, M., Tsunami Forces on Selected California Coastal Bridges. Report OSU/CA prepared for the State of California Department of Transportation. 145 pp. 10

Yasuyuki Hirose 1. Abstract

Yasuyuki Hirose 1. Abstract Study on Tsunami force for PC box girder Yasuyuki Hirose 1 Abstract In this study, a waterway experiment was performed in order to understand the influence of tsunami forms on tsunami forces acting on

More information

WAVE LOAD ACTING ON HORIZONTAL PLATE DUE TO BORE

WAVE LOAD ACTING ON HORIZONTAL PLATE DUE TO BORE Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK The 9 th International Conference on Coasts, Ports and Marine Structures (ICOPMAS 2010) 29 Nov.-1 Dec. 2010 (Tehran) DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK sayed mohammad

More information

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL

IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL IMAGE-BASED STUDY OF BREAKING AND BROKEN WAVE CHARACTERISTICS IN FRONT OF THE SEAWALL Weijie Liu 1 and Yoshimitsu Tajima 1 This study aims to study the breaking and broken wave characteristics in front

More information

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS Asian and Pacific Coasts 23 LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS Takayuki Suzuki 1, Masashi Tanaka 2 and Akio Okayasu 3 Wave overtopping on gentle slope

More information

The Challenge of Wave Scouring Design for the Confederation Bridge

The Challenge of Wave Scouring Design for the Confederation Bridge 13: Coastal and Ocean Engineering ENGI.8751 Undergraduate Student Forum Faculty of Engineering and Applied Science, Memorial University, St. John s, NL, Canada MARCH 2013 Paper Code. (13 - walsh) The Challenge

More information

LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709

LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709 F-4 Fourth International Conference on Scour and Erosion 2008 LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709 Yoshimitsu TAJIMA 1 and Shinji SATO 2 1 Member of JSCE, Associate

More information

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology -

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - 21 TOSHIMITSU SUZUKI *1 RIKUMA SHIJO *2 KAORU YOKOYAMA *3 SYUNICHI IKESUE *4 HIROFUMI

More information

LABORATORY STUDY ON TSUNAMI REDUCTION EFFECT OF TEIZAN CANAL

LABORATORY STUDY ON TSUNAMI REDUCTION EFFECT OF TEIZAN CANAL Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007 Aalborg Universitet Design Loads on Platforms on Offshore wind Turbine Foundations with Respect to Vertical Wave Run-up Damsgaard, Mathilde L.; Gravesen, Helge; Andersen, Thomas Lykke Published in: Proceedings

More information

Lateral Load Analysis Considering Soil-Structure Interaction. ANDREW DAUMUELLER, PE, Ph.D.

Lateral Load Analysis Considering Soil-Structure Interaction. ANDREW DAUMUELLER, PE, Ph.D. Lateral Load Analysis Considering Soil-Structure Interaction ANDREW DAUMUELLER, PE, Ph.D. Overview Introduction Methods commonly used to account for soil-structure interaction for static loads Depth to

More information

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN Bridget M. Wadzuk 1 (Member, ASCE) and Ben R. Hodges 2 (Member, ASCE) ABSTRACT Modeling of dynamic pressure appears necessary to achieve a more robust

More information

WAVE PRESSURE DISTRIBUTION ON PERMEABLE VERTICAL WALLS

WAVE PRESSURE DISTRIBUTION ON PERMEABLE VERTICAL WALLS Abstract WAVE PRESSURE DISTRIBUTION ON PERMEABLE VERTICAL WALLS Hendrik Bergmann, Hocine Oumeraci The pressure distribution at permeable vertical walls is investigated within a comprehensive large-scale

More information

Some Geometric and Kinematics Properties of Breaking Waves

Some Geometric and Kinematics Properties of Breaking Waves Some Geometric and Kinematics Properties of Breaking Waves Pierre Bonmarin Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE), Laboratoire IOA, 163 Avenue de Luminy, Case 903, 13288 Marseilles,

More information

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1

Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Study of Passing Ship Effects along a Bank by Delft3D-FLOW and XBeach1 Minggui Zhou 1, Dano Roelvink 2,4, Henk Verheij 3,4 and Han Ligteringen 2,3 1 School of Naval Architecture, Ocean and Civil Engineering,

