Journal of Marine Science, Engineering & Technology Webpage: JMSET 2018, Vol. 1

Size: px
Start display at page:

Download "Journal of Marine Science, Engineering & Technology Webpage: JMSET 2018, Vol. 1"

Transcription

1 Journal of Marine Science, Engineering & Technology Webpage: JMSET 2018, Vol. 1 DEVELOPMENT OF REMOTELY OPERATED VEHICLE UNDERWATER ROBOT Aminuddin, M. H., Md Zain, M. Z., Nor, N. S. M., Mastura, A. W. 1 Department of Applied Mechanics, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor Bahru. ABSTRACT Nowadays, Remotely Operated Vehicle (ROV) robot has been widely used in industry especially in oil and gas sector. It has been used to do a task inside the sea water environment besides has a capability to perform a deep sea rescue operation and recover objects from the ocean floor. Development on the design of the ROV underwater robot is done to increase the performance of the robot in the ocean. This project will discuss the steps from designing the ROV until its prototype construction. There are several steps need to be followed in order to produce efficient mechanical structure or design of the ROV underwater robot. In this project it consist three preliminary designs and one final design. The final design is produced through evaluation process of three preliminary designs of ROV. Computational fluid dynamic (CFD) software is used in order to analyse and identify the drag coefficient of the ROV underwater robot structure. Other than that, other software and calculation is used to determine the behaviour of the robot inside the water. This thesis also will provide the overview of the process in designing, constructing and testing the ROV with respect to mechanical part only. The main material used for this ROV is Aluminium square hollow and Acrylonitrile butadiene styrene (ABS). Entire joint and holder used in this ROV is custom made in order to maintain the originality of the ROV design. All the steps are carefully conducted in order to design and construct an effective structure for underwater robot in term of its drag coefficient and stability performance. Keywords : Acrylonitrile butadiene stryrene (ABS), Aluminium hollow bar, Ocean. 1.0 INTRODUCTION Nowadays, it is common for remotely operated vehicle or ROV are used to extract images from the sea and solve environmental problems such as removing the waste that can cause water pollution. A tether is used as signal transmitting between the operator and robot since radio signal cannot be used to any depth of water greater than 1m. In recent years, ROV become popular due to replacement human role in work at dangerous underwater condition for a specific task. The Remotely Operated Vehicles (ROVs) received increasing attention because of its significant impact in several underwater operations. Examples are in monitoring and maintenance of off shore structure or pipeline or the exploration of the sea bottom. Skilled human operator is needed to operate, control and in charge of command vehicle; a failure detection strategy will help in human decision making. However, ROV system will not completely replace divers in the near future due to the weaknesses and lack of the sensory feedback needed to complete a task. But the ROV, in many cases, *Corresponding author: zarhamdy@utm.my 9

