ASSESSMENT OF LOWLEVEL WIND CHARACTERISTICS AND ITS EFFECT ON AIRCRAFT OPERATIONS IN NAIROBI USING NCEP REANALYSIS

Size: px
Start display at page:

Download "ASSESSMENT OF LOWLEVEL WIND CHARACTERISTICS AND ITS EFFECT ON AIRCRAFT OPERATIONS IN NAIROBI USING NCEP REANALYSIS"

Transcription

1 ASSESSMENT OF LOWLEVEL WIND CHARACTERISTICS AND ITS EFFECT ON AIRCRAFT OPERATIONS IN NAIROBI USING NCEP REANALYSIS By Mercy Wanjiru Mwangi I56/81597/2015

2 1.0 INTRODUCTION Wind shear is the sustained change in the wind direction and or speed, resulting in a change in the headwind or tail wind encountered by an aircraft (Hong Kong observatory, 2010). Winds blow more frequently from one direction than any other at many locations-prevailing wind. Major runways at airports must be aligned with the prevailing wind in order to assist in taking off and landing (Ahrens, 2009). However gust fronts, funnel cloud and microbursts which are thunderstorm related, mountain waves, strong surface winds coupled with local topography, urbanization-manmade structures, sea breeze fronts and surface heating can occur suddenly leading to wind changes.

3 Its significance to aviation lies in its effect on aircraft performance and hence potentially adverse effects on flight safety. It is particularly important during final approach and landing phase respectively take-off run and climb-out. Its height is at near critical values therefore rendering the aircraft susceptible to the adverse effects of wind. Also the aircraft is operating at relatively low speeds In cases of turbulence, it causes abrupt changes in attitude of an aircraft leading to temporary loss of control as well as bumps and jolts that affect the intended flight path. (Hong Kong Observatory, 2010). Terminal operations are also impacted since the change to either a crosswind or a tailwind impede landings and require changing the runway configuration. When occurring in thunderstorm it can lead to airport closures, degrade airport capacities for acceptance and departure and hinder or stop ground operations.

4 To improve air traffic efficiency, safety and management, the wind changes must be timely and accurately forecasted Operational weather nowcasting is therefore essential. Forecasts timing of significant changes are supposed to be accurate to within 1 hour. Huang et al (2012) describes nowcasting as short period weather forecasting concerned with current weather conditions and the changes over the next few minutes to the ensuing 6 hours. The spatial scale is no more than a few kilometers with frequent updates. It is highly location specific and requires data of very high spatial and temporal resolution to produce accurate forecasts.

5 1.1 PROBLEM STATEMENT The erratic nature of wind shear causes difficulty in the accurate alerting of the phenomena yet it is vital to provide accurate wind forecasts. Tailwinds on landing can increase landing distances especially on wet conditions while crosswinds increase the risk of veering off the runway when landing. Runways are designed to benefit from prevailing winds, thus a wind from a less climatologically preferred direction may result in the air traffic controllers having to rearrange air traffic to depart or land in a different direction. Jomo Kenyatta International Airport does not have cross runways to mitigate against excessive crosswind. The airport has only one runway. This means that depending on the strength of the crosswind or tailwind, the air traffic management makes decisions on which direction planes will land or whether they will land at all.

6 1.2 OBJECTIVE The main objective of the study is to determine and assess the wind and shear characteristics within Nairobi Airspace SPECIFIC OBJECTIVES To determine the wind and shear characteristics at various levels. To determine monthly and diurnal periods when wind shear is prevalent. To establish the relationship between the incidences and surface observations captured by the NCEP reanalysis and causes of the shear

7 1.3 JUSTIFICATION Detection and prediction of wind shear occurring at low levels in the surrounding of airports enables efficient planning in making runway switches using the best possible information about the timing of a wind shift. For the airlines, right action is taken on time avoiding damages likely to be incurred which could remove an aircraft from operations and result in both lost revenues and excess maintenance costs.

8 1.4 AREA OF STUDY JKIA is located 18km from Nairobi city. It is at an elevation of (5330 ft) meters above sea level, the airport has a single asphalt runway alignment in direction and measuring 4,117m in length.

9 2.0 LITERATURE REVIEW Motions are always present and can cause substantial wind direction variation. (Anfossi et al. 2005). The presence of shear is often visible to an observer. It can be in the form of cloud layers moving in different directions, smoke plumes sheared and moving in different directions at different heights and trees bending in all directions in response to sudden gusts from a squall line among others (ICAO, 2005). The spectrum of wind shears and eddy motions associated with different synoptic, mesoscale and microscale weather regimes is quite large and their effects on aircraft performance are complicated in nature(arkell, 2000) Most important types of wind shear for aviation are commonly referred to as low level wind shear (LLWS) and low level turbulence.

10 In aviation, low-level is that wind shear occurring on the approach path or take-off path or during circling approach between runway level and 500m (1600ft) above that level and aircraft on the runway during landing roll or take-off run. If due to local topography, wind shears are significant at heights in excess of 500m above runway level, then 500m shall not be considered restrictive. (WMO Annex 3, 2013). LL wind shear is noticeable below 600m where frictional drag on the air closest to the earth s surface causes changes in both wind speed and direction with height. This layer is generally referred to as the friction layer, which can be further subdivided as follows into: a). surface boundary layer : earth s surface- 100 m (330 ft) - air motion is controlled by friction with the earth s surface; and

11 b). The Ekman layer :100 m (330 ft) up to at least 600 m (2 000 ft) -the effect of friction diminishes with height, - controlling factors, like coriolis force and horizontal pressure gradient force, become increasingly important. The wind direction tends to remain constant with height in the surface boundary layer but to veer (back) with height in the northern (southern) hemisphere throughout the Ekman layer.