More information

SPH applied to coastal engineering problems

SPH applied to coastal engineering problems 2 nd Iberian Workshop Ourense, 3 rd and 4 th December 2015 SPH applied to coastal engineering problems (validating the SPH concept) ALTOMARE, CRESPO, DOMINGUEZ, SUZUKI http://www.flandershydraulicsresearch.be/

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA)

PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA) PHYSICAL AND NUMERICAL MODELLING OF WAVE FIELD IN FRONT OF THE CONTAINER TERMINAL PEAR - PORT OF RIJEKA (ADRIATIC SEA) DALIBOR CAREVIĆ (1), GORAN LONČAR (1), VLADIMIR ANDROČEC (1) & MARIN PALADIN (1) 1.

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

Seismic Response of Skewed RC Box-Girder Bridges

Seismic Response of Skewed RC Box-Girder Bridges Seismic Response of ed RC Box-Girder Bridges Gokhan Pekcan 1 and Ahmed Abdel-Mohti 2 1 Assistant Prof., Department of Civil and Environmental Engineering, University of Nevada Reno, NV 89557. 2 Graduate

More information

Application of pushover analysis in estimating seismic demands for large-span spatial structure

Application of pushover analysis in estimating seismic demands for large-span spatial structure 28 September 2 October 2009, Universidad Politecnica de Valencia, Spain Alberto DOMINGO and Carlos LAZARO (eds.) Application of pushover analysis in estimating seismic demands for large-span spatial structure

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

STUDY ON TSUNAMI PROPAGATION INTO RIVERS

STUDY ON TSUNAMI PROPAGATION INTO RIVERS ABSTRACT STUDY ON TSUNAMI PROPAGATION INTO RIVERS Min Roh 1, Xuan Tinh Nguyen 2, Hitoshi Tanaka 3 When tsunami wave propagation from the narrow river mouth, water surface is raised and fluctuated by long

More information

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision J.Linortner & R.Faber Pöyry Energy GmbH, Turkey-Austria E.Üzücek & T.Dinçergök General Directorate of State Hydraulic

More information

LIFE TIME OF FREAK WAVES: EXPERIMENTAL INVESTIGATIONS

LIFE TIME OF FREAK WAVES: EXPERIMENTAL INVESTIGATIONS Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

TRANSPORT OF NEARSHORE DREDGE MATERIAL BERMS

TRANSPORT OF NEARSHORE DREDGE MATERIAL BERMS Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

The Adequacy of Pushover Analysis to Evaluate Vulnerability of Masonry Infilled Steel Frames Subjected to Bi-Directional Earthquake Loading

The Adequacy of Pushover Analysis to Evaluate Vulnerability of Masonry Infilled Steel Frames Subjected to Bi-Directional Earthquake Loading The Adequacy of Pushover Analysis to Evaluate Vulnerability of Masonry Infilled Steel Frames Subjected to Bi-Directional Earthquake Loading B.Beheshti Aval & M. Mohammadzadeh K.N.Toosi University of Technology,

More information

Learn more at

Learn more at Full scale model tests of a steel catenary riser C. Bridge 1, H. Howells 1, N. Toy 2, G. Parke 2, R. Woods 2 1 2H Offshore Engineering Ltd, Woking, Surrey, UK 2 School of Engineering, University of Surrey,

More information

DESIGN OPTIMIZATION FOR A PASSIVE MESH SCREEN WAVE ABSORBER FOR THE CCOB

DESIGN OPTIMIZATION FOR A PASSIVE MESH SCREEN WAVE ABSORBER FOR THE CCOB DESIGN OPTIMIZATION FOR A PASSIVE MESH SCREEN WAVE ABSORBER FOR THE CCOB Christian Klinghammer 1, Pedro Lomónaco Tonda 1 and Pablo Higuera Caubilla 1 A new passive wave absorber, consisting of multiple

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Lecture 22 Nearshore Circulation Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay within the

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Nearshore Circulation Undertow and Rip Cells Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay

More information

APPLICATION OF PUSHOVER ANALYSIS ON EARTHQUAKE RESPONSE PREDICATION OF COMPLEX LARGE-SPAN STEEL STRUCTURES

APPLICATION OF PUSHOVER ANALYSIS ON EARTHQUAKE RESPONSE PREDICATION OF COMPLEX LARGE-SPAN STEEL STRUCTURES APPLICATION OF PUSHOVER ANALYSIS ON EARTHQUAKE RESPONSE PREDICATION OF COMPLEX LARGE-SPAN STEEL STRUCTURES J.R. Qian 1 W.J. Zhang 2 and X.D. Ji 3 1 Professor, 3 Postgraduate Student, Key Laboratory for

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator

CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator CFD Simulation and Experimental Validation of a Diaphragm Pressure Wave Generator T. Huang 1, A. Caughley 2, R. Young 2 and V. Chamritski 1 1 HTS-110 Ltd Lower Hutt, New Zealand 2 Industrial Research Ltd

More information

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR

More information

A New Generator for Tsunami Wave Generation

A New Generator for Tsunami Wave Generation Journal of Energy and Power Engineering 10 (2016) 166-172 doi: 10.17265/1934-8975/2016.03.004 D DAVID PUBLISHING Tetsuya Hiraishi 1, Ryokei Azuma 1, Nobuhito Mori 2, Toshihiro Yasuda 2 and Hajime Mase

More information

An experimental study of internal wave generation through evanescent regions

An experimental study of internal wave generation through evanescent regions An experimental study of internal wave generation through evanescent regions Allison Lee, Julie Crockett Department of Mechanical Engineering Brigham Young University Abstract Internal waves are a complex

More information

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET Takumi Okabe, Shin-ichi Aoki and Shigeru Kato Department of Civil Engineering Toyohashi University of Technology Toyohashi, Aichi,

More information

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering

Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering Unsteady Wave-Driven Circulation Cells Relevant to Rip Currents and Coastal Engineering Andrew Kennedy Dept of Civil and Coastal Engineering 365 Weil Hall University of Florida Gainesville, FL 32611 phone:

More information

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge

Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge Aerodynamic Measures for the Vortex-induced Vibration of π-shape Composite Girder in Cable-stayed Bridge *Feng Wang 1), Jialing Song 2), Tuo Wu 3), and Muxiong Wei 4) 1), 2, 3), 4) Highway School, Chang

More information

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena

More information

Evaluation of Tsunami Fluid Force Acting on a Bridge Deck Subjected to Breaker Bores

Evaluation of Tsunami Fluid Force Acting on a Bridge Deck Subjected to Breaker Bores Available online at www.sciencedirect.com Procedia Engineering 14 (2011) 1079 1088 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Evaluation of Tsunami Fluid Force

More information

Wind Flow Validation Summary

Wind Flow Validation Summary IBHS Research Center Validation of Wind Capabilities The Insurance Institute for Business & Home Safety (IBHS) Research Center full-scale test facility provides opportunities to simulate natural wind conditions

More information

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006 ZIN Technologies PHi Engineering Support PHi-RPT-0002 CFD Analysis of Large Bubble Mixing Proprietary ZIN Technologies, Inc. For nearly five decades, ZIN Technologies has provided integrated products and

More information

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS SMART SOLUTIONS FOR VIBRATION MONITORING GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS ANALYSIS OF CIVIL STRUCTURES - EXPO MERLATA PEDESTRIAN BRIDGE ABSTRACT Civil structures and in particular bridges and

More information

Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters. Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi

Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters. Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi Department of Civil Engineering, Faculty of Engineering, University

More information

Experiment of a new style oscillating water column device of wave energy converter

Experiment of a new style oscillating water column device of wave energy converter http://www.aimspress.com/ AIMS Energy, 3(3): 421-427. DOI: 10.3934/energy.2015.3.421 Received date 16 April 2015, Accepted date 01 September 2015, Published date 08 September 2015 Research article Experiment

More information

ANALYSIS OF THE POSITIVE FORCES EXHIBITING ON THE MOORING LINE OF COMPOSITE-TYPE SEA CAGE

ANALYSIS OF THE POSITIVE FORCES EXHIBITING ON THE MOORING LINE OF COMPOSITE-TYPE SEA CAGE 194 He, W., Li, C.: Analysis of the positive forces exhibiting on ANALYSIS OF THE POSITIVE FORCES EXHIBITING ON THE MOORING LINE OF COMPOSITE-TYPE SEA CAGE Wei He 1* Chunliu Li 2 1 Ocean College, Agricultural