2 can replace the putting a human in dangerous condition or environment. Other than that, using the ROV also can simplify the human work. Human only needed to searching and monitoring the ROV thus require less effort as well as less risk for human when using the ROV [1-7]. 2.0 PROJECT METHODOLOGY There are few steps in order to achieve the objective that is to build the efficient structure of the ROV underwater robot. The efficient structure means the robot has the ability to move smoothly and also high stability when it going into the sea water. Other than that, it also must have enough strength to experience the sea water pressure at the required depth. In this case, material selection is important aspect to ensure the frame do not deform plastically when it performs in the required depth due to the high pressure inside the sea water. Next step is to understand the function of every compulsory part in the ROV underwater robot. The knowledge on function of every compulsory part will guide to the effective usage on every part. Besides, studies about previous design is also important because it can avoid from doing the same mistakes or weaknesses that has be made on previous design. For example, the usage of welding and rivet as a joining part will make the robot is fixed and cannot be adjustable. Besides that, it can make the robot became difficult to undergo maintenance process. This mistakes had been applied on robot ROV RECFRS when it entering the ROV competition. Research background on ROV is studied in detail after the analysis on design weaknesses and strength is completed. The purpose for this step is to determine the components that are needed in the ROV. ROV is used in the water so that there are several equipment needed to make sure our robot stable when it operates in order to complete the task. This step will show the importance of every part needed in the ROV mechanical design. This is the step where all the data or knowledge from previous step is needed to apply it into the design. This step is called design process. This step required SolidWork software. This software is used as a 3D-drawing tool to draw the ROV design. In this stage, team member is required to give any idea about the design that compatible to do the task given. In design process also require other software to check the drag force occur to the robot during the movement in the water despite to check the stability of the robot during movement. The software is called ANSYS This software is the computational fluid dynamic software and used to check the behaviour of our robot in the water theoretically. In order to produce accurate data, there are several tests that are conducted to get the correct parameter. The tests are grid independent test, solver test and turbulence model test. Last step is the construction of the ROV. This step required the skill of construction of team member. Team work among team member also important to make sure the prototype design construction follow the Gantt Chart. In this stage also it is critical where problem will appear. All the technical knowledge and experience is needed to solve the problem during prototype design construction of ROV. After the construction process, there are several tests are conducted to make sure the efficiency of the robot in term f stability and maneuvering system of the robot. The main purpose of conducting the tests is to ensure some development on ROV underwater robot has been made to achieve the objective of this study. 3.0 DEVELOPMENT OF ROV In this section, it will explain the steps before the construction of the ROV underwater robot. There are a few process involved in this section that are design specification, ROV s final design and analysis of the design. The final design produced based on three preliminary designs evaluation. Entire analysis is used to check the behaviour of the ROV in the water. 3.1 Design specification There are few important aspects need to be in a ROV. The specifications of the ROV were listed before proceed to the design process and construction of the ROV. The specification is based on the design requirement and it is different compared to standard industry s ROV due to money and time 10

3 constraint to build the ROV. Developments of the ROV also need to be included in the design specification. The specification of the ROV has been listed below: 1. Maximum operating depth must be 30m 2. The weight of the ROV must be less than 30kg 3. Length of tether must be at more than 30m 4. Electrical tank must be in the robot. 5. The part of the robot must be easily attached and detached 6. Shape of the robot must be hydrodynamic shape 3.2 Final Design concept Final design is chosen based on evaluation on three preliminary designs. In final design, it can be divided into three four structures: Frame, holder, electrical tank and manipulator arm. All of the materials were used without further purification Frame Design Figure 1 shows the frame of the robot. Frame is used as a base to install all the components or parts of the robot. The body frame of our ROV was built using Aluminium hollow bar. The aluminium hollow bar was used to make sure our ROV has the ability to float and sink easily. The dimension of Aluminium hollow bar used in the frame is 30 cm x 40 cm. All the joint and connection of the frame use the custom made joint that made from 3D print technique. Joint made up from 3D print technique to make sure our joint easy to re-changeable and replaceable. This because almost failure is occurs at the joint of the robot Customize joint and holder Figure 1: Final design frame Figure 2 shows several joint and holder that had been used in the ROV. All the joint and holder were custom made to maintain the originality of the ROV design. This will make the ROV different compared to other ROVs. Joint and holder used were made from ABS material. 3D printer was used to produce all the parts that use ABS material. The most important mechanical properties of ABS are impact resistance and the toughness. This will make this material suitable to be used as a joint and holder of the ROV. Other than that, ABS also has a strength, flexibility and machinability that make it a preferred plastic for ROV application. 11