12 CAUSES OF LLWS AND TURBULENCE It can be convective or non-convective. Non-convective LLWS evolves slowly over the course of a few hours for example, in the case of nocturnal inversion. Convective LLWS changes more quickly resulting from the discontinuity between the ambient environmental winds and gust front and from discontinuities within the outflow region behind the gust front Turbulent shear on the other hand changes quite rapidly in time.

13 Surface heating and instability causes turbulence. As the earth surface heats, thermals rise and convection cells form. The resulting vertical motion creates thermal turbulence. Thermal and mechanical turbulence occur together in the atmosphere. In stable air with weak winds, eddies are non-existent or small. As surface heating increases and wind speed increases, instability develops and the eddy becomes large and extends through a greater depth. The rising side of the eddy becomes larger and extends through a greater depth. It carries slow moving surface air upward causing a frictional drag on the faster flow of air aloft. Some of the faster moving air is brought down with the descending part of the eddy, producing a momentary gust of wind.

14 The circulating eddies in unstable air lead to strong, gusty surface winds. Greater instability also leads to a greater exchange of faster moving air from upper levels with slower moving air at lower levels. This exchange increases the average wind speed near the surface. This is why surface winds are usually stronger in the afternoon. A small increase in wind speed can greatly increase the wind force of an object. Some of the mechanisms also cause LLWS showing the inter-related nature of the two phenomena. Strong LLWS and low-level turbulence is seen in thunderstorm environments making it hard to distinguish the two. During the early morning, when the air is most stable, thermal turbulence is normally at a minimum. (Arkell,2000)

15 Ground topography and large buildings such as man-made structures like hangars to large natural obstructions such as hill, mountains and canyons cause obstructions on the ground affecting the flow of wind. They break up the flow of the wind and create wind gusts that change rapidly in direction and speed. The intensity of the turbulence depends on the size of the obstacle and the primary velocity of the wind. On a weekly perhaps daily basis, wind speed and direction will be influenced by the passage of cyclones or anticyclones. On an hourly basis, localized influences such as the surrounding topography, sea/land breeze, mountain/valley breeze and urbanization will further alter the wind. This makes it difficult to detect wind shear onset and is thus a silent danger to aviation.

16 The pilots response to shear conditions determines how well the aircraft will respond to the rapid changes (Arkell, 2000). This response can be to change the aircrafts power settings and or its angle of attack. These changes will inturn alter the aircrafts indicated airspeed (IAS) and/or its climb or descent rate. An aircraft size, weight and speed are also critical factors in determining its response to a given shear environment. For a non-convective LLWS ; If the shear is an increasing tailwind, the pilot can increase power to increase IAS. This will prevent decreased lift to the wings which diminishes the response of control surfaces and drops the aircraft below the desired flight path or glide slope or may even stall the aircraft. (ICAO, 1987).

17 If the shear is an increased headwind, the pilot will usually cut back on power otherwise the aircraft will rise above the desired flight path. If the pilot is unsure about the direction of the shear he or she will usually increase power to be on the safe side. Studies on wind shear accidents have shown that pilots will only have 5 to 15 seconds of time to react correctly, to safely negotiate the hazards. The hazards are rapidly changing headwind and tailwind, strong side gusts and variable lift on the wings, all during a time when an aircraft is most vulnerable (Minor, 2000). Operationally non-convective LLWS usually presents the pilot with one wind shift or vector wind change while convective LLWS often presents the pilot with multiple wind shifts along the flight path thus requiring different response from the pilot.

18 Figure 2.1: Effect of Head (Tail) wind shear on aircraft. ICAO 2005

19 As an aircraft flies into a region with horizontal wind drop and/or downdraft, lift will decrease, causing the aircraft to fly below the original flight-path (Li P, 2006). This is called sinking shear scenario. Conversely, when an aircraft encounters horizontal wind increase and/or updraft, the lift will increase, causing the aircraft to fly above the original flight path. This is called a headwind gain or lifting shear scenario. The headwind gain scenario could still cause trouble to the pilot during an aircrafts landing as the aircraft could be caused to fly above the approaching glide-path, hence missing the touch down zone and have to make a go-around The decreased headwind in a sinking shear case, reduces the lift and subsequently the aircraft would fly below its intended flight path.

20 3.0 DATA AND METHODOLOGY 3.1 DATA Metar wind data: Hourly wind speed and direction data will be extracted from METARs. Data will be collected for 5 years (2010 to 2015). The wind information will be for JKIA, Wilson airport, Ngong, and Moi airbase stations. NCEP reanalysis wind data: 6 hourly wind data at heights upto 700mb will be obtained from the 40-year reanalysis project between NCEP and NCAR (Kalnay et al, 1996). WIND SPEED DATA: The power law will be used to extrapolate wind speed at higher heights from stations with observed wind data (ICAO, 2005). This will cover smaller spatial scales not accommodated by the NCEP/NCAR data. Wind shear speed from a known height (usually 10 m) will be extrapolated as follows:

21 Power law equation: The power law is generally used under adiabatic conditions with strong wind speeds for the layer from 10 m to 200 m. Where: V= velocity to be calculated at height h h= height above ground level for velocity v V o =known velocity at height h o h o =reference height where V o is known α = wind shear exponent. a parameter that depends on the stability, surface roughness and height with a value between 0 and +1 determined empirically. For neutral stability conditions in open lands, α is approximately 1/7=0.143 (Masters, 2005)

22 wind shear incidences data: the wind shear occurrences data,when they occurred and at what level it was experienced will be retrieved from KCAA. The incidences are from what was reported by the pilots based to a large extent on their subjective assessment of the intensity of the wind shear encountered as recognized in Annex 3, Appendix 6, 6.2.4, Note 2.

