Simple Machine Quiz Study Guide. Moving something with a force, or when a force is applied through a distance or energy transfer through motion.

Size: px
Start display at page:

Download "Simple Machine Quiz Study Guide. Moving something with a force, or when a force is applied through a distance or energy transfer through motion."

Transcription

1 Name: Work- Simple Machine Quiz Study Guide 1.) What is one of the definitions for work? Moving something with a force, or when a force is applied through a distance or energy transfer through motion. 2.) What is the formula for work? Work= Force Distance 3.) What is the unit for work? Joule (N M) Simple Machines in General- 1.) What are the 6 types of simple machines? Inclined plane, lever, pulley, wheel and axle, screw & wedge 2.) What are the 2 basic types of simple of machines, of which all other simple machines are variations of? Inclined Plane & Lever 3.) In general, what do simple machines do? What is their purpose? Simple machines make work easier by reducing the force needed to do the same amount of work 4.) When we talk about work being easier, what do we mean by easier work? Less force required to do work 5.) A force applied by a machine to an object is the? a.) resistance force b.) effort force c.) force field 6.) A force applied to a machine by a person is the? a.) resistance force b.) effort force c.) force field Inclined Plane 1.) Draw an inclined plane in the space below and label the effort distance and resistance distance? 2.) An inclined plane reduces the force needed to lift an object by increasing the distance that force is applied. 3.) If it takes joules of work to lift a barrel into the back of a truck without using a simple machine, how much work would be required to get the barrel into the back of the truck using a ramp that is 4m long? a.) less than Joules b.) more than Joules c.) Joules Why? Simple machines never lower the amount of work, they only lower the force required to do the work, HOWEVER they can, because of friction, actually make more work

2 4.) If the force required to lift a barrel into the back of a truck was 124 Newtons, what would the force required to get the barrel into the back of the truck using a ramp that is 4m long? a.) less than 124 Newtons b.) more than 124 Newtons c.) 124 Newtons Why? Simple machines make work easier by reducing the force needed to move an object 5.) What did the experiment on page 4 prove? Using a simple machine reduces the force needed to move an object by increasing the distance of the force, HOWEVER does not change the total amount of work Lever 1.) Explain, in detail, how you would determine what class a lever is? The longer the arm of the lever to which force is applied, the less that force need be 2.) What happens to the force needed to move the object as you increase the effort arm by moving the fulcrum closer to the object. The force required to lift the weight will DECREASE 3.) Would Machines with higher mechanical advantage would take more or less effort force to make something move? A.) more b.) Less c.) the same 4.) Would machines with higher mechanical advantage would take more or less work to make something move? A.) more b.) Less c.) the same (because of Friction) 5.) True or False and explain- ALL LEVERS make work easier False- Third class levers do not make work easier, they give you increased speed. 6.) Label the effort, resistance and fulcrum in the pictures below an identify what class of lever it is.

3 Mechanical Advantage 1.) What is mechanical advantage? What does this tell us? (do not give formula, actually tell me what it is) The number of times a machine multiplies an effort force. It tells us how much easier a machine makes the work 2.) What is the difference between Ideal Mechanical Advantage and Mechanical Advantage. Ideal mechanical advantage does not take friction into account. 3.) Why do we look at the distance something travels rather than the force required with Ideal Mechanical Advantage? a.) looking at the distance is more accurate because it does not require force meters b.) looking at the distance eliminates friction c.) looking at the distance helps us measure the force d.) looking at the distance is easier because Mr. Strelick said so Pulley 1.) What are the three types of pulleys? Single moveable, single fixed and block & tackle 2.) How do you find the mechanical advantage of a pulley? Count how many sections of rope are supporting the weight. 3.) True or False and explain- ALL PULLEYS make work easier False, fixed pulleys do not make work easier, they only change direction of the force. 4.) Find the effort force required to lift the 300 N weight in the diagrams below. Summary 1.) Simple machines make work easier, however there are 2 exceptions to this rule. What are the exceptions, and in each case, what is the advantage each machine gives us. Single fixed pulley- change direction 3 rd class levers- give you increased speed 2.) Group the following words/phrases into 2 categories: Work in Work out Resistance Effort output input Work done TO THE machine Work in, Effort, input Work done BY THE machine Work out, Resistance, output

4 Wheel and Axle- 1.) The wheel and axle is most like which type of simple machine? a.) lever b.) inclined plane 2.) Which part of the wheel best represents the effort force? (large or small) Large Wheel 3.) what part of the wheel best represents the resistance force? Axle 4.) What would be easier (take less force) to turn and why: An axle with a diameter of 10cm using a 100cm wheel An axle with a diameter of 10cm using a 50cm wheel Why- It has a larger effort wheel (large wheel). When you increase the effort distance, you decrease the effort force. 5.) What would require the least amount of work to turn and why: An axle with a diameter of 10cm using a 100cm wheel An axle with a diameter of 10cm using a 50cm wheel Why- Both amounts of work are the same due to the axles being the same. The 100cm wheel would just be easier because it travels a greater distance. The Screw- 1.) The screw is most like which type of simple machine? a.) lever b.) inclined plane 2.) What specifically are the arrows in the picture to the right pointing to? Threads Use the picture below to answer #3-5 3.) Which of the above screws (A or B) would require the greatest amount of force to drive into a piece of wood? a.) A b.)b Why There are less threads so there is less distance. There is MORE force required for the screw with less distance (threads) 4.) Which of the above screws (A or B) would be the easiest to drive into a piece of wood? a.) A b.)b Why There are more threads so there is more distance. Since the rule is the greater the distance the less the force, there is LESS force required for the screw with more distance(threads) 5.) Which of the above screws (A or B) would have the greatest mechanical advantage? a.) A b.)b