4 Figure 2: The customize holder at ROV Electrical tank Figure 3 is the container that acts as electrical tank of the ROV underwater robot. All the electric circuit that cannot be exposed to the water is placed at one aluminum container with the dimension 30 cm x 40 cm. In this container, there were several holes used for the wire to give the signal to motor and sensor. The electrical tank was closed with Perspex plate. Between Perspex plate and the container there was rubber to seal the gap between the Perspex plate and the aluminum container to prevent the water from leaking. All the electronic par including lighting, power, LAN, motor and the signal cables are installed within a PVC cylinder. Epoxy was used to seal the PVC fitting wires together Customize joint and holder Figure 3: The electrical tank Figure 4 shows the manipulator arm design at the ROV. Another feature that ROVs should have is the manipulators. Manipulators are mechanical arms that are able to perform various jobs underwater. Because the underwater environment is not suitable and very dangerous to humans, using remotely manipulated mechanical arms is a natural way to perform subsea work. The main objective behind creating the ROV is so it would complete the tasks given by interacting with some objects inside the pool such as pick up and handle various objects that need to be moved while competing. The actuator chosen for the manipulators was a pneumatic cylinder. Pneumatic cylinder was chosen due to its advantage in reducing the complexity of the manipulator design, as well as simpler electronic circuit to be used for controlling it. This manipulator was positioned on the lower front of the ROV in order to attach a flange, install the cap over the flange and insert the cable connector into the port on the power and communication hub. By putting some rubbers at the hand grip, the ability to grip can be improved. 12

5 Figure 4: Manipulator arm 3.3 Design Analysis After completing the design process, the design was analysed using SolidWork simulation and Computational Fluid Dynamic software. Other than that, some calculations also need to be conducted to make sure the design fulfil all design requirements. The analysis was needed to ensure effective and workable design after construction process and this will prevent from built the design that has not fulfilled the design requirements. In this section, SolidWork simulation and Computational Fluid Dynamic software have been used to analyse the behaviour of the robot inside the water. Calculation on maximum depth which the robot can withstand also was calculated to make sure the design requirement had been fulfilled Solidwork Simulation The objective of Solidwork simulation is to determine the behaviour of the frame in the water with 30m-depth. Solidwork Simulation is used to make sure the frame of the robot can withstand the high pressure in 30m depth in the water. The change the depth will increase the pressure exerted at the frame. Frame is the critical part in the 30m-depth due to high pressure of water exerted most is at the frame. Other than that, frame also is the place where all the parts is placed and it must be strong to stand in the depth and suitable to hold the part. The detail parameter used in this simulation is shown at table below. Table 1: Parameter of Solidwork analysis Material of the parts Aluminium 6061 alloy Acrylonitrile butadiene styrene (ABS) Connection Global Contact (-Bonded) Fixture Fixed on the leg of the robot External Load Pressure on the frame : Pa Force at electrical tank holder : 150N Gravity with 9.81 m/s^2 Mesh detail 13

6 3.3.2 Solidwork Result Analysis Figure 5 shows the effect of pressure inside the water of 30m depth. In this figure, it shows that there is no critical part experience the load inside the sea water. The most critical load exerted at the frame is Pa which is lower compared to modulus elasticity of the ABS and aluminium 6061alloy. The safety factor of ABS due to the load or pressure at 30m depth can be calculated as below: From the calculation, it shows that the ABS and aluminium alloy material used at the frame is suitable to use and safe to withstand high pressure inside the sea water. It shows also there is no plastic deformation of the ABS material when it exerted the pressure at the depth of 30m. Figure 5: The result analysis on SolidWork software Computational Fluid Dynamic Simulation The objective of this study is to measure the drag forces on underwater robot when changing the motion speed in the horizontal direction at a constant wave speed (5 knot) at 30m depth. In this problem, the enclosure was used to limit the observation area of the model. The enclosure was used to define the inlet of the outlet of the problem. The type of enclosure used in this problem was a rectangular shape and its inlet and outlet were placed at the front and back of the model. Inlet speed used to solve the problem is 5 knot with the pressure Pa. The speed of the inlet is referring to the ocean wave speed and the pressure is referring the pressure of the sea at the 30m depth. The reference line use is between the inlet and the outlet. Reference line is chosen to show the reaction of the water flow toward the ROV underwater robot. The model used in this analysis was a simplified model from the actual model to reduce the computational time for the analysis. The final parameters were obtained after conducting several tests: Grid Independent test, Solver test and Turbulence model test. 14