More information

The Eighteenth (2008) International Offshore and Polar Engineering Conference Vancouver, Canada, July 6 11, 2008

The Eighteenth (2008) International Offshore and Polar Engineering Conference Vancouver, Canada, July 6 11, 2008 The Eighteenth () International Offshore and Polar Engineering Conference Vancouver, Canada, July, Model Study of Tsunami Wave Loading on Bridges Indrasenan Thusyanthan & Elena Martinez Engineering Department,

More information

Non-Linear Seismic Analysis of Multi-Storey Building

Non-Linear Seismic Analysis of Multi-Storey Building Non-Linear Seismic Analysis of Multi-Storey Building Uzair Khan 1 1 M.Tech (Structural & Construction Engineering) Department of Civil Engineering, National Institute of Technology, Jalandhar. Hina Gupta

More information

[Barve, 4(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785

[Barve, 4(7): July, 2015] ISSN: (I2OR), Publication Impact Factor: 3.785 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PARAMETRIC STUDY TO UNDERSTAND THE SEISMIC BEHAVIOUR OF INTZE TANK SUPPORTED ON SHAFT Prasad S. Barve *, Ruchi P. Barve * Civil

More information

Wave Forces on a Moored Vessel from Numerical Wave Model Results

Wave Forces on a Moored Vessel from Numerical Wave Model Results Wave Forces on a Moored Vessel from Numerical Wave Model Results ABSTRACT P W O BRIEN OMC International Pty Ltd, Melbourne, Australia O WEILER WL Delft Hydraulics, Delft, The Netherlands M BORSBOOM WL

More information

Offshore Wind Turbine monopile in 50 year storm conditions

Offshore Wind Turbine monopile in 50 year storm conditions TMR7 Experimental methods in marine hydrodynamics - lab exercise 3 2017 Offshore Wind Turbine monopile in 50 year storm conditions Trygve Kristiansen and Erin Bachynski, Trondheim, 20.09.2017 Background

More information

Wave-Current Interaction in Coastal Inlets and River Mouths

Wave-Current Interaction in Coastal Inlets and River Mouths DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave-Current Interaction in Coastal Inlets and River Mouths Tim T. Janssen Department of Geosciences, San Francisco State

More information

Friction properties of the face of a hand-held tennis racket

Friction properties of the face of a hand-held tennis racket Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 544 549 9 th Conference of the International Sports Engineering Association (ISEA) Friction properties of the face of a hand-held

More information

Vibration Analysis and Test of Backup Roll in Temper Mill

Vibration Analysis and Test of Backup Roll in Temper Mill Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Vibration Analysis and Test of Backup Roll in Temper Mill Yuanmin Xie College of Machinery and Automation, Wuhan University of Science and

More information

New Highly Productive Phased Array Ultrasonic Testing Machine for Aluminium Plates for Aircraft Applications

New Highly Productive Phased Array Ultrasonic Testing Machine for Aluminium Plates for Aircraft Applications 19 th World Conference on Non-Destructive Testing 2016 New Highly Productive Phased Array Ultrasonic Testing Machine for Aluminium Plates for Aircraft Applications Christoph HENKEL 1, Markus SPERL 1, Walter

More information

LABORATORY EXPERIMENTS FOR WAVE RUN-UP ON THE TETRAPOD ARMOURED RUBBLE MOUND STRUCTURE WITH A STEEP FRONT SLOPE

LABORATORY EXPERIMENTS FOR WAVE RUN-UP ON THE TETRAPOD ARMOURED RUBBLE MOUND STRUCTURE WITH A STEEP FRONT SLOPE Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE. Yoshimitsu Tajima 1

IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE. Yoshimitsu Tajima 1 IMAGE-BASED FIELD OBSERVATION OF INFRAGRAVITY WAVES ALONG THE SWASH ZONE Yoshimitsu Tajima 1 This study develops an image-based monitoring techniques for observations of surf zone hydrodynamics especially

More information

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges

Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges Quantification of the Effects of Turbulence in Wind on the Flutter Stability of Suspension Bridges T. Abbas 1 and G. Morgenthal 2 1 PhD candidate, Graduate College 1462, Department of Civil Engineering,