5 The Wedge.) The wedge is most like which type of simple machine? a.) lever b.) inclined plane 2.) What does the wedge do as it moves into a material? Separates them 3.) What are two examples of a wedge? Axe, Knife 4.) Of the two wedges to the right, which do you think would require the least amount of force if you wanted to separate those objects 8cm? Wedge B Why?- Wedge B has a greater distance (length) and the rule is when you increase the distance, you decrease the force (make work easier) Using Simple Machines 1.) What is a compound machine? A combination of 2 or more simple machines 2.) What is the formula for efficiency? 3.) Simple machines make work easier, but they actually make more work. Explain how this true, how can they make more work yet make the work easier? Simple machines make the work easier by decreasing the force needed to do something. They do this by increasing the distance that force is applied. Although the work is getting easier, the total amount of work is actually increasing due to friction. Power 1.) 1.) What is the definition of power The amount or rate of work done in a certain amount of time 2.) What is the formula for power? Power=work/time Units 1.) What is the unit for each of the following? Energy: Joules Work: Joules or Newton/Meters Power: Watts or Joules/second Mechanical advantage: no unit Efficiency: %

6 True or False and Explain! 1.) In general, simple machines make less work? False, simple machines make work easier but do not reduce the total amount of work needed. 2.) In general, simple machines make work easier? True, simple machines reduce the force needed to make something move. They do this by increasing the distance the force is applied 3.) Single moveable pulleys make work easier? True, It is the single FIXED pulley that does not make the work easier 4.) All types of levers make work easier? False- Third class levers do not make work easier, they give you increased speed. Calculations: Show your work A clown is trying to lift a refrigerator full of wigs a height of 2M. It would take him a force of 60 Newtons to lift the fridge without a simple machine. 1.) Exactly How much work would be required to lift this fridge of wigs without a machine? Force= 60 N Distance= 2 M Work = Force x Distance W= 60 Newtons x 2 M Work= 120 Joules 2.) Assuming no friction, how much work would be required to lift the fridge of wigs with a lever that has a mechanical advantage of 6? 120 joules- Using a lever with a M.A of 6 would only make the work easier, it would not change the total amount of work. 3.) Assuming no friction, how much force would be required to lift the fridge of wigs with a lever that has a mechanical advantage of 6? Since the M.A is 6, the force would be 6 times easier. Therefore the force would be 1/6 of the original force. Therefore the force would be 10 Newtons. 4.) What is the force needed to lift a magic school bus if you use a lever with a mechanical advantage 25. The force required to lift the dishwasher without a lever would be 1000 N. MA = 25 FR = 1000N FE =? MA= F R or F E = F R F E MA F E =1000 N 25 F E = 40 N 5.) How much work is being done by a penguin pushing a purple piano with a force of 50 N up a ramp that is 8 meters long? Force= 50 N Distance= 8 M Work = Force x Distance W= 50 Newtons x 8 M Work= 400 Joules

7 6.) What is the mechanical advantage if a unicorn uses its horn as a lever, to open door using 300 N of force, which would normally take about 900N to open (without a simple machine). Resistance= 900 N Effort= 300 N M.A =? M.A = Resistance effort M.A = 900 N 300 N M.A = 3 7.)How much work is required to lift a bag of cat litter 2 meters, if the bag has a force of 40N. Force= 40 N Distance= 2 M Work = Force x Distance W= 40 Newtons x 2 M Work= 80 Joules 8.) Melvin the mighty monkey is trying to get a big bag of bananas into his tree house. It takes 90 Newtons of force to lift into a tree without using a simple machine. He then makes the work easier by putting a ramp up to his tree house, which allows him to move the bag of bananas with 10 Newtons of force. What is the Mechanical Advantage of this inclined plane? Resistance= 90 N Effort= 10 N M.A =? M.A = Resistance effort M.A = 90 N 10 N M.A = 9 9.) What is the Ideal Mechanical Advantage of a lever whose effort arm measures 55cm and whose resistance arm measures 5 cm? Resistance= 5 cm Effort= 55 cm I.M.A Lever =? I.M.A= Effort Arm Resistance Arm I.M.A = 55 cm 5 cm I.M.A = ) What is the Ideal Mechanical Advantage of an inclined plane that has a length of 400cm and a height of 50cm Resistance= 50 cm Effort= 400c m I.M.A Lever =? I.M.A= Effort dist(length) Resistance dist(height) I.M.A = 400 cm 50 cm I.M.A = 8 11.) What is the ideal mechanical advantage for the object below. Show your work Radius Wheel= 1.5cm Radius Axle= 0.3cm IMA= Radius of Wheel Radius of Axle IMA= 1.5cm 0.3cm IMA= 5 12.) What is the ideal mechanical advantage for the object below. Show your work Radius Wheel= 11cm IMA= Radius of Wheel Radius Axle= 3cm* Radius of Axle *its 3 because in the picture the 6cm represents the diameter IMA= 11 cm 3cm IMA= 3.67