7 Table 2: Parameter for CFD analysis Grid size 0.015m Pressure-velocity coupling SIMPLE Pressure Second order upwind Momentum Second order upwind Turbulence model K-Epsilon Computational Fluid Dynamic Result analysis The Ansys Fluent software is used to find the drag coefficient exerted at the design body of the ROV. There are two velocities used in this test which are when the robot in stationary and when robot is move (0.5m/s). The drag coefficient of the ROV underwater robot design is The data shows that the drag coefficient remains constant although the speed is changing. The drag coefficient is depending on the shape of the structure of the ROV underwater robot. Next step is to change the drag coefficient to drag force by using drag equation. Drag equation is a formula used to calculate the force of drag experienced by design body due to the movement through a fully enclosing fluid. Drag force was calculated based on drag coefficient produced all the data. In order to validate the result, journal with title Verification of CFD analysis method for predicting the drag force and thrust power of an underwater disk robot that have been done by Tae-Hwan Joung et al. [3]. In this journal, it shows that when speed increasing, the drag forces exerted at the ROV also will increase. It is similar with the data produced using CFD analysis. Table 3 shows the drag force produced when the robot in stationary and in motion. Table 3: Result of CFD analysis Design condition Drag force (N) During robot in Stationary ( 0 m/s ) During robot move ( 0.5 m/s) Buoyancy of the robot analysis The objective is to identify the mass need to be placed at the robot so that the robot can submerge in the water. One of the important aspects is the buoyancy of the ROV underwater robot. Since it needs to float and sink at the water at the same time, the buoyancy is needed to make sure the robot can float using a minimum amount of thrust. Too heavy will make the robot cannot float on the surface while if it too light, it will make the robot difficult to be submerged in the water. So calculation is needed to make sure the robot was not too heavy and not too light so that the robot can float and submerged easily in the water. In the ROV, air is trapped in the electrical tank that gives the ability for robot to float. Calculation is needed to make sure the robot can submerge by counter back effect of air in the tank by adding the mass on the robot [6-7]. 15

8 (Sea water density) The weight need to be placed at the robot including the frame weight must be more than 8.21 kg for robot to submerge in the water. Too much buoyancy force exerted in the robot also will cause difficulty for robot to submerge. 4.0 DISCUSSION This is the section to discuss all the result taken before and after the construction of the robot. Every decision is made to make sure the robot can perform during operation under the water. The underwater test for performance evaluation for the ROV is conducted in UTM marine laboratory s towing tank. The test is conducted to ensure the robot has high stability to perform the task and can move smoothly inside the water. 4.1 Construction of ROV Underwater Robot There are many criteria need to be considered during choosing the suitable material for ROV underwater robot. The consideration taken in chooses the materials are the corrosion resistance, weight, strength to high pressure inside the water and oxidation resistance. So that, some analysis of the material is taken and Aluminium 6061 alloy hollow bar and acrylonitrile butadiene styrene (ABS) is chosen as a main material for ROV underwater robot. These materials are chosen due to the strength of the material that can withstand with the high pressure besides has the good corrosion resistance. Hollow bar is chosen as the shape for aluminium alloy due to the light weight of the material and easy for machining process. The pneumatic system was used in controlling the vertical movement of the robot. In fact, pneumatic system more reliable compared to the actuator system. In Malaysia, it s hard to find the suitable motor or thruster for ROV underwater robot which a powerful thruster is needed to control the ROV s movement. Combination of actuator system and pneumatic system was used in the ROV to control the vertical movement of the robot. These combination make the robot more unique compared to other industrial ROVs. Figure 6 shows the robot after construction process. 4.2 Submerge depth of the ROV underwater robot ROV is able to submerge into 30 metre based on analysis conducted by using SolidWork software. Practically, the ROV had been tested in 5 metre below bottom of swimming pool successfully without any leaking problem and able to perform perfectly. Other than that, the electrical tank in the ROV can withstand the pressure with the depth of 30 metre under the water. The tank was made up from stainless steel and it has high tensile strength while for the lid was made from thick Perspex that can withstand high pressure in water. Tank is the most critical part due to its function to place all the microcontroller and electronic parts that are sensitive to the water. Practically, the tank had been tested in 5m-depth of water without any leaking as a result of the test. 16