More information

PHASE 1 WIND STUDIES REPORT

PHASE 1 WIND STUDIES REPORT PHASE 1 WIND STUDIES REPORT ENVIRONMENTAL STUDIES AND PRELIMINARY DESIGN FOR A SUICIDE DETERRENT SYSTEM Contract 2006-B-17 24 MAY 2007 Golden Gate Bridge Highway and Transportation District Introduction

More information

Salmon: Introduction to ocean waves

Salmon: Introduction to ocean waves 10 Breakers, bores and longshore currents There is lots more to say about linear, shallow-water waves, but now we want to say something about the more general, nonlinear case. To keep the math as simple

More information

The Failure of the Kamaishi Tsunami Protection Breakwater

The Failure of the Kamaishi Tsunami Protection Breakwater PT-13: Coastal and Ocean Engineering ENGI.8751 Undergraduate Student Forum Faculty of Engineering and Applied Science, Memorial University, St. John s, NL, Canada March, 2013 Paper Code. (PT-13 - Tucker)

More information

High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields

High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. High-Resolution Measurement-Based Phase-Resolved Prediction of Ocean Wavefields Dick K.P. Yue Center for Ocean Engineering

More information

EVALUATION OF TSUNAMI FLUID FORCE ACTING ON THE BRIDGE DECK

EVALUATION OF TSUNAMI FLUID FORCE ACTING ON THE BRIDGE DECK JOINT CONFERENCE PROCEEDINGS 9th International Conference on Urban Earthquake Engineering/ th Asia Conference on Earthquake Engineering March -8,, Tokyo Institute of Technology, Tokyo, Japan EVALUATION

More information

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events

ITTC Recommended Procedures Testing and Extrapolation Methods Loads and Responses, Seakeeping Experiments on Rarely Occurring Events Loads and Responses, Seakeeping Page 1 of 5 CONTENTS 1. PURPOSE OF PROCEDURE 2. STANDARDS FOR EXPERIMENTS ON RARELY OCCURRING EVENTS 2.1 Previous Recommendations of ITTC 2.2 Model Design and Construction

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 9, 2010 http://acousticalsociety.org/ 159th Meeting Acoustical Society of America/NOISE-CON 2010 Baltimore, Maryland 19-23 April 2010 Session 1pBB: Biomedical

More information

SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DECK WITH CENTRAL SLOT

SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DECK WITH CENTRAL SLOT The Seventh Asia-Pacific Conference on Wind Engineering, November 8-, 009, Taipei, Taiwan SPECTRAL CHARACTERISTICS OF FLUCTUATING WIND LOADS ON A SEPARATE TWIN-BOX DEC WITH CENTRAL SLOT Le-Dong Zhu, Shui-Bing

More information

RELIABILITY ASSESSMENT, STATIC AND DYNAMIC RESPONSE OF TRANSMISSION LINE TOWER: A COMPARATIVE STUDY

RELIABILITY ASSESSMENT, STATIC AND DYNAMIC RESPONSE OF TRANSMISSION LINE TOWER: A COMPARATIVE STUDY RELIABILITY ASSESSMENT, STATIC AND DYNAMIC RESPONSE OF TRANSMISSION LINE TOWER: A COMPARATIVE STUDY Yusuf Mansur Hashim M. Tech (Structural Engineering) Student, Sharda University, Greater Noida, (India)

More information

Prediction of Nearshore Waves and Currents: Model Sensitivity, Confidence and Assimilation

Prediction of Nearshore Waves and Currents: Model Sensitivity, Confidence and Assimilation Prediction of Nearshore Waves and Currents: Model Sensitivity, Confidence and Assimilation H. Tuba Özkan-Haller College of Oceanic and Atmospheric Sciences Oregon State University, 104 Ocean Admin Bldg

More information

Greenup Lock Filling and Emptying System Study

Greenup Lock Filling and Emptying System Study Fourth LACCEI International Latin American and Caribbean Conference for Engineering and Technology (LACCET 2006) Breaking Frontiers and Barriers in Engineering: Education, Research and Practice 21-23 June

More information

An underwater explosion is an explosion where the point of detonation is below the surface of the water.

An underwater explosion is an explosion where the point of detonation is below the surface of the water. Underwater Explosion 1 Introduction An underwater explosion is an explosion where the point of detonation is below the surface of the water. Underwater explosion are categorized in accordance with their

More information

WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION

WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION WIND-INDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION S. Pindado, J. Meseguer, J. M. Perales, A. Sanz-Andres and A. Martinez Key words: Wind loads, bridge construction, yawing moment. Abstract.