8 13.) A mysterious green box is lifted onto the back of a truck that is 2.1M high. If it takes 500 Joules of work to do this without using a simple machine, what would be the efficiency of an inclined plane if the force required was 150N over a distance of 4 M? Work without machine= 500 Joules Work with machine= W=F D 150 N 4m = 600 Joules Work WITHOUT machine Work WITH machine 500 Joules x Joules 83.3% 14.) If you walk up the steps (distance of 4 meters) in 6 seconds, what is your power? Assume you have a force of 440 N Power=? Work= F x d =440N x 4m =1760J Time= 6 seconds Power= Work/Time 1760J 6 seconds 293,3 Watts 15.) What is the ideal mechanical advantage for a lever whose fulcrum is at 20cm? Resistance= 20cm Effort= 80cm I.M.A Lever =? I.M.A= Effort Arm I.M.A = 80cm Resistance Arm 20 cm I.M.A = 4 Formulas: Work= Force distance Efficiency= Work (out) or F (resistance) X D (resistance) X 100% Work (in) F (effort) X D (effort) Power= Work Time MA = Resistance Force or F R Effort Force F E I.M.A = Effort Distance or D E Resistance Distance D R I.M.A(wheel & Axle) =Radius of wheel or Diameter of wheel Radius of axle Diameter of axle

Name: Date Due: Simple Machines. Physical Science Chapter 4

Name: Date Due: Simple Machines. Physical Science Chapter 4 Date Due: Simple Machines Physical Science Chapter 4 1 Work & Power 1. Define the following terms: a. work= b. joule= c. power= d. watt= e. horsepower= 2. When does a force do work? 3. If there is no movement,

More information

Simple Machines. Work (in) = Work (out)

Simple Machines. Work (in) = Work (out) Simple Machines Work (in) A simple machine uses a force to do work against a single load force. Ignoring friction losses, the work done on the load is equal to the work done by force Work (out) Work (in)

More information

All Work and no Play. Is that work? Work, work, work. You might head off to your job one day, sit at a computer, and type away at the keys.

All Work and no Play. Is that work? Work, work, work. You might head off to your job one day, sit at a computer, and type away at the keys. All Work and no Play Work, work, work. You might head off to your job one day, sit at a computer, and type away at the keys. Is that work? To a physicist, only parts of it are. Work is done when a force

More information

Mechanical Advantage 1

Mechanical Advantage 1 Mechanical Advantage 1 Mechanical Advantage Another Word for Leverage Ways of Making WORK easier or more efficient. 2 Work = Work * = Work = * * * 3 Mechanical Advantage Output Input 5 8 N = 1 4 5 8 N

More information

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage?

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage? Simple Machines Problem Set 1. In what two ways can a machine alter an input force? 2. What does it mean to say that a machine has a certain mechanical advantage? 3. Distinguish between ideal mechanical

More information

Simple Machines. Chana Goodman, Doral Academy Preparatory School, based on a PowerPoint by M. Hunter

Simple Machines. Chana Goodman, Doral Academy Preparatory School, based on a PowerPoint by M. Hunter Simple Machines Chana Goodman, Doral Academy Preparatory School, 2011-2012 based on a PowerPoint by M. Hunter Essential Question How can mechanical advantage be calculated, and used to predict effort and

More information

Work and Machines. Work occurs when a force causes an object to move in the direction of the force.

Work and Machines. Work occurs when a force causes an object to move in the direction of the force. Work and Machines Work occurs when a force causes an object to move in the direction of the force. You just finished reading and summarizing an entire chapter in your science textbook. In the scientific

More information

Motion, Forces, and Energy Revision (Chapters 3+4)

Motion, Forces, and Energy Revision (Chapters 3+4) Motion, Forces, and Energy Revision (Chapters 3+4) What is force? The force exerted on a surface divided by the total area over which the force is exerted. What is the link between pressure & area? Pressure

More information

TEKS Lesson 6.8E: Machines

TEKS Lesson 6.8E: Machines 6.8E Investigate how inclined planes and pulleys can be used to change the amount of force to move an object. : Machines What is a machine? A machine is a device that allows you to do work in a way that

More information

Activity 3: Pulleys. Background

Activity 3: Pulleys. Background Activity 3: Pulleys Background Pulleys are simple machines that consist of a grooved wheel that turns around a fixed point, similar to the fulcrum of a lever. A rope, cord, or chain runs along the groove

More information

Simple Machines. Dr. John B. Beaver and Dr. Barbara R. Sandall

Simple Machines. Dr. John B. Beaver and Dr. Barbara R. Sandall By Dr. John B. Beaver and Dr. Barbara R. Sandall COPYRIGHT 2002 Mark Twain Media, Inc. ISBN 978-58037-864-2 Printing No. 1558-EB Mark Twain Media, Inc., Publishers Distributed by Carson-Dellosa Publishing

More information

A) Draw the levers in your notes and use the drawings to record your results.

A) Draw the levers in your notes and use the drawings to record your results. Simple Machines Station One 1 st Class Levers This station should have 2 levers set up. One where the fulcrum is @.5m and one where it is @.65m. Don t change them in any way! You should also have Newton

More information

Systems and Simple Machines Student Activity Book Answer Key

Systems and Simple Machines Student Activity Book Answer Key Answer Key Pages 3-6 Systems 1. Answers vary. Examples include: solar system, the body systems, etc. 2. Answers vary. Definitions may include the idea that the parts work together to do a job. 3. Answers

More information

Ramp B is steeper than Ramp A. Less force is needed to push boxes up Ramp A. However, you have to move the boxes over a greater distance.