9 4.3 Stability of the ROV Underwater robot Figure 6: Final ROV Design The ballast tank is inserted in the ROV underwater robot to be functioned as a stabilizer of the robot. It is used to make sure the robot to be in correct orientation besides to prevent the robot from inverted during operation of a task inside the water. The ROV frame initially show positive buoyancy of the ROV means that the ROV unable to submerge in the water but this problem has been solved by placing weightage to make sure the ROV can submerge easily. The weightage is used to make sure robot can submerge and float easily. The ROV become stable and able to submerge, float and successfully perform forward and reverse motion. The stability because of the design has symmetry in axis that makes the robot become more stable. Figure 7 shows the ROV stability while moving in the water. Figure 7: ROV stability in water 5.0 CONCLUSION Design and prototype construction of an underwater robot with manipulator arm according to the design specification that has been made require careful analysis during the design and fabrication phase. Entire decision is selectively made because it may affect the performance result of underwater robot as well as delay the process. Simulation has been conducted to measure the efficiency of the design performance of underwater robot in the sea water. Computational fluid dynamic software was used to calculate the drag coefficient of the design. For a result, drag coefficient for the design is is similar to the half streamlined body and it also shows that the shape of the design is hydrodynamic shape. Besides, SolidWork simulation also was conducted to make sure the frame has the ability to withstand the pressure at 30m depth. The efficient design had been made based on 17

10 several simulations and design performance analysis after the prototype s design developement process. REFERENCES 1. Muhammad Zuhdi bin Mohd Zin. Design and construction of remotely operated underwater vehicle with manipulator arm. Undergraduate Project Report. Universiti Teknologi Malaysia Tae-Hwan Joung, Hyeung-Sik Choi, Sang-Ki Jung, Karl Sammut and Fangpo He. Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot. Int. J. Nav. Archit. Ocean Eng ; Tomoya Inoue, Hiroyoshi Suzuki, Risa Kitamoto, Yoshitaka Watanabe, Hiroshi Yoshida. Hull Form Design of Underwater Vehicle Applying CFD (Computational Fluid Dynamics). JAMSTEC (Japan Agency for Marine-Earth Science and Technology) Yokosuka; Team Genesis, Washington State University. Sea Tech 4H Team Genesis Technical Report. MATE Team Aftershock, Bristol Community College. Bristol Community College AfterShock Al Technical Report. MATE Robert D. Christ, Robert L. Wernli Sr. The ROV Manual- A User Guide For Observation- Class Remotely Operated Vehicle. First Edition. Butterworth-Heinemann Robert D. Christ, Robert L. Wernli Sr. The ROV Manual- A User Guide for Remotely Operated Vehicle. Second Edition. Butterworth-Heinemann

Hydrodynamic analysis of submersible robot

Hydrodynamic analysis of submersible robot International Journal of Advanced Research and Development ISSN: 2455-4030, Impact Factor: RJIF 5.24 www.advancedjournal.com Volume 1; Issue 9; September 2016; Page No. 20-24 Hydrodynamic analysis of submersible

More information

STUDY OF UNDERWATER THRUSTER (UT) FRONT COVER OF MSI300 AUTONOMOUS UNDERWATER VEHICLE (AUV) USING FINITE ELEMENT ANALYSIS (FEA)