More information

Application of the Goda Pressure Formulae for Horizontal Wave Loads on Elevated Structures

Application of the Goda Pressure Formulae for Horizontal Wave Loads on Elevated Structures Application of the Goda Pressure Formulae for Horizontal Wave Loads on Elevated Structures Wiebe, D. M., Park, H., & Cox, D. T. (2014). Application of the Goda pressure formulae for horizontal wave loads

More information

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS Tsanis, I.K., Saied, U.M., Valavanis V. Department of Environmental Engineering, Technical University of Crete, Chania,

More information

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Hong Xu, Chokri Guetari ANSYS INC. Abstract Transient numerical simulations of the rise of a train of gas bubbles in a liquid

More information

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 Section 1.2 Example. The discharge in a channel with bottom width 3 m is 12 m 3 s 1. If Manning s n is 0.013 m -1/3 s and the streamwise slope is 1 in 200,

More information

EXPERIMENTAL STUDY OF SOLITARY WAVE EVOLUTION OVER A 3D SHALLOW SHELF

EXPERIMENTAL STUDY OF SOLITARY WAVE EVOLUTION OVER A 3D SHALLOW SHELF EXPERIMENTAL STUDY OF SOLITARY WAVE EVOLUTION OVER A 3D SHALLOW SHELF Patrick Lynett 1, David Swigler 1, Sangyoung Son 1, Duncan Bryant 1, and Scott Socolofsky 1 A laboratory experiment was performed to

More information

Currents measurements in the coast of Montevideo, Uruguay

Currents measurements in the coast of Montevideo, Uruguay Currents measurements in the coast of Montevideo, Uruguay M. Fossati, D. Bellón, E. Lorenzo & I. Piedra-Cueva Fluid Mechanics and Environmental Engineering Institute (IMFIA), School of Engineering, Research

More information

Wave Force Characteristics for Structural Members of Hybrid Marine Structure

Wave Force Characteristics for Structural Members of Hybrid Marine Structure Wave Force Characteristics for Structural Members of Hybrid Marine Structure Youn-JuJeong Research Fellow, Structural Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology,

More information

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE

AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE - 247 - AIRFLOW GENERATION IN A TUNNEL USING A SACCARDO VENTILATION SYSTEM AGAINST THE BUOYANCY EFFECT PRODUCED BY A FIRE J D Castro a, C W Pope a and R D Matthews b a Mott MacDonald Ltd, St Anne House,

More information

OTC MS. Free Span Rectification by Pipeline Lowering (PL) Method N. I. Thusyanthan, K. Sivanesan & G. Murphy

OTC MS. Free Span Rectification by Pipeline Lowering (PL) Method N. I. Thusyanthan, K. Sivanesan & G. Murphy OTC-24699-MS Free Span Rectification by Pipeline Lowering (PL) Method N. I. Thusyanthan, K. Sivanesan & G. Murphy Copyright 2014, Offshore Technology Conference This paper was prepared for presentation

More information

Item 404 Driving Piling

Item 404 Driving Piling Item Driving Piling 1. DESCRIPTION Drive piling. 2. EQUIPMENT 2.1. Driving Equipment. Use power hammers for driving piling with specified bearing resistance. Use power hammers that comply with Table 1.

More information

Analysis and Research of Mooring System. Jiahui Fan*

Analysis and Research of Mooring System. Jiahui Fan* nd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 07) Analysis and Research of Mooring System Jiahui Fan* School of environment, North China Electric

More information

Pathways Interns: Annika O Dea, Ian Conery, Andrea Albright

Pathways Interns: Annika O Dea, Ian Conery, Andrea Albright 1 REMOTE SENSING OF COASTAL MORPHODYNAMICS 237 237 237 217 217 217 2 2 2 8 119 27 252 174.59 255 255 255 163 163 163 131 132 122 239 65 53 11 135 12 112 92 56 62 12 13 12 56 48 13 12 111 Kate Brodie Brittany

More information

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Journal of KONES Powertrain and Transport, Vol. 17, No. 4 21 3D CDF ODELING OF SHIP S HEELING OENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Przemysaw Krata, Jacek Jachowski Gdynia aritime University,

More information

DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS

DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS Takashi Ibata Isho Nakachi Dr. Kazuo Ishida Junichi

More information

COASTAL HAZARDS. What are Coastal Hazards?

COASTAL HAZARDS. What are Coastal Hazards? COASTAL HAZARDS What are Coastal Hazards? Hazards in the New Jersey coastal zone include unavoidable risks to life and property generated by: coastal flooding, waves, high winds and waves, short-term and

More information

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK ABSTRACT Ventilation stacks are becoming increasingly common in the design of naturally

More information

Modern Perforating Techniques: Key to Unlocking Reservoir Potential

Modern Perforating Techniques: Key to Unlocking Reservoir Potential Modern Perforating Techniques: Key to Unlocking Reservoir Potential DEVEX 2016 0052 Andy Martin Perforating Domain Advisor Schlumberger Aberdeen martin17@slb.com +44 7802 495068 Presentation Outline Introduction:

More information

Modelling of Extreme Waves Related to Stability Research

Modelling of Extreme Waves Related to Stability Research Modelling of Extreme Waves Related to Stability Research Janou Hennig 1 and Frans van Walree 1 1. Maritime Research Institute Netherlands,(MARIN), Wageningen, the Netherlands Abstract: The paper deals

More information

E. Agu, M. Kasperski Ruhr-University Bochum Department of Civil and Environmental Engineering Sciences

E. Agu, M. Kasperski Ruhr-University Bochum Department of Civil and Environmental Engineering Sciences EACWE 5 Florence, Italy 19 th 23 rd July 29 Flying Sphere image Museo Ideale L. Da Vinci Chasing gust fronts - wind measurements at the airport Munich, Germany E. Agu, M. Kasperski Ruhr-University Bochum

More information

EFFECTS OF SIDEWALL OPENINGS ON THE WIND LOADS ON PIPE-FRAMED GREENHOUSES

EFFECTS OF SIDEWALL OPENINGS ON THE WIND LOADS ON PIPE-FRAMED GREENHOUSES The Seventh Asia-Pacific Conference on Wind Engineering, November 8-12, 29, Taipei, Taiwan EFFECTS OF SIDEWALL OPENINGS ON THE WIND LOADS ON PIPE-FRAMED GREENHOUSES Yasushi Uematsu 1, Koichi Nakahara 2,

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

Technical Brief - Wave Uprush Analysis Island Harbour Club, Gananoque, Ontario

Technical Brief - Wave Uprush Analysis Island Harbour Club, Gananoque, Ontario Technical Brief - Wave Uprush Analysis RIGGS ENGINEERING LTD. 1240 Commissioners Road West Suite 205 London, Ontario N6K 1C7 October 31, 2014 Table of Contents Section Page Table of Contents... i List

More information

Adaptive Pushover Analysis of Irregular RC Moment Resisting Frames

Adaptive Pushover Analysis of Irregular RC Moment Resisting Frames Kalpa Publications in Civil Engineering Volume 1, 2017, Pages 132 136 ICRISET2017. International Conference on Research and Innovations in Science, Engineering &Technology. Selected papers in Civil Engineering

More information

WAVE PROPAGATION ON A FLUME: PHYSICAL MODELLING

WAVE PROPAGATION ON A FLUME: PHYSICAL MODELLING WAVE PROPAGATION ON A FLUME: PHYSICAL MODELLING J. M. P. Conde a,b,c, R. Reis b, C. J. Fortes b, and D. R. C. B. Neves b a Universidade Nova de Lisboa Faculty of Science and Technology Dep. Mechanical

More information

Door County, WI Coastal Hazard Analysis Flood Risk Review Meeting. August 21, 2017

Door County, WI Coastal Hazard Analysis Flood Risk Review Meeting. August 21, 2017 Door County, WI Coastal Hazard Analysis Flood Risk Review Meeting August 21, 2017 Agenda Introductions Coastal Flood Risk Study and Mapping Program Current Status Technical Overview of Study and Mapping

More information

Impact Fatigue on Suction Valve Reed: New Experimental Approach

Impact Fatigue on Suction Valve Reed: New Experimental Approach Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2004 Impact Fatigue on Suction Valve Reed: New Experimental Approach Michele Libralato ACC

More information