Ramp B is steeper than Ramp A. Less force is needed to push boxes up Ramp A. However, you have to move the boxes over a greater distance. What is a simple machine? Would you say this bicycle is a simple machine? It is certainly simpler than a car, but it does not fit the scientific definition of simple machine. A simple machine is a device

More information

Student Exploration: Pulleys

Student Exploration: Pulleys Name: Date: Student Exploration: Pulleys Vocabulary: effort, load, mechanical advantage, pulley, pulley system Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. Suppose you had to haul a

More information

Names: School: 2002 UTAH SCIENCE OLYMPIAD - PHYSICS LAB SIMPLE MACHINES 1 - PART 1

Names: School: 2002 UTAH SCIENCE OLYMPIAD - PHYSICS LAB SIMPLE MACHINES 1 - PART 1 Names: School: 2002 UTAH SCIENCE OLYMPIAD - PHYSICS LAB SIMPLE MACHINES 1 - PART 1 There are two parts to the SIMPLE MACHINES 1 competition. Both parts must be completed within a time of 12 minutes. Masses:

More information

Materials. Focus. Where have you seen pulleys used? List several examples of pulleys and describe for what purpose they are used.

Materials. Focus. Where have you seen pulleys used? List several examples of pulleys and describe for what purpose they are used. Materials base stand rod T connector extension rod pulley cord 2 single pulleys 2 double pulleys spring scale mass hanger 10 mass pieces (10 g each) calculator meter stick or meter measuring tape permanent

More information

Subject:Engineering Mechanics Ch 1. Simple Machines

Subject:Engineering Mechanics Ch 1. Simple Machines Shaikh Sir's Reliance Academy, Coaching Classes for Diploma Engg. Subject:Engineering Mechanics Ch 1. Simple Machines List Of Types: Definitions and theory Questions Problems on general Machines 1) Problem

More information

UNIT D: MECHANICAL SYSTEMS

UNIT D: MECHANICAL SYSTEMS UNIT D: MECHANICAL SYSTEMS SCIENCE 8 SCIENCE 8 UNIT D SECTION 1.0 1 MACHINES ARE TOOLS THAT HELP HUMANS DO WORK. SECTION 1.0 SCIENCE 8 UNIT D SECTION 1.0 2 1 SIMPLE MACHINES MEETING HUMAN NEEDS TOPIC 1.1

More information

Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect

Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect MODULE 7 FEEL THE FORCE Key vocabulary: lever, pivot, push, pull, mechanism, machine, force, fulcrum LESSON 8: HOW CAN WE USE LEVERS TO HELP US? LESSON SUMMARY: This lesson introduces mechanisms devices

More information

Here is a summary of what you will learn in this section:

Here is a summary of what you will learn in this section: Mechanical Advantage Here is a summary of what you will learn in this section: A m achine is a mechanical system that reduces the force required to accomplish work. Machines m ake work easier by increasing

More information

Tree Stump, a Middle School Application PCA. Tree Stump. Middle School Application: Challenge Powerful Classroom Assessment (PCA)

Tree Stump, a Middle School Application PCA. Tree Stump. Middle School Application: Challenge Powerful Classroom Assessment (PCA) Tree Stump Middle School Application: Challenge Powerful Classroom Assessment (PCA) Published by the Science Learning Team of the Washington Office of the Superintendent of Public Instruction on December

More information

LETTER TO PARENTS SCIENCE NEWS

LETTER TO PARENTS SCIENCE NEWS LETTER TO PARENTS Cut here and paste onto school letterhead before making copies. SCIENCE NEWS Dear Parents, Our class is beginning a new science unit, the FOSS Levers and Pulleys Module. We will be studying

More information

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C

Exercise 2-3. Flow Rate and Velocity EXERCISE OBJECTIVE C C C Exercise 2-3 EXERCISE OBJECTIVE C C C To describe the operation of a flow control valve; To establish the relationship between flow rate and velocity; To operate meter-in, meter-out, and bypass flow control

More information

Welcome to Force-Land

Welcome to Force-Land Science Year 5/6B Spring 1 Forces Welcome to Force-Land Session 5 Resource Pack Original resource copyright Hamilton Trust, who give permission for it to be adapted as wished by individual users. We refer

More information

ì<(sk$m)=bdhjhi< +^-Ä-U-Ä-U

ì<(sk$m)=bdhjhi< +^-Ä-U-Ä-U Genre Comprehension Skill Text Features Science Content Nonfiction Put Things in Order Captions Glossary Forces and Motion Scott Foresman Science 2.10 ì

More information

May the Forces Be With You

May the Forces Be With You Science - Year 5 Forces Block 5F May the Forces Be With You Session 3 Resource pack Original resource copyright Hamilton Trust, who give permission for it to be adapted as wished by individual users. We

More information

2016 WORKSHOP Mission Possible

2016 WORKSHOP Mission Possible 2016 WORKSHOP Mission Possible Diane Xu dianexu2006@gmail.com 2017 MISSION POSSIBLE EVENT DESCRIPTION CONSTRUCTION PARAMETERS DESIGN, TOOLS AND SUPPLIES SCORING EVENT DESCRIPTION: TEAM OF UP TO: 2 IMPOUND:

More information

Assignment 1 Unit 3 Work, Power, Efficiency, and Potential Energy Name: Multiple Choice. Show workings where necessary.