STUDY OF UNDERWATER THRUSTER (UT) FRONT COVER OF MSI300 AUTONOMOUS UNDERWATER VEHICLE (AUV) USING FINITE ELEMENT ANALYSIS (FEA) STUDY OF UNDERWATER THRUSTER (UT) FRONT COVER OF MSI300 AUTONOMOUS UNDERWATER VEHICLE (AUV) USING FINITE ELEMENT ANALYSIS (FEA) M. Sabri 1, 2, T. Ahmad 1, M. F. M. A. Majid 1 and A. B. Muhamad Husaini

More information

Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water

Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water 79 UMTAS 2013 Novelty of Mechanical Surface Aerator Using Flexible Beam to Generate Dissolved Oxygen in Water Muhammad Amir Mat Shah 1,* and Badrul Aisham Md Zain 2 Faculty of Mechanical and Manufacturing

More information

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul

The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration. M. Burak Şamşul The Usage of Propeller Tunnels For Higher Efficiency and Lower Vibration M. Burak Şamşul ITU AYOC 2014 - Milper Pervane Teknolojileri Company Profile MILPER is established in 2011 as a Research and Development

More information

ROV Development ROV Function. ROV Crew Navigation IRATECH SUB SYSTEMS 2010

ROV Development ROV Function. ROV Crew Navigation IRATECH SUB SYSTEMS 2010 IR AT EC H SU B SY ST EM S 20 10 Remotely Operated Vehicle ROV INTRODUCTORY 2008 2008 1 KEY POINTS ROV Introductory ROV Development ROV Function Types of ROV ROV Crew Navigation ROV Components 2 ROV Development

More information

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena

More information

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditions shown, determine. 2. A tanker truck carries water, and the cross section of the truck s tank is shown

More information

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Hong Xu, Chokri Guetari ANSYS INC. Abstract Transient numerical simulations of the rise of a train of gas bubbles in a liquid

More information

OPTIMIZATION OF RECUPERATER FIN GEOMETRY FOR MICRO GAS TURBINE

OPTIMIZATION OF RECUPERATER FIN GEOMETRY FOR MICRO GAS TURBINE OPTIMIZATION OF RECUPERATER FIN GEOMETRY FOR MICRO GAS TURBINE S.Ramamurthy 1 and Bharat Makwana 2 1 Scientist,National Aerospace Laboratories, Bangalore, ramamurthy_srm@yahoo.com 2 Engineer,INOX Private

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

Figure 8: Looking Down on a Three Thruster Vehicle

Figure 8: Looking Down on a Three Thruster Vehicle Moving and Maneuvering 2 Cornerstone Electronics Technology and Robotics III (Notes primarily from Underwater Robotics Science Design and Fabrication, an excellent book for the design, fabrication, and

More information

NT09-21 Cruise Report SURUGA-BAY Cable Laying Experiment / VBCS Function Test

NT09-21 Cruise Report SURUGA-BAY Cable Laying Experiment / VBCS Function Test NT09-21 Cruise Report SURUGA-BAY Cable Laying Experiment / VBCS Function Test December 2009 Table of Contents 1. Overview 2. Schedule 3. Dive Summary 4. Concluding Remarks 1. Overview A unique development

More information

Figure 1: Level Pitch Positive Pitch Angle Negative Pitch Angle. Trim: The rotation of a vehicle from side to side. See Figure 2.

Figure 1: Level Pitch Positive Pitch Angle Negative Pitch Angle. Trim: The rotation of a vehicle from side to side. See Figure 2. Buoyancy, Stability, and Ballast 2 Cornerstone Electronics Technology and Robotics III (Notes primarily from Underwater Robotics Science Design and Fabrication, an excellent book for the design, fabrication,

More information

Figure 1: Hydrostatic Pressure Forces Are Perpendicular to the Surface

Figure 1: Hydrostatic Pressure Forces Are Perpendicular to the Surface Pressure Hulls and Canisters 2 Cornerstone Electronics Technology and Robotics III (Notes primarily from Underwater Robotics Science Design and Fabrication, an excellent book for the design, fabrication,