23 3.2 METHODOLOGY DATA QUALITY CONTROL ESTIMATING MISSING DATA The arithmetic mean ratio method will be used given by; = Where X i Missing value for station A Y i -Corresponding value for station B

24 HOMOGENEITY TEST Single mass curve will be used to check for homogeneity of wind values. They will be plotted against time. A near straight line indicates good quality of data TIME SERIES The wind shear incidences will be plotted against time to determine periods when wind shear is prevalent WIND CHARACTERISTICS Windroses from Surface observations will be plotted to establish diurnal behavior of wind Diurnal vertical profile will be plotted to establish the magnitude of shear and relate the reported shear to the wind Causes of the shear will then be determined.

25 4.1 EXPECTED RESULTS The results are expected to show the behaviour of wind speeds and direction at various heights at small temporal and spatial scale so as to improve alertness of windshear affecting JKIA. Seasons when windshear is more prevalent will also be documented.

26 3.3 BUDGET ACTIVITY KSHs 1. Data stick and stationaries Data Acquisition and Analysis Typing Services Internet Services, Printing and Photocopying Compilation, Report writing and Binding Miscellaneous 3000 TOTAL 39,000

27 3.4 WORKPLAN ACTIVITY May Jun-Sept Oct-Dec January March April Proposal Writing Proposal Presentation Data Collection Data Organization and Analysis Progress Report Presentation Report Writing Final Presentation

28 5.0. REFERENCES Ahrens C. D, (2009): Meteorology today; An Introduction to weather climate and the environment, 9 th edition, Brooks/Cole CENGAGE Learning Arkell R. E, (2000): Differentiating between types of wind shear in aviation forecasting. Volume 24, Number 3, National Weather Service. EASA (2011): Authority, Organisation and Operations Requirements for Aerodromes. NPA (B.III). International Civil Aviation Organization, (2005). Manual on Low-Level Wind Shear. Doc 9817, International Civil Aviation Organization, 1 st Edition Kalnay et al (1996). The NCEP/NCAR 40 year reanalysis project, Bull. American Meteorological Society., 77, Kenya Airport Authority (July, 2015), Aeronautical Information Publication, Kenya Airport Authority. Huang et al (2012): Integrating NWP Forecasts and Observation Data to Improve Nowcasting Accuracy, Weather and Forecasting, Volume 27, DOI: /WAF-D Li, P.W., Windshear Its Detection and Alerting. In Symposium of Science in Public Service, Science Museum.

Local Winds. Please read Ahrens Chapter 10

Local Winds. Please read Ahrens Chapter 10 Local Winds Please read Ahrens Chapter 10 Scales of Motion Microscale: meters Turbulent eddies Formed by mechanical disturbance or convection Lifetimes of minutes Mesoscale: km s to 100 s of km s Local

More information

Preliminary Study of Aircraft Dynamics and Performance: High Gust Condition Aspect

Preliminary Study of Aircraft Dynamics and Performance: High Gust Condition Aspect Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 2 (2013), pp. 57-62 Research India Publications http://www.ripublication.com/aasa.htm Preliminary Study of Aircraft Dynamics

More information

Accident Prevention Program

Accident Prevention Program Accident Prevention Program Wind Shear "Tonto 55, final controller, how do you read...?" "55, loud and clear." This has been a good flight thought the Instructor Pilot (IP) as the pilot in front smoothly

More information

OPERATIONAL USE OF A WIND PROFILER FOR AVIATION METEOROLOGY ABSTRACT

OPERATIONAL USE OF A WIND PROFILER FOR AVIATION METEOROLOGY ABSTRACT OPERATIONAL USE OF A WIND PROFILER FOR AVIATION METEOROLOGY Miguel Angel Pelacho, Darío Cano, Eugenio Ayensa Spanish Agency of Meteorology (AEMET) Parque del Buen Retiro, Apdo. 285, 28080-MADRID E-mail:

More information

Ongoing research in Hong Kong has led to improved wind shear and turbulence alerts

Ongoing research in Hong Kong has led to improved wind shear and turbulence alerts Ongoing research in Hong Kong has led to improved wind shear and turbulence alerts (published in the International Civil Aviation Organization (ICAO) Journal, Volume 58, Number 2, March 2003) Located in

More information

Wind: Small Scale and Local Systems Chapter 9 Part 1

Wind: Small Scale and Local Systems Chapter 9 Part 1 Wind: Small Scale and Local Systems Chapter 9 Part 1 Atmospheric scales of motion Scales of atmospheric circulations range from meters or less to thousands of kilometers- millions of meters Time scales

More information

FINAL REPORT. Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia

FINAL REPORT. Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia FINAL REPORT Wind Assessment for: NEW OFFICE BUILDING AT ESSENDON FIELDS Essendon, Victoria, Australia Prepared for: Essendon Fields Pty Ltd Essendon Fields House Level 2, 7 English Street Essendon Fields

More information

Chapter 2. Turbulence and the Planetary Boundary Layer

Chapter 2. Turbulence and the Planetary Boundary Layer Chapter 2. Turbulence and the Planetary Boundary Layer In the chapter we will first have a qualitative overview of the PBL then learn the concept of Reynolds averaging and derive the Reynolds averaged

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 3 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Natural convection and turbulence are most likely to occur when: a) temperature decreases rapidly with

More information

Low Level Wind Shear: Using Smoke Plumes for Guidance

Low Level Wind Shear: Using Smoke Plumes for Guidance Low Level Wind Shear: Using Smoke Plumes for Guidance John Dutcher Dutcher Safety & Meteorology Services www.johndutcher.com Low Level Wind Shear Wind shear is defined as any rapid change in wind direction

More information

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces MET 200 Lecture 11 Local Winds Last Lecture: Forces Scales of Motion Eddies Sea Breeze Mountain-Valley Circulations Chinook - Snow Eater Drainage Wind - Katabatic Wind 1 2 Review of Forces 1. Pressure

More information

Civil Air Patrol Auxiliary of the United States Air Force

Civil Air Patrol Auxiliary of the United States Air Force Mountain Flying Qualification Course Civil Air Patrol Auxiliary of the United States Air Force Mountain Weather Slopes Most U.S. mountain ranges are oriented north-south, while the prevailing winds are

More information

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology EVE 402/502 Air Pollution Generation and Control Chapter #3 Meteorology Introduction Meteorology is the study and forecasting of weather changes resulting from large-scale atmospheric circulation Characteristics

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 6 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) A steep pressure gradient: a. produces light winds. b. produces strong winds. c. is only possible in

More information

PGF. Pressure Gradient. Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 2/14/2017

PGF. Pressure Gradient. Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 2/14/2017 Winds Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 1. Pressure gradient force a. High pressure flows to low pressure b. Pressure gradient = difference in pressure

More information

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM 1 TEM: 0643 OM-RT - Weather - hap. 6 OD_PREG: PREG20098600 (5301) PREGUNT: Every physical process of weather is accompanied

More information

Vertical Motion and Atmospheric Stability

Vertical Motion and Atmospheric Stability Lesson 4 Vertical Motion and Atmospheric Stability This lesson describes the vertical structure of the atmosphere, atmospheric stability and the corresponding vertical motion. Adiabatic diagrams are introduced

More information

Scales of Atmospheric Motion. The atmosphere features a wide range of circulation types, with a wide variety of different behaviors

Scales of Atmospheric Motion. The atmosphere features a wide range of circulation types, with a wide variety of different behaviors Scales of Atmospheric Motion The atmosphere features a wide range of circulation types, with a wide variety of different behaviors Typically, the best way to classify these circulations is according to:

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

2.4. Applications of Boundary Layer Meteorology

2.4. Applications of Boundary Layer Meteorology 2.4. Applications of Boundary Layer Meteorology 2.4.1. Temporal Evolution & Prediction of the PBL Earlier, we saw the following figure showing the diurnal evolution of PBL. With a typical diurnal cycle,

More information

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions.

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions. Santa Ana Winds Surface weather map showing typical Santa Ana conditions. High Desert Elevation ~1500-2000 ft Santa Ana Winds ~1500 meters 0 meters Santa Ana Winds ~875 mb ~1500 meters ~875 mb Horizontal

More information

Wind: Small-scale and Local Systems

Wind: Small-scale and Local Systems Wind: Small-scale and Local Systems Scales of Atmospheric Motion Atmospheric motions/phenomena occur on many diverse spatial and temporal scales. Weather forecasters tend to focus on Mesoscale and synoptic

More information

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) 1 Definitions: The sea breeze is a local, thermally direct circulation arising from

More information

Turbulence forecasts based on upper-air soundings

Turbulence forecasts based on upper-air soundings OC3570 Turbulence forecasts based on upper-air soundings By Greg Ireton Introduction The objective of this paper is to make turbulence forecasts from upper-air data by making Richardson s number calculations

More information

APPI PPG LECTURE 5: FURTHER METEOROLOGY

APPI PPG LECTURE 5: FURTHER METEOROLOGY LECTURE 5: FURTHER METEOROLOGY Introduction: This lecture covers Further Meteorology and aims to give you more of an understanding of advanced weather conditions and patterns. However Meteorology is a

More information

Conditions for Offshore Wind Energy Use

Conditions for Offshore Wind Energy Use Carl von Ossietzky Universität Oldenburg Institute of Physics Energy Meteorology Group Detlev Heinemann Conditions for Offshore Wind Energy Use Detlev Heinemann ForWind Carl von Ossietzky Universität Oldenburg

More information

It seemed that airplanes arriving and departing AVWEATHER

It seemed that airplanes arriving and departing AVWEATHER BY ED BROTAK It seemed that airplanes arriving and departing from Will Rogers World Airport in Oklahoma City, Oklahoma, United States, on the morning of Aug. 3, 2012, would have few problems with wind

More information

Goals for today: continuing Ch 8: Atmospheric Circulation and Pressure Distributions. 26 Oct., 2011

Goals for today: continuing Ch 8: Atmospheric Circulation and Pressure Distributions. 26 Oct., 2011 Goals for today: 26 Oct., 2011 continuing Ch 8: Atmospheric Circulation and Pressure Distributions Examples of synoptic scale and mesoscale circulation systems that are driven by geographic diversity in

More information

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW.

