A Comparison of Jabulani and Brazuca NonSpin Aerodynamics


 Bethanie Mason
 1 years ago
 Views:
Transcription
1 A Comparison of Jabulani and Brazuca NonSpin Aerodynamics Proc JMechE Part P: J Sports Engineering and Technology ():1 13 The Author(s) 2 Reprints and permission: sagepub.co.uk/journalspermissions.nav DOI:doi number John Eric Goff Department of Physics, Lynchburg College, Lynchburg, Virginia 241, USA Takeshi Asai and Sungchan Hong Institute of Health and Sports Science, University of Tsukuba, Tsukubacity, 3874, Japan Abstract Windtunnel experimental measurements of drag coefficients for nonspinning Jabulani and Brazuca balls are presented. The Brazuca ball s critical drag speed is lower than that of the Jabulani ball, and the Brazuca ball s supercritical drag coefficient is larger than that of the Jabulani ball. Compared to the Jabulani ball, the Brazuca ball suffers less instability due to knuckleball effects. Using drag data, numericallydetermined ball trajectories are created and it is postulated that though power shots are too similar to notice flight differences, goal keepers are likely to notice differences between Jabulani and Brazuca ball trajectories for intermediatespeed ranges. This latter result may appear in the 214 World Cup for goal keepers used to the flight of the ball used in the 2 World Cup. Keywords Jabulani, Brazuca, football, soccer, aerodynamics, drag coefficient, wind tunnel, computational modeling, knuckleball 1. Introduction Much of the world is riveted by FIFA World Cup action, which takes place every four years. Since 197, Adidas has provided the ball used at the World Cup. The 22 World Cup in Japan and South Korean used the Fevernova ball, the last World Cup ball with the more traditional 32panel design consisting of 2 hexagonal panels and 12 pentagonal panels (similar to a truncated icosahedron). The 26 World Cup in Germany used a thermallybonded 14panel ball called the Teamgeist. Adidas created the Jabulani ball for the 2 World Cup in South Africa, a ball that experienced some controversy. 1 Having just eight thermallybonded panels, Adidas had to texture the surface to make up for a reduced number of seams. As balls get smoother, the speed at which the drag coefficient experiences a precipitous drop, called the critical drag speed, increases. 2 By continually reducing panel number, Adidas had to add panel roughness if balls were to follow similar trajectories that previous balls followed. For the 214 World Cup in Brazil, Adidas created the Brazuca ball, which has Corresponding author;
2 just six thermallybonded panels. Because there were so few panels, the ball, like the Jabulani ball, has been textured to increase surface roughness. Despite fewer panels, the Brazuca ball has nearly 68% longer total seam length (3.32 m vs 1.98 m) than the Jabulani ball. This paper reports results of windtunnel experiments on balls used at the two most recent World Cup events. Windtunnel results are used to create model trajectories that will show how differences in aerodynamic properties lead to differences in flight trajectories. Soccer, perhaps more than any other sport due to its global popularity, has been studied extensively by scientists and engineers for a few decades now. Some of that soccer work, 3,4,,6,7 like the work discussed in this paper, seeks to understand how the technical evolution of the soccer ball affects play at the highest level. For a more extensive coverage of contemporary soccer research, readers are referred to a recent review article 8 on sport aerodynamics. That article contains a section on soccer with copious references to aerodynamics research performed mostly in the current century. Since that review article was accepted, more research has been published 9,,11,12 that has furthered our understanding of soccer aerodynamics. 2. WindTunnel Experiment Aerodynamic forces acting on different types of balls were measured in a lowspeed wind tunnel at the University of Tsukuba that has a 1. m 1. m rectangular cross section with a turbulence level less than.1%. Two fullsized official FIFA soccer balls were tested: the Adidas Jabulani (.22m diameter and.438kg mass), used in South Africa for the 2 FIFA World Cup, and the Adidas Brazuca (.22m diameter and.433kg mass), used in Brazil for the 214 FIFA World Cup. Based on ball diameter and windtunnel size, the blockage was about 1.7%. Each soccer ball was attached to a stainless steel rod; such a sting setup ensures that the ball remains in equilibrium during testing. Figure 1 shows the Brazuca ball on the rod just before testing began. The position of the support rod relative to the bluff body is important in a windtunnel experiment, which means selecting an appropriate support orientation. For the experiments the ball was supported from the rear, 13 a location considered to have a comparatively smaller effect on the separation of the boundary layer from the ball s surface. Data were acquired over a period of s using a sixcomponent stingtype balance (LMC622; Nissho Electric Works Co., Ltd.), and they were recorded on a personal computer using an A/D converter board with a sampling rate of Hz. Each ball was set to be geometrically symmetrical; the ball panels were therefore asymmetrical in the vertical direction. The aerodynamic forces were measured at wind speeds in the range 7 m/s v 3 m/s (1.7 mph v 78.3 mph). That speed range corresponds to a range in Reynolds number of roughly, < Re <,, where Re = v D/ν, 14 with D =.22 m, the ball s diameter, and ν = 1.4 m 2 /s, the kinematic viscosity. The force from the rod on the ball acts in the direction opposite to that of the wind and equals the drag force, F D. The drag coefficient, C D, is then extracted from 14 F D = 1 2 ρac D v 2, (1) where A =.38 m 2 is the crosssectional area of the ball and ρ = 1.2 kg/m 3 is the air s mass density. Also studied were effects that lead to the knuckleball 1 phenomenon whereby a ball with little to no spin experiences forces perpendicular to its velocity that are due to an asymmetric boundary layer separation. Asymmetries arise because flow on one side of the ball may move over geometric asymmetries not encountered on the side directly opposite. The knuckleball effect is named after the baseball pitch with little to no spin. Here the air moving over the ball stitches separates farther aft than the flow over a smoother portion of the ball. 16 Figure 2 shows the two orientations, labeled A and B, that were studied for the knuckleball effect. For each orientation, the force on the ball was measured at two speeds, 2 m/s (44.7 mph) and 3 m/s (67.1 mph). The force was decomposed into two orthogonal components: the side force and the lift force, oriented horizontally and vertically, respectively, in Figure 2.
3 3. WindTunnel Results and Discussion Figure 3 shows windtunnel experimental drag coefficient results for the Jabulani and Brazuca balls in orientation A. Also shown are the experimental error bars as well as comparison data 13 for a smooth ball the size of a soccer ball. As expected, the smooth ball data shows a criticaldrag speed larger than that of the rougher soccer balls. Figure 4 shows experimental C D data for both balls in orientations A and B. To keep that plot less cluttered, error bars are not shown, though error bars for orientation B are similar to what is seen in Figure 3 for orientation A. The most striking feature of the windtunnel results is that the Brazuca ball s critical speed, i.e. the speed where there is a precipitous drop in C D, is lower than that of the Jabulani ball. This result may seem counterintuitive given that the Brazuca ball has two fewer panels compared to the Jabulani ball, but recall that the overall seam length on the Brazuca ball is nearly 68% longer than on the Jabulani ball. The Brazuca ball s drag coefficient curve is more similar to that of the 32panel Adidas Tango 12 ball 6 used in the 212 UEFA European Championship, than it is to the Jabulani ball s C D curve. Also seen in Figure 4 is that the Brazuca ball s drag coefficient for high speeds, i.e. in the supercritical region, is larger than the Jabulani ball s drag coefficient. At the highest speed tested, i.e. v = 3 m/s, C D =.17 for the Brazuca ball and C D =.2 for the Jabulani ball. The drag coefficient data suggest that there will possibly be noticeable differences between ball aerodynamics in the 2 World Cup than the 214 World Cup. Compared to the Jabulani ball, the Brazuca ball has less drag on it for intermediate speeds, i.e. m/s v 2 m/s (22.4 mph v 44.7 mph). The intermediatespeedrange shots in the 214 World Cup will be faster because of less drag than in the 2 World Cup. For balls at speeds in excess of approximately 2 m/s (.9 mph), the Brazuca ball s larger drag coefficient means that goal keepers in Brazil will encounter more rapid deceleration compared to the 2 World Cup. Brazuca ball s smaller critical speed has implications for knuckleball effects. Figure shows lift and side forces at speed 2 m/s on the two balls of interest oriented in the two ways shown in Figure 2. Figure 6 is identical to Figure, except the speed is 3 m/s. Each of the two aforementioned figures was created by recording the force for 9 s. Oscillation periods are in the.1 s.2 s range, meaning the forces are not oscillating too rapidly to average out during a typical ball flight. At an intermediatekick speed of 2 m/s, compared to the Brazuca ball, the Jabulani ball shows significantly greater forces transverse to air velocity. That result suggests that a nonspinning Jabulani ball will be more erratic in its flight compared to a nonspinning Brazuca ball. The aforementioned result is explained by the fact that the Jabulani ball s critical speed is greater than the Brazuca ball s critical speed. For intermediatespeed kicks, the air s boundary layer experiences both laminar and turbulent separation from the Jabulani ball. A Brazuca ball at 2 m/s experiences only turbulent separation of the boundary layer because the speed is supercritical. The fact seen in Figure 4 that C D data for the A and B orientations are more similar for the Brazuca ball than for the Jabulani ball means that a Jabulani ball with littletono spin will be more erratic compared to the Brazuca ball. Moving to a powershot speed like 3 m/s, Figure 6 shows an expected increase in the resulting forces. Although position A for the Jabulani ball is more stable than position A for the Brazuca ball, the Jabulani ball in position B is clearly the most unstable of all combinations of ball type and orientation evaluated. This result is attributed to the more asymmetric distribution of panel boundaries on the Jabulani ball compared to the Brazuca ball. The nearly 68% greater total seam length on the Brazuca ball means surface roughness is more evenly distributed over the ball s surface than it is on the Jabulani ball. 4. NoSpin Model Trajectories Possible nospin soccer trajectories are now considered. Though the model ball will not be spinning, knuckle effects are ignored. Drag coefficient data acquired from the windtunnel experiments is used to make comparisons between Brazuca ball and Jabulani ball trajectories.