More information

Numerical Simulation of the Basketball Flight Trajectory based on FLUENT Fluid Solid Coupling Mechanics Yanhong Pan

Numerical Simulation of the Basketball Flight Trajectory based on FLUENT Fluid Solid Coupling Mechanics Yanhong Pan Applied Mechanics and Materials Submitted: 2014-08-05 ISSN: 1662-7482, Vols. 651-653, pp 2347-2351 Accepted: 2014-08-06 doi:10.4028/www.scientific.net/amm.651-653.2347 Online: 2014-09-30 2014 Trans Tech

More information

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section

A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section International Ship Stability Workshop 2013 1 A Study on Roll Damping of Bilge Keels for New Non-Ballast Ship with Rounder Cross Section Tatsuya Miyake and Yoshiho Ikeda Department of Marine System Engineering,

More information

Vision Based Autonomous Underwater Vehicle for Pipeline Tracking

Vision Based Autonomous Underwater Vehicle for Pipeline Tracking Vision Based Autonomous Underwater Vehicle for Pipeline Tracking Manikandan. G 1, Sridevi. S 2, Dhanasekar. J 3 Assistant Professor, Department of Mechatronics Engineering, Bharath University, Chennai,

More information

Development of a Simulation Model for Swimming with Diving Fins

Development of a Simulation Model for Swimming with Diving Fins Proceedings Development of a Simulation Model for Swimming with Diving Fins Motomu Nakashima 1, *, Yosuke Tanno 2, Takashi Fujimoto 3 and Yutaka Masutani 3 1 Department of Systems and Control Engineering,

More information

Stability and Computational Flow Analysis on Boat Hull

Stability and Computational Flow Analysis on Boat Hull Vol. 2, Issue. 5, Sept.-Oct. 2012 pp-2975-2980 ISSN: 2249-6645 Stability and Computational Flow Analysis on Boat Hull A. Srinivas 1, V. Chandra sekhar 2, Syed Altaf Hussain 3 *(PG student, School of Mechanical

More information

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK The 9 th International Conference on Coasts, Ports and Marine Structures (ICOPMAS 2010) 29 Nov.-1 Dec. 2010 (Tehran) DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK sayed mohammad

More information

BACKGROUND TO STUDY CASE

BACKGROUND TO STUDY CASE BACKGROUND TO STUDY CASE German Aerospace Center (DLR) is using Andøya Rocket Range for a sounding rocket campaign. On 27th October 2005 a 300 kg payload (SHEFEX) was launched Due do a technical problems

More information

Underwater Intervention Conference 2006 Tampa, FL, January 24-26, 2006 A Minimum Cost Design Approach of an ROV for Underwater Inspection

Underwater Intervention Conference 2006 Tampa, FL, January 24-26, 2006 A Minimum Cost Design Approach of an ROV for Underwater Inspection A Minimum Cost Design Approach of an ROV for Underwater Inspection Tarek Elsayed *, Amr Hassan *, Yasser Ahmed and Mohamed Darwish * Assistant Professor, department of Mechanical and Marine Engineering

More information

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE 1 MR. G.VIJAYA KUMAR, 2 DR. R. PANNEER SELVAM 1 M.S. Research Scholar, Department of Ocean Engineering, IIT Madras, Chennai,

More information

DESIGN AND ANALYSIS OF A COLD GAS PROPULSION SYSTEM FOR STABILIZATION

DESIGN AND ANALYSIS OF A COLD GAS PROPULSION SYSTEM FOR STABILIZATION DESIGN AND ANALYSIS OF A COLD GAS PROPULSION SYSTEM FOR STABILIZATION AND MANEUVERABILITY OF A HIGH ALTITUDE RESEARCH BALLOON COLLEGE OF ENGINEERING & APPLIED SCIENCES SENIOR DESIGN THESIS GREGORY A. NEFF