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. ATMOSPHERIC CIRCULATION WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. Pressure differences result from variations in temperature. AIR

More information

Civil Air Patrol Auxiliary of the United States Air Force

Civil Air Patrol Auxiliary of the United States Air Force Mountain Flying Qualification Course Civil Air Patrol Auxiliary of the United States Air Force Mountain Flying Flying in Mountain Winds Determine direction and velocity of steady winds by observing dust,

More information

Chapter 10, Part 1. Scales of Motion. Examples of Wind at Different Scales. Small Scale Winds

Chapter 10, Part 1. Scales of Motion. Examples of Wind at Different Scales. Small Scale Winds Chapter 10, Part 1 Small Scale Winds Scales of Motion Wirls or eddies exist at all length scales in the atmosphere. Microscale (2m) Mesoscale (20km) Synoptic scale (2000km) Examples of Wind at Different

More information

SULAYMANIYAH INTERNATIONAL AIRPORT MATS

SULAYMANIYAH INTERNATIONAL AIRPORT MATS KURDISTAN REGIONAL GOVERNMENT SULAYMANIYAH INTERNATIONAL AIRPORT MATS APPENDIX " O " SPEED CONTROL GUIDANCE ( First Edition ) April 2012 Prepared By Fakhir.F. Mohammed Civil Aviation Consultant APPENDIX

More information

Air Pressure and Wind

Air Pressure and Wind Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The

More information

MOUNTAIN FLYING TEST

MOUNTAIN FLYING TEST MOUNTAIN FLYING TEST USE ANSWER SHEET (AF FORM 1584C, EXAM RECORD) ON THE LAST PAGE OF THIS TEST. 1. It is best to plan an early morning flight to take advantage of the air, which is: a. hotter and smoother.

More information

Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster. Abstract

Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster. Abstract Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster Abstract It is important for meteorologists to have an understanding of the synoptic scale waves that propagate thorough the atmosphere

More information

MET Lecture 8 Atmospheric Stability

MET Lecture 8 Atmospheric Stability MET 4300 Lecture 8 Atmospheric Stability Stability Concept Stable: Ball returns to original position Neutral: Ball stays wherever it is placed Unstable: Displacement grows with time. Atmospheric Stability

More information

Chapter. Air Pressure and Wind

Chapter. Air Pressure and Wind Chapter Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. 19.1 Understanding Air Pressure Air Pressure Defined Air pressure

More information

Small- and large-scale circulation

Small- and large-scale circulation The Earth System - Atmosphere II Small- and large-scale circulation Atmospheric Circulation 1. Global atmospheric circulation can be thought of as a series of deep rivers that encircle the planet. 2. Imbedded

More information

Takeoff Performance. A 1 C change in temperature from ISA will increase or decrease the takeoff ground roll by 10%.

Takeoff Performance. A 1 C change in temperature from ISA will increase or decrease the takeoff ground roll by 10%. The precise pilot does not fly by rules of thumb, axioms, or formulas. But there are times when knowledge of an approximate way to calculate things or knowledge of a simple rule can pay big dividends.

More information

1. Large-scale temperature inversions.

1. Large-scale temperature inversions. Lecture 18. Local and regional pollution issues: plumes of pollution. Objectives: 1. Large-scale temperature inversions. 2. Plumes of pollution. Readings: Turco: p.128-135; Brimblecombe: p.130-138 1. Large-scale

More information

+ R. gr T. This equation is solved by the quadratic formula, the solution, as shown in the Holton text notes given as part of the class lecture notes:

+ R. gr T. This equation is solved by the quadratic formula, the solution, as shown in the Holton text notes given as part of the class lecture notes: Homework #4 Key: Physical explanations 1.The way water drains down a sink, counterclockwise or clockwise, is independent of which hemisphere you are in. A draining sink is an example of vortex in cyclostrophic

More information

STUDY OF LANDING TECHNIQUE DURING VISUAL APPROACH

STUDY OF LANDING TECHNIQUE DURING VISUAL APPROACH 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES STUDY OF LANDING TECHNIQUE DURING VISUAL APPROACH Hiroshi TAKAHARA*, Takashi KONDO*, Shinji SUZUKI** *All Nippon Airways Co., LTD., **University

More information

6.0 OPERATING CONDITIONS. 6.1 Jet Engine Exhaust Velocities and Temperatures 6.2 Airport and Community Noise

6.0 OPERATING CONDITIONS. 6.1 Jet Engine Exhaust Velocities and Temperatures 6.2 Airport and Community Noise 6. OPERATING CONDITIONS 6.1 Jet Engine Exhaust Velocities and Temperatures 6.2 Airport and Community Noise DISTANCE FROM AIRPLANE CL 8 1 PLAN 4 4 NOTES: 1. ENGINE CF6-8C2 2. THESE CONTOURS ARE TO BE USED

More information

Wind Regimes 1. 1 Wind Regimes

Wind Regimes 1. 1 Wind Regimes Wind Regimes 1 1 Wind Regimes The proper design of a wind turbine for a site requires an accurate characterization of the wind at the site where it will operate. This requires an understanding of the sources

More information

Meteorology & Air Pollution. Dr. Wesam Al Madhoun

Meteorology & Air Pollution. Dr. Wesam Al Madhoun Meteorology & Air Pollution Dr. Wesam Al Madhoun Dispersion = Advection (Transport) + Dilution (Diffusion) Source Transport Receptor Re-entrainment Fick s law of diffusion J= - D * D C/Dx Where, J= Mass

More information

ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS

ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS SUNEETHA RANI. JUPUDI Prof. M. PURNACHANDRA RAO Department of Physics, Andhra University, Visakhapatnam, India. ABSTRACT The SODAR echograms

More information

ESCONDIDO FIRE DEPT TRAINING MANUAL Section Engine Module Page 1 of 15 Wildland Fire Weather Revised

ESCONDIDO FIRE DEPT TRAINING MANUAL Section Engine Module Page 1 of 15 Wildland Fire Weather Revised Engine Module Page 1 of 15 WEATHER Weather is the most critical element of fire behavior. Weather is also the most unpredictable element. Firefighting personnel should be knowledgeable in local weather

More information

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 5 Winds, Oceans, Weather, and Climate Section 1 Global Wind Patterns and Weather What Do You See? Learning Outcomes In this section, you will Determine the effects of Earth s rotation and the uneven

More information

LOCAL WINDS. Prof. Stephan De Wekker Department of Env. Sciences Guest lecture EVSC 1300

LOCAL WINDS. Prof. Stephan De Wekker Department of Env. Sciences Guest lecture EVSC 1300 LOCAL WINDS Prof. Stephan De Wekker (dewekker@virginia.edu) Department of Env. Sciences Guest lecture EVSC 1300 SEA BREEZE 980 mb 990 mb 1000 mb LAND BREEZE The convergence of two lake breezes and

More information

Uncontrolled copy not subject to amendment. Principles of Flight

Uncontrolled copy not subject to amendment. Principles of Flight Uncontrolled copy not subject to amendment Principles of Flight Principles of Flight Learning Outcome 3: Know the principles of stalling Principles of Flight Revision Questions What effect does a Trailing

More information

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams ATS 351 Lecture 6 Stability & Skew-T Diagrams To demonstrate stability, a parcel of air is used Expands and contracts freely Always has uniform properties throughout Air Parcel Air Parcel Movement: Why

More information

ATMS 310 Tropical Dynamics

ATMS 310 Tropical Dynamics ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any

More information

Basic Mountain Flying

Basic Mountain Flying Advanced Manoeuvres Basic Mountain Flying This training introduces students to the principles of basic mountain flying and further develops their experience and understanding of operating near terrain

More information

FLYING SCHOLARSHIP PIP QUESTIONS 1-40 TO BE ANSWERED BY BOTH GLIDER AND POWER APPLICANTS

FLYING SCHOLARSHIP PIP QUESTIONS 1-40 TO BE ANSWERED BY BOTH GLIDER AND POWER APPLICANTS QUESTIONS 1-40 TO BE ANSWERED BY BOTH GLIDER AND POWER APPLICANTS 1 The is the term used to describe the complete structure of an airplane, including the fuel tanks and lines, but without engine(s) and

More information

Local Winds & Microclimates. Unit 2- Module 1

Local Winds & Microclimates. Unit 2- Module 1 Local Winds & Microclimates Unit 2- Module 1 Objectives Overview of local winds (sea & land breezes, valley winds) Overview of microclimates (valley, urban, woodland) Local Winds Local Winds Local winds

More information

CHAPTER 8 WIND AND WEATHER MULTIPLE CHOICE QUESTIONS

CHAPTER 8 WIND AND WEATHER MULTIPLE CHOICE QUESTIONS CHAPTER 8 WIND AND WEATHER MULTIPLE CHOICE QUESTIONS 1. is the movement of air measured relative to the Earth's surface. a. Gravity b. The pressure gradient force c. The Coriolis Effect d. The centripetal

More information

Stalls and Spins. Tom Johnson CFIG

Stalls and Spins. Tom Johnson CFIG Stalls and Spins Tom Johnson CFIG Contents Angle of Attack Stall Recognition and Recovery Spin Entry and Recovery Load Limit Considerations Gust Induced Stall and Spin Accidents Stalls a stall is a loss

More information

Stalls and Spins. Tom Johnson CFIG

Stalls and Spins. Tom Johnson CFIG Stalls and Spins Tom Johnson CFIG Do we need all of this? Lift The force created by moving the wing through the air. Angle of Attack: The angle between the relative wind and the wing chord line. Stalls

More information

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 3, Lecture 1 Mass emission rate, Atmospheric Stability Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Review homework Review quiz Mass emission

More information

Straight and Level. Basic Concepts. Figure 1

Straight and Level. Basic Concepts. Figure 1 Basic Concepts Straight and Level This lesson should start with you asking the student what they did in the last lesson, what do they remember, and determining if they have remembered correctly. We must

More information

Autothrottle Use with Autopilot Off

Autothrottle Use with Autopilot Off Autothrottle Use with Autopilot Off Bill McKenzie Flight Crew Operations Boeing Commercial Airplanes May 2004 757.1 What Is Pitch Coupling The thrust vector for engines mounted under the wing will cause

More information

A Guide To Aviation Weather

A Guide To Aviation Weather A Guide To Aviation Weather Richard D. Clark, Ph.D. Professor of Meteorology Student Assistants: Keith Liddick and Sam DeAlba Department of Earth Sciences Millersville University 16 NOV 2005 Outline Icing

More information

Atmospheric Dispersion, Transport and Deposition. Dispersion. Wind Speed. EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D.

Atmospheric Dispersion, Transport and Deposition. Dispersion. Wind Speed. EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D. Atmospheric Dispersion, Transport and Deposition EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D. Dispersion Atmospheric process affect dilution. Wind speed and lapse rate impact on emissions. Planetary

More information

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber. Chapters 2 and 3 of the Pilot s Handbook of Aeronautical Knowledge (FAA-H-8083-25) apply to powered parachutes and are a prerequisite to reading this book. This chapter will focus on the aerodynamic fundamentals

More information

9/25/2014. Scales of Atmospheric Motion. Scales of Atmospheric Motion. Chapter 7: Circulation of the Atmosphere

9/25/2014. Scales of Atmospheric Motion. Scales of Atmospheric Motion. Chapter 7: Circulation of the Atmosphere Chapter 7: Circulation of the Atmosphere The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University Scales of Atmospheric Motion Small-

More information

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer 18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways.

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

Adiabatic Lapse Rates and Atmospheric Stability

Adiabatic Lapse Rates and Atmospheric Stability 8 Adiabatic Lapse Rates and Atmospheric Stability Learning Goals After studying this chapter, students should be able to: 1. describe adiabatic processes as they apply to the atmosphere (p. 174); 2. apply

More information

C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings

C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings The C-130 experiences a marked reduction of directional stability at low dynamic pressures, high power settings,

More information

AT350 EXAM #2 November 18, 2003

AT350 EXAM #2 November 18, 2003 AT350 EXAM #2 November 18, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the 50 questions by using a No. 2 pencil to completely fill

More information

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 EXAM NUMBER NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 Name: SID: S Instructions: Write your name and student ID on ALL pages of the exam. In the multiple-choice/fill in the

More information

Review for the second quarter. Mechanisms for cloud formation

Review for the second quarter. Mechanisms for cloud formation Review for the second quarter Mechanisms for cloud formation 1 Rising air expands and cools; Sinking air compresses and warms. (18) (24) Dry adiabatic lapse rate (10 o C/km): the rate of temperature decrease

More information

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Discovering Physical Geography Third Edition by Alan Arbogast Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Factors That Influence Air Pressure Air Pressure is the measured weight of air

More information

Lesson 2C - Weather 2C-1-S190-EP

Lesson 2C - Weather 2C-1-S190-EP Lesson 2C - Weather 2C-1-S190-EP Fire Weather *Click on image to play video 2C-2-S190-EP A. Air Temperature The degree of hotness or coldness of a substance. 1. Air Temperature varies with: Time Location

More information

Lecture 22: Ageostrophic motion and Ekman layers

Lecture 22: Ageostrophic motion and Ekman layers Lecture 22: Ageostrophic motion and Ekman layers November 5, 2003 1 Subgeostrophic flow: the Ekman layer Before returning to our discussion of the general circulation of the atmosphere in Chapter 8, we

More information

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected)

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected) Supplement Wind, Fetch and Waves Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular 10-7 - 10-2 10-1 (neglected) Coriolis not important Turbulent 10-2 10

More information

VFR Circuit Tutorial. A Hong Kong-based Virtual Airline. VOHK Training Team Version 2.1 Flight Simulation Use Only 9 July 2017

VFR Circuit Tutorial. A Hong Kong-based Virtual Airline. VOHK Training Team Version 2.1 Flight Simulation Use Only 9 July 2017 A Hong Kong-based Virtual Airline VFR Circuit Tutorial VOHK Training Team Version 2.1 Flight Simulation Use Only 9 July 2017 Copyright 2017 Oasis Hong Kong Virtual Page 1 Oasis Hong Kong Virtual (VOHK)

More information

Lesson: Airspeed Control

Lesson: Airspeed Control 11/20/2018 Airspeed Control Page 1 Lesson: Airspeed Control Objectives: o Knowledge o An understanding of the aerodynamics related to airspeed control o Skill o The ability to establish and maintain a

More information

Basics of Speed to Fly for Paragliding Pilots

Basics of Speed to Fly for Paragliding Pilots Page 1 of 10 San Francisco and Northern California's Premier Paragliding School Up is GOOD!!! Basics of Speed to Fly for Paragliding Pilots The expression Speed to Fly represents the adjustments to a Paraglider's

More information

The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL.

The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL. 2.2. Development and Evolution of Drylines The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL. Text books containing sections on dryline: The Dry Line.

More information

Atmospheric & Ocean Circulation-

Atmospheric & Ocean Circulation- Atmospheric & Ocean Circulation- Overview: Atmosphere & Climate Atmospheric layers Heating at different latitudes Atmospheric convection cells (Hadley, Ferrel, Polar) Coriolis Force Generation of winds

More information

Chapter 4. Convec.on Adiaba.c lapse rate

Chapter 4. Convec.on Adiaba.c lapse rate Chapter 4 Convec.on Adiaba.c lapse rate 1.Outline: a. air parcel theory, adiabatic processes b. how do we define/determine atmospheric stability? 2.Readings: Chapter 4 VERTICAL STRUCTURE T STRATIFICATION

More information

Detailed study 3.4 Topic Test Investigations: Flight

Detailed study 3.4 Topic Test Investigations: Flight Name: Billanook College Detailed study 3.4 Topic Test Investigations: Flight Ivanhoe Girls Grammar School Questions 1 and 2 relate to the information shown in the diagram in Figure 1. z Question 1 y Figure

More information

3.3 USING A SIMPLE PARCEL MODEL TO INVESTIGATE THE HAINES INDEX

3.3 USING A SIMPLE PARCEL MODEL TO INVESTIGATE THE HAINES INDEX 3.3 USING A SIMPLE PARCEL MODEL TO INVESTIGATE THE HAINES INDEX Mary Ann Jenkins 1 Steven K. Krueger 2 and Ruiyu Sun 2 1 York University, Toronto, Canada 2 University of Utah, Salt Lake City, Utah 1. INTRODUCTION

More information

LOW LAYER WIND SHEAR OVER DAKAR

LOW LAYER WIND SHEAR OVER DAKAR LOW LAYER WIND SHEAR OVER DAKAR Dr Cheikh Sadibou SOW ASECNA Senior Meteorologist Abstract : Low layer wind shears are dangerous for planes. Their observation and study are one of the main fields where

More information

WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67

WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67 WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67 What is Wind? A wind is a horizontal movement of air across a surface. Vertical movements are currents or updrafts and

More information

In parallel with steady gains in battery energy and power density, the coming generation of uninhabited aerial vehicles (UAVs) will enjoy increased

In parallel with steady gains in battery energy and power density, the coming generation of uninhabited aerial vehicles (UAVs) will enjoy increased In parallel with steady gains in battery energy and power density, the coming generation of uninhabited aerial vehicles (UAVs) will enjoy increased range, endurance, and operational capability by exploiting

More information

V mca (and the conditions that affect it)

V mca (and the conditions that affect it) V mca (and the conditions that affect it) V mca, the minimum airspeed at which an airborne multiengine airplane is controllable with an inoperative engine under a standard set of conditions, is arguably

More information

CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate. Cessna 172 Maneuvers and Procedures

CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate. Cessna 172 Maneuvers and Procedures CIVIL AIR PATROL United States Air Force Auxiliary Cadet Program Directorate Cessna 172 Maneuvers and Procedures This study guide is designed for the National Flight Academy Ground School. The information

More information

18 Flight Hazards over High Ground

18 Flight Hazards over High Ground 18 Flight Hazards over High Ground meteorology 18.1 Mountain Effect on Fronts When a warm front passes a mountain range, the air, is lifted over the mountain and will strengthen the formation of cloud

More information

Aerodyne Flight Recommendations

Aerodyne Flight Recommendations Aerodyne Flight Recommendations In this essay we present you with some recommendations, in order to assist you in learning more about your canopy, and how to use it in a better way, so that you can become

More information

Local and Global Winds

Local and Global Winds PART 2 Wind Local and Global Winds Wind is the horizontal movement of air. All wind is caused by air pressure differences due to the uneven heating of Earth's surface, which sets convection currents in

More information

Exploring Wind Energy

Exploring Wind Energy 2013-2014 Exploring Wind Energy Student Guide SECONDARY Introduction to Wind What is Wind? Wind is simply air in motion. It is produced by the uneven heating of the Earth s surface by energy from the sun.

More information

Chapter 2: wind. Wind conditions are an important consideration for anyone who travels by water. 1. Introduction. 2. How Wind is Formed

Chapter 2: wind. Wind conditions are an important consideration for anyone who travels by water. 1. Introduction. 2. How Wind is Formed Chapter 2: wind Wind conditions are an important consideration for anyone who travels by water. 1. Introduction Wind conditions are an important consideration for anyone who travels by water. Vessels of

More information

Circuit Considerations

Circuit Considerations Circuit Training Circuit Considerations This briefing deals with those aspects of a normal circuit that were deferred during Circuit Introduction, to avoid student overload. Objectives To continue circuit

More information

THE AIRCRAFT IN FLIGHT Issue /07/12

THE AIRCRAFT IN FLIGHT Issue /07/12 1 INTRODUCTION This series of tutorials for the CIX VFR Club are based on real world training. Each document focuses on a small part only of the necessary skills required to fly a light aircraft, and by

More information

Atmospheric Forces and Force Balances METR Introduction

Atmospheric Forces and Force Balances METR Introduction Atmospheric Forces and Force Balances METR 2021 Introduction In this lab you will be introduced to the forces governing atmospheric motions as well as some of the common force balances. A common theme

More information

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer:

Anemometry. Anemometry. Wind Conventions and Characteristics. Anemometry. Wind Variability. Anemometry. Function of an anemometer: Anemometry Anemometry Function of an anemometer: Measure some or all of the components of the wind vector In homogeneous terrain, vertical component is small express wind as -D horizontal vector For some

More information

No Description Direction Source 1. Thrust

No Description Direction Source 1. Thrust AERODYNAMICS FORCES 1. WORKING TOGETHER Actually Lift Force is not the only force working on the aircraft, during aircraft moving through the air. There are several aerodynamics forces working together

More information

Atmosphere Circulation

Atmosphere Circulation Atmosphere Circulation Winds What Causes Winds? Difference in air pressure due to unequal heating of the atmosphere. Temperatures vary according to the amount of sun it gets. Uneven heating of the Earth

More information