Assignment 1 Unit 3 Work, Power, Efficiency, and Potential Energy Name: Multiple Choice. Show workings where necessary. Assignment 1 Unit 3 Work, Power, Efficiency, and Potential Energy Name: Multiple Choice. Show workings where necessary. 1. In which situation is work not done? A) a frozen turkey is carried upstairs B)

More information

Homework (Moodle Submission by 1/13) Set 1 - Chapter 10 1, 2, 3, 5, 6, 7, 25, 26, 27, 28, 52, 53, 56, 57

Homework (Moodle Submission by 1/13) Set 1 - Chapter 10 1, 2, 3, 5, 6, 7, 25, 26, 27, 28, 52, 53, 56, 57 Homework (Moodle Submission by 1/13) Set 1 - Chapter 10 1, 2, 3, 5, 6, 7, 25, 26, 27, 28, 52, 53, 56, 57 Set 2 - Chapter 10 60, 63, 67, 70, 76, 79, 81, 83, 84, 85, 90, 93 1.Refer to Example Problem 1 to

More information

Levers. Simple Machines: Lever 1

Levers. Simple Machines: Lever 1 Levers In the last lesson, we spent a lot of time on this strange concept called work. Work happens when something moves a distance against a force. Swell...who cares?! Well, believe it or not, this is

More information

Playful Machines A Facilitator s Guide to Simple Machines in the Playground

Playful Machines A Facilitator s Guide to Simple Machines in the Playground Playful Machines A Facilitator s Guide to Simple Machines in the Playground Our Vision Canadians recognize that Science 1 is intrinsic to their lives and acknowledge the fundamental importance of a quality

More information

An introduction to Rigging for Trail Work

An introduction to Rigging for Trail Work An introduction to Rigging for Trail Work Give me a lever long enough and a prop strong enough, I can single handed move the world. Archimedes The purpose of this seminar is to provide a hands-on introduction

More information

Ship Wrecked! For background information on the Design Process, see pages 3-5.

Ship Wrecked! For background information on the Design Process, see pages 3-5. Ship Wrecked! Outcome: 5-3-14: Use the design process to construct a prototype containing a system of two or more different simple machines that move in a controlled way to perform a specific function.

More information

RIGGER CREW Instructions: (mates read aloud) Roles: Presentation Questions:

RIGGER CREW Instructions: (mates read aloud) Roles: Presentation Questions: RIGGER CREW Instructions: (mates read aloud) This crew packet contains important information for you to know aboard the Balclutha, and it will help you complete your project. First, read the part about

More information

2 are both ways of saying a ratio of 2 to 5

2 are both ways of saying a ratio of 2 to 5 Unit 4 Ratios A Ratio is a comparison of two related quantities. Ratios are expressed in two forms. 2 : 5 or 5 2 are both ways of saying a ratio of 2 to 5 1. Conversion factors are ratios. Express 100

More information

In this unit, you will cover the following sections:

In this unit, you will cover the following sections: UNIT D 252 In this unit, you will cover the following sections: 1.0 Machines are tools that help humans do work. 1.1 Simple Machines Meeting Human Needs 1.2 The Complex Machine A Mechanical Team 2.0 An

More information

Practice Test: Vectors and Projectile Motion

Practice Test: Vectors and Projectile Motion ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile

More information

ì<(sk$m)=bdiebi< +^-Ä-U-Ä-U

ì<(sk$m)=bdiebi< +^-Ä-U-Ä-U Physical Science by Ann J. Jacobs Genre Comprehension Skill Text Features Science Content Nonfiction Summarize Captions Chart Glossary Forces in Motion Scott Foresman Science 3.12 ì

More information

Calculating Forces in the Pulley Mechanical Advantage Systems Used in Rescue Work By Ralphie G. Schwartz, Esq

Calculating Forces in the Pulley Mechanical Advantage Systems Used in Rescue Work By Ralphie G. Schwartz, Esq Calculating Forces in the Pulley Mechanical Advantage Systems Used in Rescue Work By Ralphie G. Schwartz, Esq Introduction If you have not read the companion article: Understanding Mechanical Advantage

More information

Mechanical systems and control: investigation

Mechanical systems and control: investigation 6 Mechanical systems and control: investigation gear ratio the number of turns of one gear compared to the other is known as gear ratio speed ratio the gear ratio of a gear train, also known as its speed

More information

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch 1. In the laboratory, you are asked to determine the mass of a meter stick without using a scale of any kind. In addition to the meter stick, you may use any or all of the following equipment: - a set

More information

Discover Activity. classified as a machine functions. Explain each object to another student.

Discover Activity. classified as a machine functions. Explain each object to another student. Section Integrating How Machines Do Work Reading Preview Key Concepts How do machines make work easier? What is a machine's mechanical advantage? How can you calculate the efficiency of a machine? Key

More information

Name: Section: Force and Motion Practice Test

Name: Section: Force and Motion Practice Test Name: Section: Force and Motion Practice Test Directions: For each of the questions or incomplete statements below, choose the best of the answer choices given and write your answer on the line. 1. Which

More information

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering

Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Level 3 Cambridge Technical in Engineering 05822/05823/05824/05825/05873 Unit 3: Principles of mechanical engineering Monday 16 January 2017 Afternoon Time allowed: 1 hour 30 minutes You must have: the

More information

Motion in 1 Dimension

Motion in 1 Dimension A.P. Physics 1 LCHS A. Rice Unit 1 Displacement, Velocity, & Acceleration: Motion in 1 Dimension In-Class Example Problems and Lecture Notes 1. Freddy the cat started at the 3 meter position. He then walked

More information

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase.

6. What net external force is required to give a 25 kg suitcase an acceleration of 2.2 m/s2 to the right? Draw a free-body diagram of the suitcase. HONORS PHYSICS PROBLEM SET NEWTON S LAWS & FORCES ONE DIMENSIONAL FORCES 1. The net external force on the propeller of a 0.75 kg model airplane is 17 N forward. What is the acceleration of the airplane?

More information

Rube-Goldberg Device

Rube-Goldberg Device Rube-Goldberg Device The Gnar Machine Team Members Marcus Jeter Tom Cook Issac Sharp Tyson Miller Team Number: 1 EF 151 Section F2 Abstract/Overview: The main purpose of our Rube Goldberg device, The Gnar

More information

a WOW Lab Prep Instructions

a WOW Lab Prep Instructions Pulleys and Mechanical Advantage A major step in the prep of this activity is choosing a good location. A key feature is an easily accessible top anchor. Some examples of good anchors are a solid tree

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

ATM 322 Basic Pneumatics H.W.6 Modules 5 7

ATM 322 Basic Pneumatics H.W.6 Modules 5 7 ATM 322 Basic Pneumatics H.W.6 Modules 5 7 Name: Answer Key Mark: Question I: Write (T) for True and (F) for false sentences. A) For the time dependant process control; Step enabling conditions are generated

More information

DATA EQUATIONS MATH ANSWER

DATA EQUATIONS MATH ANSWER HCP PHYSICS REVIEW SHEET MID TERM EXAM Concepts And Definitions 1. Definitions of fact, hypothesis, law, theory 2. Explain the scientific method 3. Difference between average and instantaneous speed and

More information

WARM UP: Work and Power Example Problems 1) What is work? (words and formula)

WARM UP: Work and Power Example Problems 1) What is work? (words and formula) WARM UP: Work and Power Example Problems 1) What is work? (words and formula) 2) Your mom drops off your lunch in the office and you have to go up the stairs to the office to get it. Are you doing work

More information

Unit Conversion Worksheet

Unit Conversion Worksheet Name: Period Date: Unit Conversion Worksheet Conversions 1 hour = 3600 seconds 1 mile = 5280 feet 1 yard = 3 feet 1 meter = 3.28 feet 1 km = 0.62 miles 1 light second = 300,000,000 meters 1 kg = 2.2 lbs

More information

AP Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation. Name. Date. Period

AP Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation. Name. Date. Period Physics 1 Lesson 4 Homework Outcomes Quiz 4 Preparation Name Date Period Practice Problems I. A continuous force of 2.0 N is exerted on a 2.0 kg block to the right. The block moves with a constant horizontal

More information

4thscience_physicalscience (4thscience_physicalscienc) 2. Which force does a friend use to make you go higher on a playground swing?

4thscience_physicalscience (4thscience_physicalscienc) 2. Which force does a friend use to make you go higher on a playground swing? Name: Date: 1. Which tool is a part of a system for making sounds louder? A. B. C. D. 2. Which force does a friend use to make you go higher on a playground swing? A. pull B. push C. lever D. pulley 3.

More information

Force, Motion and Energy Review

Force, Motion and Energy Review NAME Force, Motion and Energy Review 1 In the picture to the right, two teams of students are playing tug-of-war. Each team is pulling in the opposite direction, but both teams are moving in the same direction.

More information

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format.

Possession of this publication in print format does not entitle users to convert this publication, or any portion of it, into electronic format. Photo Credits: Cover: Franco Origlia/Getty Images; 2 (r) John Kelly/Getty Images; 3 (tl) Jim Sugar/Corbis; 5 John Kelly/Getty Images; 6 Jim Sugar/Corbis; 10 Pete Stone/ Corbis; 11 (t) David Madison/Getty

More information

Q1. The diagram shows two buses. Bus A is empty. Bus B contains bags of sand upstairs to represent passengers.

Q1. The diagram shows two buses. Bus A is empty. Bus B contains bags of sand upstairs to represent passengers. Q1. The diagram shows two buses. Bus A is empty. Bus B contains bags of sand upstairs to represent passengers. Each bus has been tilted as far as it can without falling over. (a) Each bus will topple over

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B4. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the

More information

STATION 1: HOT WHEELIN PHYSICS 1. Define Newton s First Law. 2. Describe the motion of the untaped washer when the car hits the pencils.

STATION 1: HOT WHEELIN PHYSICS 1. Define Newton s First Law. 2. Describe the motion of the untaped washer when the car hits the pencils. Name Date Period STATION 1: HOT WHEELIN PHYSICS 1. Define Newton s First Law. 2. Describe the motion of the untaped washer when the car hits the pencils. 3. Describe the motion of the taped washer when

More information

Table of Contents. Career Overview... 4

Table of Contents. Career Overview... 4 Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Activity 1 Measuring... 6 Activity 2 Accuracy and Precision.... 14 Activity 3 Measurement Devices....

More information

CHAPTER 9 PROPELLERS

CHAPTER 9 PROPELLERS CHAPTER 9 CHAPTER 9 PROPELLERS CONTENTS PAGE How Lift is Generated 02 Helix Angle 04 Blade Angle of Attack and Helix Angle Changes 06 Variable Blade Angle Mechanism 08 Blade Angles 10 Blade Twist 12 PROPELLERS

More information

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM

PHYSICS REVIEW SHEET 2010 MID-TERM EXAM PHYSICS REVIEW SHEET 2010 MID-TERM EXAM Concepts And Definitions Definitions of fact, hypothesis, law, theory Explain the scientific method Difference between average and instantaneous speed and speed

More information

Grade 4 Wheels And Levers Study Guide READ ONLINE

Grade 4 Wheels And Levers Study Guide READ ONLINE Grade 4 Wheels And Levers Study Guide READ ONLINE We large offering of printable worksheets that focus on the use and concept of simple machines. types of simple machines include the lever, Wheel and Axle

More information

Advanced Subsidiary / Advanced Level

Advanced Subsidiary / Advanced Level GCE Examinations Mechanics Module M1 Advanced Subsidiary / Advanced Level Paper K Time: 1 hour 30 minutes Instructions and Information Candidates may use any calculator except those with a facility for

More information

Chapter : Linear Motion 2

Chapter : Linear Motion 2 Text: Chapter 2.5-2.9 Think and Explain: 4-8 Think and Solve: 2-4 Chapter 2.5-2.9: Linear Motion 2 NAME: Vocabulary: constant acceleration, acceleration due to gravity, free fall Equations: s = d t v =

More information

EOY Force and Motion REVIEW

EOY Force and Motion REVIEW Name: ate: 1. The diagram shows two bowling balls of equal mass. all is resting near the edge of a shelf. all is resting on the ground below. 2. Two workers use a ramp to help lift a box onto a dock as

More information

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided.

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided. NAME:.... SCHOOL: DATE:... LINEAR MOTION INSTRUCTIONS TO CANDIDATES Answer ALL questions in this paper in the spaces provided. 1. Two forces that act on a moving cyclist are the driving force and the resistive

More information

Appendix : Categorization Task. Instructions

Appendix : Categorization Task. Instructions Appendix : Categorization Task Instructions Your task is to group the 25 problems below based upon similarity of solution into various groups on the sheet of paper provided. Problems that you consider

More information

Exam Unit 5: Motion and Forces

Exam Unit 5: Motion and Forces Exam Unit 5: Motion and Forces 1. Aleshia is moving forward at constant speed of 2 m/s. Which statement correctly describes Aleshia s movement? A. Her speed is increasing by 2 m/s every second. B. She

More information

then the work done is, if the force and the displacement are in opposite directions, then the work done is.

then the work done is, if the force and the displacement are in opposite directions, then the work done is. 1. What is the formula for work? W= x 2. What are the 8 forms of energy? 3. Write the formula for the following: Kinetic Energy Potential Energy 4. If the force and the displacement are in the same direction,

More information

I hope you earn one Thanks.

I hope you earn one Thanks. A 0 kg sled slides down a 30 hill after receiving a tiny shove (only enough to overcome static friction, not enough to give significant initial velocity, assume v o =0). A) If there is friction of µ k

More information

Wedges To The Rescue (Simple Machines To The Rescue) By Sharon Thales READ ONLINE

Wedges To The Rescue (Simple Machines To The Rescue) By Sharon Thales READ ONLINE Wedges To The Rescue (Simple Machines To The Rescue) By Sharon Thales READ ONLINE If looking for a ebook by Sharon Thales Wedges to the Rescue (Simple Machines to the Rescue) in pdf format, then you've

More information

1. Find the potential energy of 20 Kg mass child sitting on a roof 10 m above the ground.

1. Find the potential energy of 20 Kg mass child sitting on a roof 10 m above the ground. LECTURE_8 Name: ID: DATE: 22/04/2015 101 PHYS ASSIGNMENT 1. Find the potential energy of 20 Kg mass child sitting on a roof 10 m above the ground. 2. A women is pulling a box of 20 Kg mass on a horizontal

More information

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m

3. Approximately how far will an object near Earth's surface fall in 3.0 seconds? m m m m Page 1 of 5 Sub work 10-10-02 Name 12-OCT-03 1. A car travels a distance of 98 meters in 10. seconds. What is the average speed of the car during this 10.-second interval? 1. 4.9 m/s 3. 49 m/s/ 2. 9.8

More information

Great Science Adventures

Great Science Adventures Great Science Adventures What is a class one lever? Lesson 12 Tool Concepts: Class one levers consist of a rod, fulcrum, load arm, and effort arm. The fulcrum divides the lever into two sides. One side

More information

Tying Knots. Approximate time: 1-2 days depending on time spent on calculator instructions.

Tying Knots. Approximate time: 1-2 days depending on time spent on calculator instructions. Tying Knots Objective: Students will find a linear model to fit data. Students will compare and interpret different slopes and intercepts in a context. Students will discuss domain and range: as discrete

More information

Robot Arm Challenge Answer Key

Robot Arm Challenge Answer Key Youth Explore Trades Skills Fluid Power Worksheet These are some of the words and ideas that engineers use when working with fluid power. They are also used by mechanics and equipment operators when controlling

More information

February 08, Pressure 38 PRESSURE. How did we show air has mass and takes up space? 1

February 08, Pressure 38 PRESSURE. How did we show air has mass and takes up space?   1 38 PRESSURE How did we show air has mass and takes up space? www.mrcjsc.com 1 38 PRESSURE Which would hurt more if it stood on you? Why do you think this is? www.mrcjsc.com 2 38 Pressure Snow shoes will

More information

CHANGES IN FORCE AND MOTION

CHANGES IN FORCE AND MOTION reflect CRACK! That s the sound of a bat hitting a baseball. The ball fl ies through the air and lands over the fence for a home run. The motion of a batted ball seems simple enough. Yet, many forces act

More information

AP Physics 1 Fall Semester Review Problems 1-10 Due Thursday, Due Friday, Test on Monday

AP Physics 1 Fall Semester Review Problems 1-10 Due Thursday, Due Friday, Test on Monday AP Physics 1 Fall Semester Review Problems 1-10 Due Thursday, 11-16 Due Friday, Test on Monday Motion Problems from Unit 1 1. Forest Gump is walking to ping pong practice with Lieutenant Dan at 1.3 m/s

More information

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

More information

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10.

Unit conversions: 9. An defensive lineman weighs 330 pounds. What is his mass in kg (given 2.2 pounds = 1 kg)? 330 lb 1 kg. 2.2 lb 10. Practice exam semester 1 physics Walk this Way Activity, Graph Sketching and Recognition, Sonic Ranger Lab: Use the graph to the right for q s 1-3 1. Which object(s) is (are) not moving? 2. Which change

More information

Chapter 3. Solids, Liquids, and Gases

Chapter 3. Solids, Liquids, and Gases Chapter 3 Solids, Liquids, and Gases Section 1: States of Matter Learning Objectives: Describe the characteristics of a solid Describe the characteristics of a liquid Describe the characteristics of a

More information

DICTATOR Spring Rope Pulleys for the Closing of Sliding Doors

DICTATOR Spring Rope Pulleys for the Closing of Sliding Doors DICTATOR for the Closing of Sliding Doors Spring rope pulleys are a simple, efficient and cost-effective closing device for sliding doors. During the opening of the door the internal spring is tensioned

More information

Model 130M Pneumatic Controller

Model 130M Pneumatic Controller Instruction MI 017-450 May 1978 Model 130M Pneumatic Controller Installation and Operation Manual Control Unit Controller Model 130M Controller is a pneumatic, shelf-mounted instrument with a separate

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

Exercise 3. Power Versus Wind Speed EXERCISE OBJECTIVE DISCUSSION OUTLINE. Air density DISCUSSION

Exercise 3. Power Versus Wind Speed EXERCISE OBJECTIVE DISCUSSION OUTLINE. Air density DISCUSSION Exercise 3 Power Versus Wind Speed EXERCISE OBJECTIVE When you have completed this exercise, you will know how to calculate the power contained in the wind, and how wind power varies with wind speed. You

More information

Hydraulic/Pneumatic System

Hydraulic/Pneumatic System Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model SE-8764 012-07733A Hydraulic/Pneumatic System 2000 PASCO scientific Copyright,

More information

Basics, Types, Use and Applications

Basics, Types, Use and Applications Basics, Types, Use and Applications 2015 by Brilliant Classes 2015 by Brilliant Classes Science : Physics Unit : Friction Friction : Basics, Types, Use and Applications The following topics are included

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION POTENTIAL ENERGY AND ENERGY CONSERVATION 1. Sky Jump: You have landed a summer job with a company that has been given the contract to design the ski jump for the next Winter Olympics. The track is coated

More information

LAB : Using A Spark Timer

LAB : Using A Spark Timer LAB : Using A Spark Timer Read through the whole lab and answer prelab questions prior to lab day. Name: F1 Introduction A spark timer is used to make accurate time and distance measurements for moving

More information

Trundle Wheel Working with ratios Worm Gear 29 Compiled by : Brent Hutcheson Gear Housing and

Trundle Wheel Working with ratios Worm Gear 29 Compiled by : Brent Hutcheson Gear Housing and Mechanical Systems - Book 4 INDEX Acknowledgements While the authors get their names on the cover of books and workbooks, a book isn't the result of the efforts of only the authors - it's a team effort

More information

(Lab Interface BLM) Acceleration

(Lab Interface BLM) Acceleration Purpose In this activity, you will study the concepts of acceleration and velocity. To carry out this investigation, you will use a motion sensor and a cart on a track (or a ball on a track, if a cart

More information

Motion Graphing Packet

Motion Graphing Packet Name: Motion Graphing Packet This packet covers two types of motion graphs Distance vs. Time Graphs Velocity vs. Time Graphs Describing the motion of an object is occasionally hard to do with words. Sometimes

More information

Team 50 Design Log Book. MEMS 0024 Design Project 2: Big Machine

Team 50 Design Log Book. MEMS 0024 Design Project 2: Big Machine Team 50 Design Log Book MEMS 0024 Design Project 2: Big Machine Table of Contents 1) Problem Statement............2 2) Idea Generation..........4 3) Input Requirements...........5 4) Output Requirements...........7

More information

Physics terms. coefficient of friction. static friction. kinetic friction. rolling friction. viscous friction. air resistance

Physics terms. coefficient of friction. static friction. kinetic friction. rolling friction. viscous friction. air resistance Friction Physics terms coefficient of friction static friction kinetic friction rolling friction viscous friction air resistance Equations kinetic friction static friction rolling friction Models for friction

More information

Name Date Block Newton s First Law of Motion Activities

Name Date Block Newton s First Law of Motion Activities 1. Activity One: Magic Trick Center an index card over the top of a glass, & place the coin in the middle of the index card (on top might be a good place). Flick the card from the side. Try it several

More information

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h.

3) A horse gallops a distance of 10 kilometers in a time of 30 minutes. Its average speed is A) 15 km/h. B) 20 km/h. C) 30 km/h. D) 40 km/h. Physics Keller Midterm exam review The midterm exam will be seventy questions selected from the following. The questions will be changed slightly, but will remain essentially the same. 1) A truck is moving

More information