More information

Development of tether mooring type underwater robots: Anchor diver I and II

Development of tether mooring type underwater robots: Anchor diver I and II Indian Journal of Geo-Marine Sciences Vol. 40(2), April 2011, pp. 181-190 Development of tether mooring type underwater robots: Anchor diver I and II Ya-Wen Huang 1, Koji Ueda 1, Kazuhiro Itoh 2, Yuki

More information

CFD Analysis of Giromill Type Vertical Axis Wind Turbine

CFD Analysis of Giromill Type Vertical Axis Wind Turbine 242 CFD Analysis Giromill Type Vertical Axis Wind Turbine K. Sainath 1, T. Ravi 2, Suresh Akella 3, P. Madhu Sudhan 4 1 Associate Pressor, Department Mechanical Engineering, Sreyas Inst. Engg. & Tech.,

More information

EML 4905 Senior Design Project

EML 4905 Senior Design Project EML 4905 Senior Design Project A B.S. THESIS PREPARED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING Underwater R.O.V.er 25% Report Ryan Wright

More information

The Performance of Vertical Tunnel Thrusters on an Autonomous Underwater Vehicle Operating Near the Free Surface in Waves

The Performance of Vertical Tunnel Thrusters on an Autonomous Underwater Vehicle Operating Near the Free Surface in Waves Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 The Performance of Vertical Tunnel Thrusters on an Autonomous Underwater Vehicle Operating Near the Free Surface

More information

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006 ZIN Technologies PHi Engineering Support PHi-RPT-0002 CFD Analysis of Large Bubble Mixing Proprietary ZIN Technologies, Inc. For nearly five decades, ZIN Technologies has provided integrated products and

More information

Development of Low Volume Shape Memory Alloy Variable Ballast System for AUV Use

Development of Low Volume Shape Memory Alloy Variable Ballast System for AUV Use Development of Low Volume Shape Memory Alloy Variable Ballast System for AUV Use Dr. Graeme J Rae Ocean Engineering Program Division of Marine and Environmental Systems Florida Institute of Technology

More information

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent

Investigation on 3-D Wing of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Investigation on 3-D of commercial Aeroplane with Aerofoil NACA 2415 Using CFD Fluent Rohit Jain 1, Mr. Sandeep Jain 2, Mr. Lokesh Bajpai 3 1PG Student, 2 Associate Professor, 3 Professor & Head 1 2 3

More information

Study on Resistance of Stepped Hull Fitted With Interceptor Plate

Study on Resistance of Stepped Hull Fitted With Interceptor Plate 39 Study on Resistance of Stepped Hull Fitted With Interceptor Plate Muhamad Asyraf bin Abdul Malek, a, and J.Koto, a,b,* a) Department of Aeronautic, Automotive and Ocean Engineering, Faculty of Mechanical

More information

Design and Analysis of Pressure Safety Release Valve by using Finite Element Analysis

Design and Analysis of Pressure Safety Release Valve by using Finite Element Analysis Design and Analysis of Pressure Safety Release Valve by using Finite Element Analysis Mr.V.D.Rathod* 1, Prof.G.A.Kadam* 2, Mr.V. G. Patil* 3 * 1 M.E. Design (Pursuing), SKN Sinhgad Institute of Technology&

More information

Dec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned?

Dec 6 3:08 PM. Density. Over the last two periods we discussed/observed the concept of density. What have we learned? Over the last two periods we discussed/observed the concept of density. What have we learned? is a ratio of mass to volume describes how much matter is packed into a space is a property of both solids

More information

Fire safety of staircases in multi-storey buildings The results of measurements in Buildings and Simulations

Fire safety of staircases in multi-storey buildings The results of measurements in Buildings and Simulations Fire safety of staircases in multi-storey buildings The results of measurements in Buildings and Simulations Grzegorz Kubicki, