Professor Alan H. Stein November 10, 2004

Size: px
Start display at page:

Download "Professor Alan H. Stein November 10, 2004"

Transcription

1 Mathematics 108 Professor Alan H. Stein November 10, 2004 SOLUTIONS 1. (10 points) Consider a one-dimensional diffusion situation where a gas is of mass 15 grams is released in the center of a thin tube. Assume a diffusion constant D = 0.1 centimeters per second. Calculate the concentration of the gas at the center and at locations 0.5, 1, 1.5, 2, 5 and 10 centimeters from the center at times 1, 2, 5 and 10 seconds after the gas is released. Putting the data into a spreadsheet based on the one-dimensional diffusion spreadsheet on the class home page yields the following concentrations, given in grams per centimeter. One Dimensional Diffusion Mass M = 15 Diffusion Const D = 0.1 Distance Time Concentration Page 1 of 6

2 Page 2 of 6 2. (20 points) Suppose 1000 kilograms of a soluble material are spilled into the center of a large shallow lake and gradually diffuses out into the lake. Suppose the diffusion constant in the north/south directions is 0.4 square meters per minute while the diffusion constant in the east/west directions is 0.8 square meters per minute. (a) Find the concentrations at a point 10 meters north and 15 meters east of the center 10, 20, 30 and 60 minutes after the material is spilled. Putting the data into the two-dimensional diffusion spreadsheet yields the following concentrations, given in kilograms per square meter. Two Dimensional Diffusion Mass M = 1000 Diffusion Constants D1 = 0.4 D2 = 0.8 Distances x = 10 y = 15 Concentration C = Time Concentration 10 C = C = C = C = (b) Find the concentrations at a point 15 meters north and 10 meters east of the center 10, 20, 30 and 60 minutes after the material is spilled. Putting the data into the two-dimensional diffusion spreadsheet yields the following concentrations, given in kilograms per square meter. Two Dimensional Diffusion Mass M = 1000 Diffusion Constants D1 = 0.4 D2 = 0.8 Distances x = 15 y = 10 Concentration C = Time Concentration 10 C = C = C = C =

3 Page 3 of 6 3. (20 points) A chemical plant emits a volatile organic compound into the air at the rate of 100 grams per second from a stack 100 meters above ground. Given conditions, the effective stack height is actually 130 meters. The average wind speed is 9 meters per second and the wind is constant. (a) Find the average concentration at a point directly in line with the center of the plume at a point 1, 000 meters downwind if the stability class is C. Putting the data in the Plume Spreadsheet, we get the following: Calculation of Concentration Ratio C/Q and Concentration C from an Elevated Release Using the Gaussian Plume Model Note: See README file on installation disk for suggestions on enhancing the utility of this spreadsheet program.?-?-?-?-? Input Data?-?-?-?-?-? Wind Speed (meters/sec) = 9 Down Wind Distance (meters) = 1000 Stack Height (meters) = 130 Horiz Dist from Plume Center (meters) = 0 Receptor Elevation (meters) = 130 Stability Class = c Source term Q (quantity per second) 100 *-*-*-*-*-*-*-* Calculated Results *-*-*-*-*-*-*-*-* Vertical Dist from Plume Center Line = 0 SigmaY (meters)= SigmaZ (meters)= Concentration Ratio C/Q (sec/m 3 ) = 2.75E 06 Concentration C (quantity /m 3 )= 2.75E 04 Note: Here we enter the stack height as 130, since that is the effective stack height, the horizontal distance from the plume center as 0 and the receptor elevation as 130, since the center of the plume is 130 meters is that high. We conclude the concentration is grams per cubic meter. In the other parts, we will only note the changes in what was entered from the preceding part. (b) Find the average concentration at a point 10 meters above and 15 meters to the side of the center of the plume at a point 1, 000 meters downwind if the stability class is C. Changes: Horiz Dist from Plume Center (meters) = 15 Receptor Elevation (meters) = 140 (since it s 10 meters above the center of the plume.

4 Page 4 of 6 We obtain a concentration of grams per cubic meter. (c) Find the average concentration at a point directly in line with the center of the plume at a point 1, 500 meters downwind if the stability class is C. Changes: Horiz Dist from Plume Center (meters) = 0 Receptor Elevation (meters) = 130 Down Wind Distance (meters) = 1500 We obtain a concentration of grams per cubic meter. (d) Find the average concentration at a point 10 meters above and 15 meters to the side of the center of the plume at a point 1, 500 meters downwind if the stability class is C. Changes: Horiz Dist from Plume Center (meters) = 15 Receptor Elevation (meters) = 140 We obtain a concentration of grams per cubic meter. (e) Find the average concentration at a point directly in line with the center of the plume at a point 1, 000 meters downwind if the stability class is E. We have the same input as for (a) except the Stability Class = e. We obtain a concentration of grams per cubic meter. (f) Find the average concentration at a point 10 meters above and 15 meters to the side of the center of the plume at a point 1, 000 meters downwind if the stability class is E. We have the same input as for (b) except the Stability Class = e. We obtain a concentration of grams per cubic meter. (g) Find the average concentration at a point directly in line with the center of the plume at a point 1, 500 meters downwind if the stability class is E. We have the same input as for (c) except the Stability Class = e. We obtain a concentration of grams per cubic meter. (h) Find the average concentration at a point 10 meters above and 15 meters to the side of the center of the plume at a point 1, 500 meters downwind if the stability class is E. We have the same input as for (d) except the Stability Class = e. We obtain a concentration of grams per cubic meter.

5 Page 5 of 6 4. (10 points) Describe two examples of two-dimensional diffusion. 5. (10 points) Explain the difference between physical stack height and effective stack height, why there can be a difference and why the difference can be important. 6. (5 points) Suppose that exhaust gases are leaving a vertical smoke stack at a constant rate while the wind at the top of the stack is blowing at 15 miles per hour. What will the effect be on the effective stack height if the wind calms down to 5 miles per hour? Explain the effect qualitatively; obviously, you do not have sufficient information to quantify the effect. The effective stack height will increase. 7. (10 points) Suppose a mass of 15 grams is released at the center of a long, thin tube and teh diffusion constant for the materials involved is D = 0.1 cm 2 /sec. Find the concentration at a point 5 centimeters from the center 10 seconds after the mass is released. You may use the one-dimensional diffusion formula C = M e x2 4Dt. 4πDt C = 15 4π e , so the concentration will be approximately grams per centimeter. 8. (10 points) Consider the attached table defining atmospheric stability classes. Determine the stability class (A, B, C, D or E) under each of the following conditions. Justify your answer. (a) It s a bright, sunny day with virtually no wind. Stability Class A, since the incoming solar radiation will be strong with a surface wind < 4.5 miles per hour. (b) It s a heavy, overcast day with occasional showers and winds between 8 10 miles per hour. Stability Class B, by Note 1. (c) It s a fairly clear evening, with about 15% cloud cover and winds between 8 10 miles per hour. Stability Class E, since by Note 4 Night refers to evening as well, there s less than 3/8 cloud cover and winds between 8 10 miles per hour fit in the class of winds between miles per hour.

6 Page 6 of 6 9. (5 points) Consider the Gaussian Plum Model: C = Q u 1 [ e y 2 1 2σy 2 σ y 2π σ z 2π e (z H) 2 2 ] + e (z+h)2 2. and e (z+h)2 2, in the right- In general terms, explain the presence of two terms, e (z H) 2 2 most factor. The term e (z+h) 2 2 accounts for a gas bouncing off the ground. Table 3-1 Definitions of Atmospheric Stability Classes Surface wind speed Day Night miles per meters per Incoming solar radiation Thinly overcast or 3/8 cloud hour second strong moderate slight 4/8 cloud cover024

Meteorology & Air Pollution. Dr. Wesam Al Madhoun

Meteorology & Air Pollution. Dr. Wesam Al Madhoun Meteorology & Air Pollution Dr. Wesam Al Madhoun Dispersion = Advection (Transport) + Dilution (Diffusion) Source Transport Receptor Re-entrainment Fick s law of diffusion J= - D * D C/Dx Where, J= Mass

More information

Atmospheric Dispersion, Transport and Deposition. Dispersion. Wind Speed. EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D.

Atmospheric Dispersion, Transport and Deposition. Dispersion. Wind Speed. EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D. Atmospheric Dispersion, Transport and Deposition EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D. Dispersion Atmospheric process affect dilution. Wind speed and lapse rate impact on emissions. Planetary

More information

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle from: USGS http://water.usgs.gov/edu/watercycle.html Evaporation: enough water to cover the entire surface of Earth to 1 meter cycles

More information

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology EVE 402/502 Air Pollution Generation and Control Chapter #3 Meteorology Introduction Meteorology is the study and forecasting of weather changes resulting from large-scale atmospheric circulation Characteristics

More information

2.6 Related Rates Worksheet Calculus AB. dy /dt!when!x=8

2.6 Related Rates Worksheet Calculus AB. dy /dt!when!x=8 Two Rates That Are Related(1-7) In exercises 1-2, assume that x and y are both differentiable functions of t and find the required dy /dt and dx /dt. Equation Find Given 1. dx /dt = 10 y = x (a) dy /dt

More information

Computer Practical: Gaussian Plume Model Paul Connolly, October 2017

Computer Practical: Gaussian Plume Model Paul Connolly, October 2017 1 Overview Computer Practical: Gaussian Plume Model Paul Connoll, October 2017 In this handout we look at the problem of advection and turbulent diffusion of material from a point source, such as a industrial

More information

Kansas State University Fume Hood Operation

Kansas State University Fume Hood Operation FUME HOODS 2009, PAGE 1 FUME HOODS Kansas State University Fume Hood Operation One of the primary safety devices in a laboratory is a chemical fume hood. A well-designed hood, when properly installed and

More information

Meteorology 2/6/2017. Wind, and its Interaction with Particle Plumes. Variation of wind speed with elevation. Variation of wind speed during the day

Meteorology 2/6/2017. Wind, and its Interaction with Particle Plumes. Variation of wind speed with elevation. Variation of wind speed during the day Meteorology The effect of wind, weather, and temperature conditions on the behavior of particle plumes Wind, and its Interaction with Particle Plumes Variation of wind speed with elevation Variation of

More information

Vertical Motion and Atmospheric Stability

Vertical Motion and Atmospheric Stability Lesson 4 Vertical Motion and Atmospheric Stability This lesson describes the vertical structure of the atmosphere, atmospheric stability and the corresponding vertical motion. Adiabatic diagrams are introduced

More information

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points. Charles s Law According to Charles s law, the volume of a fixed mass of gas varies directly with its Kelvin temperature if its pressure is constant. The following table contains Celsius temperature and

More information

1. Atmospheric Diffusion of Stack Gases

1. Atmospheric Diffusion of Stack Gases 1. Atmospheric Diffusion of Stack Gases 5F: Atmospheric Diffusion & Field Experiment Atmospheric diffusion is the process of diluting air pollutants by atmospheric turbulences. Historically, Taylor, G.I.

More information

The Ideal Gas Constant

The Ideal Gas Constant Chem 2115 Experiment # 8 The Ideal Gas Constant OBJECTIVE: This experiment is designed to provide experience in gas handling methods and experimental insight into the relationships between pressure, volume,

More information

MiSP Weather Data Worksheet #1 L2

MiSP Weather Data Worksheet #1 L2 MiSP Weather Data Worksheet #1 L2 Name Date TEMPERATURE AND WATER VAPOR (HUMIDITY) Introduction: Absolute humidity is the amount of water vapor contained in a given amount of air. It is measured as the

More information

The Application of Temperature and/or Pressure Correction Factors in Gas Measurement

The Application of Temperature and/or Pressure Correction Factors in Gas Measurement The Application of Temperature and/or Pressure Correction Factors in Gas Measurement COMBINED BOYLE S CHARLES GAS LAWS To convert measured volume at metered pressure and temperature to selling volume at

More information

Technical Memorandum

Technical Memorandum Technical Memorandum 017 Mobile TAGA Survey in the Vicinity of St. Marys Cement photos taken by TAGA staff Ontario Ministry of the Environment and Climate Change Report Prepared by: Terrestrial Assessment

More information

Project 1 Those amazing Red Sox!

Project 1 Those amazing Red Sox! MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Spring Semester, 2005 Project 1 Those amazing Red

More information

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii Experiment THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law By Dale A. Hammond, PhD, Brigham Young University Hawaii The objectives of this experiment are to... LEARNING OBJECTIVES introduce

More information

Finding Proper Gears and Wheels pt.ii

Finding Proper Gears and Wheels pt.ii Finding Proper Gears and Wheels pt.ii Gears are what make your Junior Solar Sprints car move. Finding the proper gear ratio for your car is an extremely important component of your car. Without it, your

More information

6-7 AIR POLLUTION METEOROLOGY The Atmospheric Engine

6-7 AIR POLLUTION METEOROLOGY The Atmospheric Engine AIR POLLUTION 491 tration, the direct radiative effect of increasing CO2 alone is not sufficient to explain current trends that show an increase in nighttime temperatures but not an increase in daytime

More information

The use of the analytical balance, and the buret.

The use of the analytical balance, and the buret. 1211L Experiment 1. Density 2015 by H. Patterson Instructor Notes: Students make measurements individually then share data to make the graph. There are four volumetric measurements to be studied; 3.00

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

How Fast Is Your Toy Car?

How Fast Is Your Toy Car? SCIENCE EXPERIMENTS ON FILE Revised Edition 6.15-1 How Fast Is Your Toy Car? Daniela Taylor Topic Motion, calculating speed Time 1 hour! Safety Please click on the safety icon to view the safety precautions.

More information

Chapter 2. Turbulence and the Planetary Boundary Layer

Chapter 2. Turbulence and the Planetary Boundary Layer Chapter 2. Turbulence and the Planetary Boundary Layer In the chapter we will first have a qualitative overview of the PBL then learn the concept of Reynolds averaging and derive the Reynolds averaged

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

More information

Fun Physics Workshop

Fun Physics Workshop Name: University of Cape Town Department of Physics Fun Physics Workshop Equipment checklist. Each group should get the following: 2 tins, saucer, beaker, straws, 2 balloons, tube, wooden balance, 2 weights,

More information

Practical Modelling & Hazard Assessment of LPG & LNG Spills

Practical Modelling & Hazard Assessment of LPG & LNG Spills Practical Modelling & Hazard Assessment of LPG & LNG Spills UKELG 3 rd April 2012 Tony Ennis Introduction Refrigerated or pressurised Release scenarios & release rate Vaporisation Gas dispersion Consequences

More information

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories 42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

Pulmonary Capacity Analyzer

Pulmonary Capacity Analyzer Pulmonary Capacity Analyzer micromedic Project Number micro13mm250 PREPARED BY: Marc A. Machin 21 Granada IrvIne, CA 92602 Phone - (714) 457-4539 Contents 1 1.1 1.2 PROJECT SUMMARY 1 Overview 1 Technical

More information

Air Pollution Dispersion

Air Pollution Dispersion Air Pollution Dispersion Dispersion Processes Convective Dispersion Air Parcel Dynamics Adiabatic Process Lapse Rate Equilibrium and Stability Atmospheric Stability Stability and Dispersion Temperature

More information

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

More information

Vocabulary. Page 1. Distance. Displacement. Position. Average Speed. Average Velocity. Instantaneous Speed. Acceleration

Vocabulary. Page 1. Distance. Displacement. Position. Average Speed. Average Velocity. Instantaneous Speed. Acceleration Vocabulary Term Definition Distance Displacement Position Average Speed Average Velocity Instantaneous Speed Acceleration Page 1 Homer walked as follows: Starting at the 0,0 coordinate, he walked 12 meters

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the air temperature remains constant, evaporating water into the air will the dew point and the relative

More information

CTB3365x Introduction to Water Treatment

CTB3365x Introduction to Water Treatment CTB3365x Introduction to Water Treatment D4b Aeration Doris van Halem Did you know that there are not just gasses in your glass of sparkling coke, but also in the tap water you drink? Welcome to the water

More information

Physics 152: Homework Problems on Fluids

Physics 152: Homework Problems on Fluids Physics 152: Homework Problems on Fluids 6/1/07 1. Atmospheric pressure varies from day to day, but 1 atm is defined as 1.01 x 10 5 Pa. Calculate how far upwards such a pressure would force a column of

More information

Lesson 27: Real-World Volume Problems

Lesson 27: Real-World Volume Problems Student Outcomes Students use the volume formula for a right prism ( ) to solve volume problems involving rate of flow. Lesson Notes Students apply their knowledge of volume to real-world contexts, specifically

More information

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

More information

METHOD 21 - DETERMINATION OF VOLATILE ORGANIC COMPOUND LEAKS. 1.2 Scope. This method is applicable for the

METHOD 21 - DETERMINATION OF VOLATILE ORGANIC COMPOUND LEAKS. 1.2 Scope. This method is applicable for the 1151 METHOD 21 - DETERMINATION OF VOLATILE ORGANIC COMPOUND LEAKS 1.0 Scope and Application. 1.1 Analytes. Analyte Volatile Organic Compounds (VOC) CAS No. No CAS number assigned 1.2 Scope. This method

More information

Measuring Lung Capacity

Measuring Lung Capacity Name Class Date Chapter 37 Circulatory and Respiratory Systems Measuring Lung Capacity Introduction The amount of air that you move in and out of your lungs depends on how quickly you are breathing. The

More information

1. Large-scale temperature inversions.

1. Large-scale temperature inversions. Lecture 18. Local and regional pollution issues: plumes of pollution. Objectives: 1. Large-scale temperature inversions. 2. Plumes of pollution. Readings: Turco: p.128-135; Brimblecombe: p.130-138 1. Large-scale

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Name Hour. The Behavior of Gases. Practice B

Name Hour. The Behavior of Gases. Practice B Name Hour The Behavior of Gases Practice B B 1 Objective 1: Apply Boyle s Law, Charles s Law, and Gay-Lussac s Law to solve problems involving pressure and volume and temperature. 1. A high-altitude balloon

More information

18 Flight Hazards over High Ground

18 Flight Hazards over High Ground 18 Flight Hazards over High Ground meteorology 18.1 Mountain Effect on Fronts When a warm front passes a mountain range, the air, is lifted over the mountain and will strengthen the formation of cloud

More information

Exploring Wind Energy

Exploring Wind Energy 2013-2014 Exploring Wind Energy Student Guide SECONDARY Introduction to Wind What is Wind? Wind is simply air in motion. It is produced by the uneven heating of the Earth s surface by energy from the sun.

More information

UNIT 2 FLUIDS PHYS:1200 LECTURE 12 FLUIDS (1)

UNIT 2 FLUIDS PHYS:1200 LECTURE 12 FLUIDS (1) 1 UNIT 2 FLUIDS PHYS:1200 LECTURE 12 FLUIDS (1) Lecture 12 is the first lecture on the new topic of fluids. Thus far we have been discussing the physics of ideal solid objects that do not change their

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B4. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the

More information

Liquids and Gases. 2/26/2012 Physics 214 Fall

Liquids and Gases. 2/26/2012 Physics 214 Fall Liquids and Gases The unit of volume is the meter cubed, m 3, which is a very large volume. Very often we use cm 3 = cc. Other everyday units are gallons, quarts, pints As we know liquids and gases act

More information

Table of Contents. Career Overview... 4

Table of Contents. Career Overview... 4 Table of Contents Career Overview.................................................. 4 Basic Lesson Plans Hot-Air Balloons Activity 1 Your First Hot-Air Balloon.... 5 Activity 2 Surface Area and Volume...

More information

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?

3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum? AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a water-filled container. The

More information

Float a Big Stick. To investigate how objects float by analyzing forces acting on a floating stick

Float a Big Stick. To investigate how objects float by analyzing forces acting on a floating stick Chapter 19: Liquids Flotation 53 Float a Big Stick Purpose To investigate how objects float by analyzing forces acting on a floating stick Required Equipment/Supplies Experiment vernier calipers 250-mL

More information

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds Preliminary design of a high-altitude kite A flexible membrane kite section at various wind speeds This is the third paper in a series that began with one titled A flexible membrane kite section at high

More information

Converting Between Measurement Systems. ESSENTIAL QUESTION How can you use ratios and proportions to convert measurements? 7.4.E

Converting Between Measurement Systems. ESSENTIAL QUESTION How can you use ratios and proportions to convert measurements? 7.4.E LESSON 3.1 Converting Between Measurement Systems Proportionality 7.4.E Convert between measurement systems, including the use of proportions and the use of unit rates. Also 7.4.D? ESSENTIAL QUESTION How

More information

GEOMETRY CIRCLING THE BASES PRE-VISIT - BALLPARK FIGURES - PART 2

GEOMETRY CIRCLING THE BASES PRE-VISIT - BALLPARK FIGURES - PART 2 PRE-VISIT - BALLPARK FIGURES - PART 2 OBJECTIVE: Students will be able to: Identify the formulas for finding circumference and area of a circle. Calculate the circumference and area of given circles. TIME

More information

States of Matter. Q 7. Calculate the average of kinetic energy, in joules of the molecules in 8.0 g of methane at 27 o C. (IIT JEE Marks)

States of Matter. Q 7. Calculate the average of kinetic energy, in joules of the molecules in 8.0 g of methane at 27 o C. (IIT JEE Marks) Q 1. States of Matter Calculate density of NH 3 at 30 o C and 5 atm pressure Q 2. (IIT JEE 1978 3 Marks) 3.7 g of a gas at 25 o C occupied the same volume as 0.184g of hydrogen at 17 o C and at the same

More information

Meteorology and modelling

Meteorology and modelling Chapter 6 Meteorology and modelling Measurements tell us what the concentrations are (or have been) at a particular location. They cannot tell us what the concentration is going to be in the future, or

More information

Ch. 11 Mass transfer principles

Ch. 11 Mass transfer principles Transport of chemical species in solid, liquid, or gas mixture Transport driven by composition gradient, similar to temperature gradients driving heat transport We will look at two mass transport mechanisms,

More information

Show your work. Fill in the circle for the correct answer.

Show your work. Fill in the circle for the correct answer. Unit 5 Test Form B Fill in the circle for the correct answer. Show your work. 1. Marcus rode his mountain bike on a 3-kilometer dirt trail. He completed the trail 2 times. How many meters did Marcus ride

More information

Modeling Diffusion Rates of a Gas in an Enclosed Space

Modeling Diffusion Rates of a Gas in an Enclosed Space Modeling Diffusion Rates of a Gas in an Enclosed Space By: Chirag Kulkarni, Haoran Fei, Henry Friedlander Abstract: This research attempts to identify the relationship between pressure of a certain gas

More information

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book.

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book. Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections 10.1 10.2 of your book. Convert the following to Celsius and Kelvin temperatures: 1. 80.0 o F Early E. C.:

More information

LAB : Using A Spark Timer

LAB : Using A Spark Timer LAB : Using A Spark Timer Read through the whole lab and answer prelab questions prior to lab day. Name: F1 Introduction A spark timer is used to make accurate time and distance measurements for moving

More information

Gas Law Worksheets - WS: Boyle s and Charles Law

Gas Law Worksheets - WS: Boyle s and Charles Law Gas Law Worksheets - WS: Boyle s and Charles Law Boyle s Law states that the volume of a gas varies inversely with its pressure if temperature is held constant. (If one goes up the, other goes down.) We

More information

SIZING THE EXTROL DIAPHRAGM-TYPE HYDRO-PNEUMATIC TANK

SIZING THE EXTROL DIAPHRAGM-TYPE HYDRO-PNEUMATIC TANK SIZING THE EXTROL DIAPHRAGM-TYPE HYDRO-PNEUMATIC TANK 1400 Division Road, West Warwick, RI 02893 T: 401.884.6300 F: 401.885.2567 www.amtrol.com Sizing the ExTrol Diaphragm-Type Hydro-Pneumatic Tank For

More information

Keywords: complex terrain, dispersion, wind tunnel, power plant emission.

Keywords: complex terrain, dispersion, wind tunnel, power plant emission. EACWE 5 Florence, Italy 19 th rd July 9 Flying Sphere image Museo Ideale L. Da Vinci Wind tunnel measurement of flow and dispersion of power plant emission on the coastal region with complex terrain B.S.

More information

INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important to filter design and filter performance.

INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important to filter design and filter performance. Measurement of Filter Porosity using a Custom-Made Pycnometer George Chase The University of Akron INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important

More information

Name Date Class Practice A. 1. Bethany s dog eats 450 grams of food per day. Find this rate in kilograms per week.

Name Date Class Practice A. 1. Bethany s dog eats 450 grams of food per day. Find this rate in kilograms per week. Practice A 1. Bethany s dog eats 450 grams of food per day. Find this rate in kilograms per week. 2. Grace runs 3 miles a day. Find this rate in feet per day. 3. Jefferson drinks 10 cups of orange juice

More information

1 MS Earth s Atmosphere

1 MS Earth s Atmosphere CHAPTER 1 MS Earth s Atmosphere Chapter Outline 1.1 THE ATMOSPHERE 1.2 ENERGY IN THE ATMOSPHERE 1.3 LAYERS OF THE ATMOSPHERE 1.4 AIR MOVEMENT 1.5 REFERENCES Did you ever see such an awesome sight? This

More information

Dissolved Oxygen Guide

Dissolved Oxygen Guide Educat i onser i es Di ssol vedoxygengui de Dissolved Oxygen Guide Introduction Dissolved oxygen probes provide a convenient approach to essentially direct measurement of molecular oxygen. The membrane

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 3 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Natural convection and turbulence are most likely to occur when: a) temperature decreases rapidly with

More information

CubeSat Balloon Drag Devices: Meeting the 25-Year De-Orbit Requirement

CubeSat Balloon Drag Devices: Meeting the 25-Year De-Orbit Requirement CubeSat Balloon Drag Devices: Meeting the 25-Year De-Orbit Requirement Jerry K. Fuller, David Hinkley, and Siegfried W. Janson The Aerospace Corporation Physical Science Laboratories August, 2010 The Aerospace

More information

Gas Physics Pressure and Flow Topics Covered:

Gas Physics Pressure and Flow Topics Covered: Gas Physics Pressure and Flow Topics Covered: Molecular Theory of Gases Definition of Pressure The Gas Laws Definition of Flow Definition of Pressure Drop Gas Physics Pressure and Flow Topics Covered:

More information

PUFF! Rocket Activity. Students will learn about rocket stability as they. Students will construct small indoor paper

PUFF! Rocket Activity. Students will learn about rocket stability as they. Students will construct small indoor paper Rocket Activity 3...2...1...PUFF! Students will learn about rocket stability as they Unifying Concepts and Processes Science as Inquiry inquiry Physical Science Science and Technology Students will construct

More information

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation Lab 1 Standing Waves on a String Learning Goals: To distinguish between traveling and standing waves To recognize how the wavelength of a standing wave is measured To recognize the necessary conditions

More information

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour.

The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. The speed of an inline skater is usually described in meters per second. The speed of a car is usually described in kilometers per hour. Speed How are instantaneous speed and average speed different? Average

More information

ENVE 301 Environmental Engineering Unit Operations

ENVE 301 Environmental Engineering Unit Operations ENVE 301 Environmental Engineering Unit Operations Lecture 5 Gas Transfer, Aeration II SPRING 2014 Assist. Prof. A. Evren Tugtas Gas Transfer Examples 2 Example 1: Gas Transfer - Problems Henry s law constant

More information

Generating Calibration Gas Standards

Generating Calibration Gas Standards Technical Note 1001 Metronics Inc. Generating Calibration Gas Standards with Dynacal Permeation Devices Permeation devices provide an excellent method of producing known gas concentrations in the PPM and

More information

Jeddah Knowledge International School. Science Revision Pack Answer Key Quarter 3 Grade 10

Jeddah Knowledge International School. Science Revision Pack Answer Key Quarter 3 Grade 10 Jeddah Knowledge International School Science Revision Pack Answer Key 2016-2017 Quarter 3 Grade 10 Name: Section: ANSWER KEY- SCIENCE GRADE 10, QUARTER 3 1 1. What are the units for mass? A Kilograms

More information

We can tell that diameter of the tube influence the pressure of the water at the bottom.

We can tell that diameter of the tube influence the pressure of the water at the bottom. IDS 102 Pressure Part II You may have found that there is a slight difference in the distance of the two streams, but this is due to frictional forces between the water and the tube, not the different

More information

Air Pressure and Wind. Goal: Explain the formation of wind based on differences in air pressure

Air Pressure and Wind. Goal: Explain the formation of wind based on differences in air pressure Air Pressure and Wind Goal: Explain the formation of wind based on differences in air pressure What is Air Pressure? Reminder: Air pressure is thickest near Earth s surface and becomes thinner as we move

More information

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer: Anemometry Anemometry Function of an anemometer: Measure some or all of the components of the wind vector In homogeneous terrain, vertical component is small express wind as -D horizontal vector For some

More information

INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE

INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE Proceedings of FEDSM 98 1998 ASME Fluids Engineering

More information

Factors that determine water movement. Morphometry Structure of stratification Wind patterns

Factors that determine water movement. Morphometry Structure of stratification Wind patterns Water Movement Factors that determine water movement Morphometry Structure of stratification Wind patterns Turbulent and laminar flow Laminar flow - smooth, unidirectional flow Low velocity Rare in nature

More information

Technical Committee on LP-Gas at Utility Gas Plants

Technical Committee on LP-Gas at Utility Gas Plants Technical Committee on LP-Gas at Utility Gas Plants Addendum to the Agenda Sheraton Denver Downtown 1550 Court Place Denver, CO 80202 August 7-8, 2013 The following items relate to item 5.B of the Agenda:

More information

SIO 210 Introduction to Physical Oceanography Mid-term examination November 4, 2013; 50 minutes

SIO 210 Introduction to Physical Oceanography Mid-term examination November 4, 2013; 50 minutes SIO 210 Introduction to Physical Oceanography Mid-term examination November 4, 2013; 50 minutes Closed book; one sheet of your own notes is allowed. A calculator is allowed. (100 total points.) Possibly

More information

a. The density of seawater is about 1027 kg/m 3. What is the pressure of the ocean on these creatures in psi? Show your work.

a. The density of seawater is about 1027 kg/m 3. What is the pressure of the ocean on these creatures in psi? Show your work. IDS 10 Pre-exam Homework Questions- solutions 1. The specific heat of silver is 0.05 cal/(g C) and the specific heat of water is 1 cal/(g C) If a certa amount of heat is added to a sample of water, the

More information

Inquiry Investigation: Factors Affecting Photosynthesis

Inquiry Investigation: Factors Affecting Photosynthesis Inquiry Investigation: Factors Affecting Photosynthesis Background Photosynthesis fuels ecosystems and replenishes the Earth's atmosphere with oxygen. Like all enzyme-driven reactions, the rate of photosynthesis

More information

Energy Drilling Prospects

Energy Drilling Prospects 01 05 Energy Drilling Prospects Fraser Offshore Ltd is a drilling project management company. It designs, plans and drills oil wells for clients who are typically oil & gas companies or large utilities

More information

Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

5. Find two numbers whose sum is 48 and whose product is to be a maximum.

5. Find two numbers whose sum is 48 and whose product is to be a maximum. 1 Optimization Practice (4.4) 1. If 40 passengers hire a special car on a train, they will be charged $8 each. This fare will be reduced by $.10 each passenger, for each person in addition to these 40.

More information

APPENDIX A: SENSITIVITY TESTS INPUTS AND SETUP TABLES

APPENDIX A: SENSITIVITY TESTS INPUTS AND SETUP TABLES APPENDIX A: SENSITIVITY TESTS INPUTS AND SETUP TABLES This appendix contains two tables for each case and model; the first outlines the assumptions and inputs that were kept constant for each case, and

More information

Ocean waves and shock waves

Ocean waves and shock waves Ocean waves and shock waves Photo1. 2009 June 6. Two persons are here enjoying the sun on a pier at the south coast of France when suddenly some special waves arrive, seemingly ordinary small waves, in

More information

Vessels subject to External Pressure

Vessels subject to External Pressure Basic principles of compressive force Vessels subject to External Pressure Before After The result of just air pressure! Presented by: Ray Delaforce Basic principles of compressive force Consider For a

More information

The following reference pages can be downloaded, given to your learners, who can put them to one side until needed.

The following reference pages can be downloaded, given to your learners, who can put them to one side until needed. Retail Maths Numeracy skills are needed in many retail activities. Your employees will need to measure, and to work out maths problems daily. Sometimes it is good to have a general reference page for them

More information

Gases and Pressure SECTION 11.1

Gases and Pressure SECTION 11.1 SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.

More information

SCIENCE. Year 9 Examination C 40 marks. Make sure that you have answered all the questions in paper 9B before you start this paper

SCIENCE. Year 9 Examination C 40 marks. Make sure that you have answered all the questions in paper 9B before you start this paper NAME: SCIENCE TEACHER: 9C SCIENCE Year 9 Examination 2006 9C 40 marks Make sure that you have answered all the questions in paper 9B before you start this paper Time allowed for both examinations: 2 hours

More information

Gerald D. Anderson. Education Technical Specialist

Gerald D. Anderson. Education Technical Specialist Gerald D. Anderson Education Technical Specialist The factors which influence selection of equipment for a liquid level control loop interact significantly. Analyses of these factors and their interactions

More information

Mixing elements together: constant composition and multiple proportions

Mixing elements together: constant composition and multiple proportions Mixing elements together: constant composition and multiple proportions Experiment A: Samples of zinc and sulfur are heated and a new compound forms, ZnS Zn S ZnS initial mass (g) 1.0000 1.0000 0.0000

More information

PRESSURE. 7. Fluids 2

PRESSURE. 7. Fluids 2 DENSITY Fluids can flow, change shape, split into smaller portions and combine into a larger system One of the best ways to quantify a fluid is in terms of its density The density, ρ, of a material (or

More information

The oceans are vast not only in size, but also in their ability to store and release energy.

The oceans are vast not only in size, but also in their ability to store and release energy. WHAT ENERGIES ARE ASSOCIATED WITH EARTH S OCEANS? The oceans are vast not only in size, but also in their ability to store and release energy. Scientists recognize various forms of energy in nature. Many

More information