4 There are two forces on a soccer ball moving through the air. The first acts down on the ball, the ball s weight, mg, where m is the ball s mass and g = 9.8 m/s 2 is the constant magnitude of gravitational acceleration near Earth s surface. The second force is the drag force, which points opposite the ball s velocity and has a magnitude given by equation (1). The buoyant force on the ball from the air is ignored because that force is small ( 1.% of the ball s weight), and it is essentially accounted for when the weight of a ball is measured on a scale. Taking the x axis to point along the horizontal and the y axis to point vertically upward, Newton s second law reduces to ẍ = β v C D ẋ (2) and ÿ = β v C D ẏ g, (3) where β = ρa/2m, v = ẋ 2 + ẏ 2, and a dot signifies one total time derivative. For the Brazuca ball, β =.27 m 1 ; for the Jabulani ball, β =.21 m 1. The difference in β values is due to the Jabulani ball s mass being 1.1% larger than the Brazuca ball s mass. Equations (2) and (3) can be solved numerically with appropriate initial conditions using a fourthorder RungeKutta algorithm. 17 For the speeddependent C D in equations (2) and (3), linear interpolation between experimental windtunnel data points is used. To account for drag differences in the A and B configurations, C D data from the two orientations are averaged. See Figure 7 for average C D data. For those readers who wish to create their own trajectories, but desire an analytic equation for C D, the following is offered: 18,19 b C D = a +, (4) 1 + e [(v vc)/vs] where a, b, v c, and v s are fitting parameters. For the Brazuca ball: a =.18899, b =.27177, v c = m/s, and v s =.6823 m/s. For the Jabulani ball: a =.18433, b = , v c = m/s, and v s = m/s. Datafitting curves using equation (4) are shown in Figure 7. Differences between trajectories using a linear interpolation scheme and equation (4) are small enough to have no influence on the conclusions reached in this paper. Analyzed first is a power shot taken 2 m from the goal, perhaps from a free kick. The ball is kicked with an initial speed of 3 m/s (67.1 mph) at an angle of above the horizontal. Figure 8 shows model trajectories for the powershot case. Because ball speeds throughout the trajectories are all supercritical in this powershot case, the Brazuca ball s C D is about 1% larger than the Jabulani ball s C D. Compared to the Brazuca ball, the Jabulani ball arrives at the goal in about 1 ms less time (.737 s vs.72 s), and passes through the goal plane about 6.8 cm higher (1.6 m vs.938 m) and 4.2% faster (2.23 m/s vs m/s). With a final height difference less than onethird the ball s diameter, there are not enough differences between the two trajectories in Figure 8 to postulate that goal keepers will notice much difference between power shots taken in 214 and those taken in 2. Goal keepers may, however, notice differences in the next shot considered. Suppose the ball is kicked 2 m from the goal at an intermediate speed of 2 m/s (44.7 mph). To pass through the goal plane at a reasonable height, the launch angle needs to increase from the powershot case to 22. Figure 9 shows model trajectories for the intermediatespeed case. Considering all speeds throughout the trajectories, the Brazuca ball never quite reaches the critical region shown in Figure 7, meaning its C D is relatively constant. The Jabulani ball, however, spends its entire flight in the critical region, meaning its C D increases as its speed decreases. Consequently, compared to the Jabulani ball, the Brazuca ball arrives at the goal plane in. s less time (1.189 s vs s), and passes through the goal plane about 1.3 m higher (1.64 m vs.31 m) and 22.6% faster (16.3 m/s vs 13.7 m/s). Given more than a meter height difference and nearly 23% speed difference, differences between intermediatespeed shots in 214 and 2 will be significant.
5 Including knuckleball effects serves only to exacerbate the differences observed in the prior analysis. At 2 m/s, the Brazuca ball has a drag force of about 1.64 N, whereas the Jabulani balls has a 2.19N drag force. Figure shows that the lift and drag forces on the Jabulani ball are comparable or larger than the drag force it experiences. At 3 m/s, the Brazuca ball has a 4.1N drag force on it; the Jabulani balls has 3.41 N of drag force. Although Figure 6 shows that those drag forces are comparable to the lift and side forces each ball experiences, the Jabulani ball has the greater possibility for more erratic flight.. Conclusions Windtunnel experiments show that the Brazuca ball has a lower critical speed than that of the Jabulani ball. The difference in the drag and critical speeds are large enough that intermediatespeed kicks should exhibit noticeable changes in flight patterns for players who participated in the World Cup in both 2 and 214. Computer trajectories for launch speeds at 2 m/s at a distance of 2 m from the goal suggest that goal keepers will see the ball crossing the goal plane more than a meter higher in 214 than in 2. Power shots at high speeds, however, should not result in noticeable differences. There is not enough difference in the supercritical drag coefficients between Brazuca and Jabulani balls to lead to significantly different powershot trajectories. Because of the ball s reduced critical speed, goal keepers are likely to notice a significant reduction in erratic ball trajectories in the 214 World Cup compared to the 2 World Cup. The Brazuca ball s lower critical speed results in more stable behavior compared to the Jabulani ball. This effort tested and modeled only balls without spin. The next set of windtunnel experiments will determine lift coefficients for spinning balls. Adding lift, also known as the Magnus force, 2 to the trajectory model is trivial. 21 A future publication will report lift coefficients and compare threedimensional trajectories between balls used in the World Cup in 2 and 214. References 1. Lewis M. Official World Cup ball, Jabulani, getting the blame for soft goals  Robert Green  and missed ones. New York Daily News; 14 June Achenbach E. The effects of surface roughness and tunnel blockage on the flow past spheres. J Fluid Mech. 1974;6: Asai T, et al. Fundamental aerodynamics of the soccer ball. Sports Eng. 27;:1. 4. Alam F, et al. A comparative study of football aerodynamics. Proc Eng. 2;2: Alam F, et al. Aerodynamics of contemporary FIFA soccer balls. Proc Eng. 211;13: Asai T, et al. Characteristics of modern soccer balls. Proc Eng. 212;34: Alam F, et al. Effects of surface structure on soccer ball aerodynamics. Proc Eng. 212;34: Goff JE. A review of recent research into aerodynamics of sport projectiles. Sports Eng. 213;16: Myers T, Mitchell S. A mathematical analysis of the motion of an inflight soccer ball. Sports Eng. 213;16: Choppin S. Calculating football drag profiles from simulated trajectories. Sports Eng. 213;16: Kray T, et al. Magnus effect on a rotating soccer ball at high Reynolds numbers. J of Wind Eng & Ind Aero. 214;124: Lluna E, et al. Measurement of Aerodynamic Coefficients of Spherical Objects Using an Electrooptic Device. IEEE Trans on Instr & Meas. 213;62: Achenbach E. Experiments on the flow past spheres at very high Reynolds numbers. J Fluid Mech. 1972;4: White FM. Fluid Mechanics. 7th ed. New York (NY): McGraw Hill; Ito S, et al. Factors of unpredictable shots concerning new soccer balls. Proc Eng. 212;34: Adair RK. The Physics of Baseball. 3rd ed. New York (NY): Harper Perennial; Press WH, et al. Numerical Recipes: The Art of Scientific Computing. New York (NY): Cambridge University Press; 1986.
6 18. Giordano NJ, Nakanishi H. Computational Physics. 2nd ed. Upper Saddle River (NJ): Pearson/Prentice Hall; Goff JE, Carré MJ. Soccer lift coefficients via trajectory analysis. Eur J Phys. 2;31(4): Daish CB. The Physics of Ball Games. London (UK): The English Universities Press Ltd; Goff JE, Carré MJ. Trajectory analysis of a soccer ball. Am J Phys. 29;77(11):2 7.
7 Fig. 1. Adidas Brazuca soccer ball mounted on stainless steel rod in preparation for windtunnel experiment. Also shown are axes associated with the various force directions.
8 Fig. 2. The two orientations used to study knuckleball effects. Also shown are axes associated with the various force directions. The drag force would be measured perpendicular to the axes shown.
9 .6..4 Brazuca (A) Jabulani (A) Smooth C D v (m/s) Fig. 3. Windtunnel experimental drag coefficient results for the Brazuca and Jabulani balls in orientation A. Error bars show experimental uncertainty. Drag data 13 for a smooth sphere the size of a soccer ball is shown for comparison.
10 .6. C D.4.3 Brazuca (A) Brazuca (B) Jabulani (A) Jabulani (B) v (m/s) Fig. 4. Windtunnel experimental drag coefficient results for the Brazuca and Jabulani balls in orientations A and B.
11 1 1 Jabulani (A) Jabulani (B) Brazuca (A) Brazuca (B) Fig.. Lift and side forces at an air speed of 2 m/s (44.7 mph) for the orientations shown in Figure 2.
12 1 1 Jabulani (A) Jabulani (B) Brazuca (A) Brazuca (B) Fig. 6. Lift and side forces at an air speed of 3 m/s (67.1 mph) for the orientations shown in Figure 2.
13 .6..4 Brazuca (AB average) Jabulani (AB average) Fit C D v (m/s) Fig. 7. Windtunnel experimental drag coefficient results for the Brazuca and Jabulani balls for orientations A and B averaged together. The fitted curves come from equation (4).
14 y (m) Brazuca Jabulani 3 2 Goal Plane x (m) Fig. 8. Computational trajectories for Brazuca and Jabulani balls kicked 3 m/s (67.1 mph) at an angle of above the horizontal. The goal plane is 2.44 m (8 ft) high.
15 y (m) Brazuca Jabulani 3 Goal Plane x (m) Fig. 9. Computational trajectories for Brazuca and Jabulani balls kicked 2 m/s (44.7 mph) at an angle of 22 above the horizontal. The goal plane is 2.44 m (8 ft) high.
Characteristics of modern soccer balls
Available online at www.sciencedirect.com Procedia Engineering 34 (01 ) 1 17 9 th Conference of the International Sports Engineering Association (ISEA) Characteristics of modern soccer balls Takeshi Asai
More informationT he uniqueness of the shape and design of a ball to a particular sport has meant that there were very little
OPEN SUBJECT AREAS: MECHANICAL ENGINEERING FLUID DYNAMICS Received 19 February 2014 Accepted 15 April 2014 Published 29 May 2014 Correspondence and requests for materials should be addressed to S.H. (sr7931@hotmail.
More informationMechanical Engineering Journal
Bulletin of the JSME Mechanical Engineering Journal Vol.5, No.1, 2018 Effect of seam characteristics on critical Reynolds number in footballs Kiyoshi NAITO*, Sungchan HONG**, Masaaki KOIDO**, Masao NAKAYAMA**,
More informationAerodynamic drag of modern soccer balls
Asai and Seo SpringerPlus 2013, 2:171 a SpringerOpen Journal RESEARCH Open Access Aerodynamic drag of modern soccer balls Takeshi Asai 1* and Kazuya Seo 2 Abstract Soccer balls such as the Adidas Roteiro
More informationAvailable online at ScienceDirect. Procedia Engineering 105 (2015 )
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 105 (2015 ) 317 322 6th BSME International Conference on Thermal Engineering (ICTE 2014) Aerodynamic study of FIFAapproved
More informationSport fluid dynamics, Aerodynamics part
20 th July, ISBS2016 Applied Sessions Sport fluid dynamics, Aerodynamics part Aerodynamics of sports balls It is known the ball trajectory in flight is affected by the aerodynamic characteristics (Cd &
More informationEffects of turbulence on the drag force on a golf ball
European Journal of Physics PAPER Effects of turbulence on the drag force on a golf ball To cite this article: Rod Cross 2016 Eur. J. Phys. 37 054001 View the article online for updates and enhancements.
More informationAvailable online at Procedia Engineering 200 (2010) (2009) In situ drag measurements of sports balls
Available online at www.sciencedirect.com Procedia Engineering 200 (2010) (2009) 2437 2442 000 000 Procedia Engineering www.elsevier.com/locate/procedia 8 th Conference of the International Sports Engineering
More informationForces that govern a baseball s flight path
Forces that govern a baseball s flight path Andrew W. Nowicki Physics Department, The College of Wooster, Wooster, Ohio 44691 April 21, 1999 The three major forces that affect the baseball while in flight
More informationTHE CURVE OF THE CRICKET BALL SWING AND REVERSE SWING
Parabola Volume 32, Issue 2 (1996) THE CURVE OF THE CRICKET BALL SWING AND REVERSE SWING Frank Reid 1 It is a well known fact in cricket that the new ball when bowled by a fast bowler will often swing
More informationAgood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories
42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get
More informationModeling Pitch Trajectories in Fastpitch Softball
Noname manuscript No. (will be inserted by the editor) Modeling Pitch Trajectories in Fastpitch Softball Jean M. Clark Meredith L. Greer Mark D. Semon Received: date / Accepted: date Abstract The fourthorder
More informationBending a soccer ball with math
Bending a soccer ball with math Tim Chartier, Davidson College Aerodynamics in sports has been studied ever since Newton commented on the deviation of a tennis ball in his paper New theory of light and
More informationThe effect of baseball seam height on the Magnus Force
The effect of baseball seam height on the Magnus Force Shawn Bowman Physics Department, The College of Wooster, Wooster, Ohio 44691, USA (Dated: May 7, 2014) Many people do not know that Major League and
More informationEffects of seam and surface texture on tennis balls aerodynamics
Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 140 145 9 th Conference of the International Sports Engineering Association (ISEA) Effects of seam and surface texture on tennis
More informationWhy does a golf ball have dimples?
Página 1 de 5 Why does a golf ball have dimples? page 1 A golf ball can be driven great distances down the fairway. How is this possible? Is the drive only dependent on the strength of the golfer or are
More informationScienceDirect. Relating baseball seam height to carry distance
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 112 (2015 ) 406 411 7th AsiaPacific Congress on Sports Technology, APCST 2015 Relating baseball seam height to carry distance
More informationAerodynamic characteristics around the stalling angle of the discus using a PIV
10TH INTERNATIONAL SYMPOSIUM ON PARTICLE IMAGE VELOCIMETRY PIV13 Delft, The Netherlands, July 13, 2013 Aerodynamic characteristics around the stalling angle of the discus using a PIV Kazuya Seo 1 1 Department
More informationAERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING
ICAS 2002 CONGRESS AERODYNAMIC CHARACTERISTICS OF SPIN PHENOMENON FOR DELTA WING Yoshiaki NAKAMURA (nakamura@nuae.nagoyau.ac.jp) Takafumi YAMADA (yamada@nuae.nagoyau.ac.jp) Department of Aerospace Engineering,
More information1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach?
Physics R Date: 1. A cannon shoots a clown directly upward with a speed of 20 m/s. What height will the clown reach? How much time will the clown spend in the air? Projectile Motion 1:Horizontally Launched
More informationTHEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods
THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind
More informationParasite Drag. by David F. Rogers Copyright c 2005 David F. Rogers. All rights reserved.
Parasite Drag by David F. Rogers http://www.narassociates.com Copyright c 2005 David F. Rogers. All rights reserved. How many of you still have a Grimes rotating beacon on both the top and bottom of the
More informationKinematicsProjectiles
1. A volleyball hit into the air has an initial speed of 10 meters per second. Which vector best represents the angle above the horizontal that the ball should be hit to remain in the air for the greatest
More informationTHE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC!
OUTLINE TACOMA NARROWS BRIDGE FLOW REGIME PAST A CYLINDER VORTEX SHEDDING MODES OF VORTEX SHEDDING PARALLEL & OBLIQUE FLOW PAST A SPHERE AND A CUBE SUMMARY TACOMA NARROWS BRIDGE, USA THE BRIDGE COLLAPSED
More informationEngineering Flettner Rotors to Increase Propulsion
Engineering Flettner Rotors to Increase Propulsion Author: Chance D. Messer Mentor: Jeffery R. Wehr Date: April 11, 2016 Advanced STEM Research Laboratory, Odessa High School, 107 E 4 th Avenue, Odessa
More informationDetailed study 3.4 Topic Test Investigations: Flight
Name: Billanook College Detailed study 3.4 Topic Test Investigations: Flight Ivanhoe Girls Grammar School Questions 1 and 2 relate to the information shown in the diagram in Figure 1. z Question 1 y Figure
More informationPractice Test: Vectors and Projectile Motion
ame: Practice Test: Vectors and Projectile Motion Part A: Multiple Choice [15 points] 1. A projectile is launched at an angle of 30 0 above the horizontal. eglecting air resistance, what are the projectile
More informationFUTK Team Description Paper 2016
FUTK Team Description Paper 2016 Kosuke Onda and Teruya Yamanishi Department of Management Information Science, Fukui University of Technology Gakuen, Fukui 910 8505, Japan Abstract. This paper describes
More informationWINDINDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION
WINDINDUCED LOADS OVER DOUBLE CANTILEVER BRIDGES UNDER CONSTRUCTION S. Pindado, J. Meseguer, J. M. Perales, A. SanzAndres and A. Martinez Key words: Wind loads, bridge construction, yawing moment. Abstract.
More informationANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT
ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,
More informationACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy
LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY
More informationAvailable online at ScienceDirect. The 2014 Conference of the International Sports Engineering Association
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 435 440 The 2014 Conference of the International Sports Engineering Association Accuracy performance parameters
More information1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar. bucket.
1 A Mangonel is a type of catapult used to launch projectiles such as rocks. A student made a working model of a Mangonel. crossbar bucket arm rubber band string scale handle As the handle is turned, the
More informationDynamics of bubble rising at small Reynolds numbers
MATEC Web of Conferences 3, 01004 ( 015) DOI: 10.1051/ matecconf/ 015301004 C Owned by the authors, published by EDP Sciences, 015 Dynamics of bubble rising at small Reynolds numbers Vladimir Arkhipov
More informationZIN Technologies PHi Engineering Support. PHiRPT CFD Analysis of Large Bubble Mixing. June 26, 2006
ZIN Technologies PHi Engineering Support PHiRPT0002 CFD Analysis of Large Bubble Mixing Proprietary ZIN Technologies, Inc. For nearly five decades, ZIN Technologies has provided integrated products and
More informationBiomechanics Sample Problems
Biomechanics Sample Problems Forces 1) A 90 kg ice hockey player collides head on with an 80 kg ice hockey player. If the first person exerts a force of 450 N on the second player, how much force does
More informationINSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation
Lab 1 Standing Waves on a String Learning Goals: To distinguish between traveling and standing waves To recognize how the wavelength of a standing wave is measured To recognize the necessary conditions
More informationScienceDirect. Rebounding strategies in basketball
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 72 ( 2014 ) 823 828 The 2014 conference of the International Sports Engineering Association Rebounding strategies in basketball
More informationPhysics 11 Unit III Practice Test Projectile Motion. Instructions: Pick the best answer available in Part A and Show all your work for Part B
Physics 11 Unit III Practice Test Projectile Motion Instructions: Pick the best answer available in Part A and Show all your work for Part B 1. Which of the following is constant for all projectiles? A.
More informationand its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.
1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to
More informationDetermination of the wind pressure distribution on the facade of the triangularly shaped highrise building structure
Determination of the wind pressure distribution on the facade of the triangularly shaped highrise building structure Norbert Jendzelovsky 1,*, Roland Antal 1 and Lenka Konecna 1 1 STU in Bratislava, Faculty
More informationJAR23 Normal, Utility, Aerobatic, and Commuter Category Aeroplanes \ Issued 11 March 1994 \ Section 1 Requirements \ Subpart C  Structure \ General
JAR 23.301 Loads \ JAR 23.301 Loads (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed
More informationPower efficiency and aerodynamic forces measurements on the Dettwilerwind turbine
Institut für Fluiddynamik ETH Zentrum, ML H 33 CH8092 Zürich P rof. Dr. Thomas Rösgen Sonneggstrasse 3 Telefon +4144632 2646 Fax +4144632 1147 roesgen@ifd.mavt.ethz.ch www.ifd.mavt.ethz.ch Power efficiency
More informationGeorgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find
On the t Influence of Air Resistance and Wind during Long Jump Egoyan A. E. ( alex1cen@yahoo.com ), Khipashvili I. A. Georgian University GEOMEDI Abstract. In this article we perform theoretical analysis
More informationAnalysis of Traditional Yaw Measurements
Analysis of Traditional Yaw Measurements Curiosity is the very basis of education and if you tell me that curiosity killed the cat, I say only the cat died nobly. Arnold Edinborough Limitations of Post
More informationSecondary Physics: The Compass Rose, Cars and Tracks
Secondary Physics: The Compass Rose, Cars and Tracks Secondary Physics at the NASCAR Hall of Fame The Great Hall and Glory Road Focus object or destination in the Hall: Compass Rose, 18 compass lines,
More informationCFD SIMULATION STUDY OF AIR FLOW AROUND THE AIRFOIL USING THE MAGNUS EFFECT
Magnus effect, simulation, air flow Patryk SOKOŁOWSKI *, Jacek CZARNIGOWSKI **, Paweł MAGRYTA *** CFD SIMULATION STUDY OF AIR FLOW AROUND THE AIRFOIL USING THE MAGNUS EFFECT Abstract The article presents
More informationBasketball freethrow rebound motions
Available online at www.sciencedirect.com Procedia Engineering 3 () 94 99 5 th AsiaPacific Congress on Sports Technology (APCST) Basketball freethrow rebound motions Hiroki Okubo a*, Mont Hubbard b a
More informationWind tunnel tests of a nontypical stadium roof
Wind tunnel tests of a nontypical stadium roof G. Bosak 1, A. Flaga 1, R. Kłaput 1 and Ł. Flaga 1 1 Wind Engineering Laboratory, Cracow University of Technology, 31864 Cracow, Poland. liwpk@windlab.pl
More informationZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots
ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots Jong H. Park School of Mechanical Engineering Hanyang University Seoul, 3379, Korea email:jong.park@ieee.org Yong K. Rhee School of
More informationCHAPTER 1. Knowledge. (a) 8 m/s (b) 10 m/s (c) 12 m/s (d) 14 m/s
CHAPTER 1 Review K/U Knowledge/Understanding T/I Thinking/Investigation C Communication A Application Knowledge For each question, select the best answer from the four alternatives. 1. Which is true for
More informationThe validity of a rigid body model of a cricket ballbat impact
Available online at www.sciencedirect.com Procedia Engineering 34 (2012 ) 682 687 9 th Conference of the International Sports Engineering Association (ISEA) The validity of a rigid body model of a cricket
More informationKinematic Differences between Set and JumpShot Motions in Basketball
Proceedings Kinematic Differences between Set and JumpShot Motions in Basketball Hiroki Okubo 1, * and Mont Hubbard 2 1 Department of Advanced Robotics, Chiba Institute of Technology, 2171 Tsudanuma,
More informationScienceDirect. Aerodynamic body position of the brakeman of a 2man bobsleigh
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 112 (2015 ) 424 429 7th AsiaPacific Congress on Sports Technology, APCST 2015 Aerodynamic body position of the brakeman of
More informationApplications of Bernoulli s principle. Principle states that areas with faster moving fluids will experience less pressure
Applications of Bernoulli s principle Principle states that areas with faster moving fluids will experience less pressure Artery o When blood flows through narrower regions of arteries, the speed increases
More informationOPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL. Rehan Yousaf 1, Oliver Scherer 1
OPTIMIZING THE LENGTH OF AIR SUPPLY DUCT IN CROSS CONNECTIONS OF GOTTHARD BASE TUNNEL Rehan Yousaf 1, Oliver Scherer 1 1 Pöyry Infra Ltd, Zürich, Switzerland ABSTRACT Gotthard Base Tunnel with its 57 km
More informationWind loads investigations of HAWT with wind tunnel tests and site measurements
loads investigations of HAWT with wind tunnel tests and site measurements Shigeto HIRAI, Senior Researcher, Nagasaki R&D Center, Technical Headquarters, MITSUBISHI HEAVY INDSUTRIES, LTD, Fukahori, Nagasaki,
More informationAERODYNAMICS OF TEXTILES FOR ELITE CYCLIST
Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 2628 December 2009, Dhaka, Bangladesh ICME09 AERODYNAMICS OF TEXTILES FOR ELITE CYCLIST Harun Chowdhury, Firoz Alam,
More informationLargeeddy simulation of a turbulent buoyant helium plume
Center for Turbulence Research Annual Research Briefs 8 45 Largeeddy simulation of a turbulent buoyant helium plume By G. Blanquart AND H. Pitsch. Motivation and objectives The numerical simulation of
More informationCASE STUDY FOR USE WITH SECTION B
GCE A level 135/01B PHYSICS ASSESSMENT UNIT PH5 A.M. THURSDAY, 0 June 013 CASE STUDY FOR USE WITH SECTION B Examination copy To be given out at the start of the examination. The prerelease copy must
More informationA study of golf ball aerodynamic drag
Available online at www.sciencedirect.com Procedia Engineering 13 (2011) 226 231 5 th AsiaPacific Congress on Sports Technology (APCST) A study of golf ball aerodynamic drag Firoz Alam *, Tom Steiner,
More informationtime v (vertical) time
NT4EQRT20: PROJECTILE MOTION FOR TWO ROCKS VELOCITY AND ACCELERATION GRAPHS II Two identical rocks are thrown horizontally from a cliff with Rock A having a greater velocity at the instant it is released
More informationA NEW GOLFSWING ROBOT MODEL UTILIZING SHAFT ELASTICITY
Journal of Sound and Vibration (1998) 17(1), 17 31 Article No. sv981733 A NEW GOLFSWING ROBOT MODEL UTILIZING SHAFT ELASTICITY S. SUZUKI Department of Mechanical System Engineering, Kitami Institute of
More informationInvestigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle
RESEARCH ARTICLE OPEN ACCESS Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle Shyamshankar.M.B*, Sankar.V** *(Department of Aeronautical
More informationCollege of Engineering
College of Engineering Department of Mechanical and Aerospace Engineering MAE250, Section 001 Introduction to Aerospace Engineering Final Project Bottle Rocket Written By: Jesse Hansen Connor Petersen
More informationJournal of Aeronautics & Aerospace
Journal of Aeronautics & Aerospace Engineering Journal of Aeronautics & Aerospace Engineering LandellMills, J Aeronaut Aerospace Eng 2017, 6:2 DOI: 10.4172/21689792.1000189 Research Article Open Access
More information. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid
IIT JEE Achiever 2014 Ist Year Physics2: Worksheet1 Date: 20140626 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of
More informationTEACHER ANSWER KEY December 10, Projectile Review 1
Projectile Review 1 TEACHER ANSWER KEY December 10, 2004 4 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.]
More information1. downward 3. westward 2. upward 4. eastward
projectile review 1 Name 11DEC03 1. A baseball player throws a ball horizontally. Which statement best describes the ball's motion after it is thrown? [Neglect the effect of friction.] 1. Its vertical
More informationEXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL
EXPERIMENTAL INVESTIGATION OF LIFT & DRAG PERFORMANCE OF NACA0012 WIND TURBINE AEROFOIL Mr. Sandesh K. Rasal 1, Mr. Rohan R. Katwate 2 1 PG Student, 2 Assistant Professor, DYPSOEA Ambi Talegaon, Heat Power
More informationII.E. Airplane Flight Controls
References: FAAH80833; FAA8083325 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of the elements related to
More informationA Teacher s Utilization Guide.
A Teacher s Utilization Guide www.pbs4549.org/baseball Table of Contents Credits...4 Introduction...5 108 Stitches: The Physics in Baseball...7 Video Overviews...8 Content Standards...9 Correlated Ohio
More informationCalculate the horizontal component of the baseball's velocity at an earlier time calculated in part (a).
Ch3 Supplemental [ Edit ] Overview Summary View Diagnostics View Print View with Answers Ch3 Supplemental Due: 6:59pm on Monday, February 13, 2017 To understand how points are awarded, read the Grading
More informationAbstract. 1 Introduction
Developments in modelling ship rudderpropeller interaction A.F. Molland & S.R. Turnock Department of Ship Science, University of Southampton, Highfield, Southampton, S017 IBJ, Hampshire, UK Abstract A
More informationSEMISPAN TESTING IN WIND TUNNELS
25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES SEMISPAN TESTING IN WIND TUNNELS S. Eder, K. Hufnagel, C. Tropea Chair of Fluid Mechanics and Aerodynamics, Darmstadt University of Technology
More informationIncreasing the power output of the Darrieus Vertical Axis Wind Turbine
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36. Increasing the power output of the Darrieus Vertical Axis Wind Turbine R. Ramkissoon 1 and K. Manohar
More information5. A bead slides on a curved wire, starting from rest at point A in the figure below. If the wire is frictionless, find each of the following.
Name: Work and Energy Problems Date: 1. A 2150 kg car moves down a level highway under the actions of two forces: a 1010 N forward force exerted on the drive wheels by the road and a 960 N resistive force.
More informationQUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;
QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms 1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms
More informationChapter 6. You lift a 10 N physics book up in the air a distance of 1 meter at a constant velocity of 0.5 m/s. The work done by gravity is
I lift a barbell with a mass of 50 kg up a distance of 0.70 m. Then I let the barbell come back down to where I started. How much net work did I do on the barbell? A)  340 J B) 0 J C) + 35 J D) + 340
More informationQUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;
QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms 1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g = +9.8ms
More informationPredicting the Suction Gas Superheating in Reciprocating Compressors
Purdue University Purdue epubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Predicting the Suction Gas Superheating in Reciprocating Compressors Jonatas Ferreira
More informationEXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR PLAN SHAPE BUILDINGS
BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications Milano, Italy, July, 224 8 EXPERIMENTAL STUDY OF WIND PRESSURES ON IRREGULAR PLAN SHAPE BUILDINGS J. A. Amin and A. K. Ahuja
More informationDynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO ISCode Recommendations
International Journal on Marine Navigation and Safety of Sea Transportation Volume 4 Number 3 September 2010 Dynamic Component of Ship s Heeling Moment due to Sloshing vs. IMO ISCode Recommendations P.
More informationSTABILITY OF MULTIHULLS Author: Jean Sans
STABILITY OF MULTIHULLS Author: Jean Sans (Translation of a paper dated 10/05/2006 by Simon Forbes) Introduction: The capsize of Multihulls requires a more exhaustive analysis than monohulls, even those
More informationWind Flow Validation Summary
IBHS Research Center Validation of Wind Capabilities The Insurance Institute for Business & Home Safety (IBHS) Research Center fullscale test facility provides opportunities to simulate natural wind conditions
More informationAdvanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati
Advanced Hydraulics Prof. Dr. Suresh A. Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module  4 Hydraulics Jumps Lecture  4 Features of Hydraulic Jumps (Refer Slide
More informationInvestigations on the Aerodynamic Forces of 2D Square Lattice Tower Section Using CFD
J. Energy Power Sources Vol. 1, No. 5, 2014, pp. 270277 Received: August 14, 2014, Published: November 30, 2014 Journal of Energy and Power Sources www.ethanpublishing.com Investigations on the Aerodynamic
More informationWhat New Technologies Are Teaching Us About the Game of Baseball
What New Technologies Are Teaching Us About the Game of Baseball Alan M. Nathan University of Illinois at UrbanaChampaign anathan@illinois.edu October 15, 2012 Abstract The trajectory of a baseball moving
More informationPRETEST Module 2 The Principles of Flight Units /60 points
PRETEST Module 2 The Principles of Flight Units 123.../60 points 1 Answer the following questions. (20 p.) moving the plane (4) upward / forward. Opposed to that is 1. What are the names of the four
More informationINCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION
Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 1520, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena
More informationA numerical EulerLagrange method for bubble tower CO2 dissolution modeling
A numerical EulerLagrange method for bubble tower CO2 dissolution modeling Author: Daniel Legendre & Prof. Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering Laboratory Turku, Finland
More informationPHYS 101 Previous Exam Problems
PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep
More informationPrinciples of glider flight
Principles of glider flight [ Lecture 1: Lift, drag & glide performance ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK21 illustrations Copyright 1983 Alexander Schleicher
More informationExperiment P18: Buoyant Force (Force Sensor)
PASCO scientific Physics Lab Manual: P181 Experiment P18: (Force Sensor) Concept Time SW Interface Macintosh file Windows file Newton's Laws 45 m 300/500/700 P18 P18_BUOY.SWS EQUIPMENT NEEDED CONSUMABLES
More informationA Different Approach to Teaching EngineOut Glides
A ifferent Approach to Teaching EngineOut Glides es Glatt, Ph., ATP/CFIAI, AGI/IGI When student pilots begin to learn about emergency procedures, the concept of the engineout glide is introduced. The
More informationFluid Mechanics of Cricket Ball Swing
19 th Australasian Fluid Mechanics Conference Melbourne, Australia 811 December 2014 Fluid Mechanics of Cricket Ball Swing R. D. Mehta Sports Aerodynamics Consultant Mountain View, CA 94043, USA Abstract
More informationINTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING
INTERACTION OF STEP LENGTH AND STEP RATE DURING SPRINT RUNNING Joseph P. Hunter 1, Robert N. Marshall 1,, and Peter J. McNair 3 1 Department of Sport and Exercise Science, The University of Auckland, Auckland,
More informationAIRFOIL PROFILE OPTIMIZATION OF AN AIR SUCTION EQUIPMENT WITH AN AIR DUCT
THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 12171222 1217 AIRFOIL PROFILE OPTIMIZATION OF AN AIR SUCTION EQUIPMENT WITH AN AIR DUCT by Li QIU a,b, Rui WANG a,*, XiaoDong CHEN b, and DePeng WANG
More informationMeteorology & Air Pollution. Dr. Wesam Al Madhoun
Meteorology & Air Pollution Dr. Wesam Al Madhoun Dispersion = Advection (Transport) + Dilution (Diffusion) Source Transport Receptor Reentrainment Fick s law of diffusion J=  D * D C/Dx Where, J= Mass
More informationNumerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation
Journal of Modern Transportation Volume 20, Number 1, March 2012, Page 4448 Journal homepage: jmt.swjtu.edu.cn DOI: 10.1007/BF03325776 1 Numerical simulation and analysis of aerodynamic drag on a subsonic
More information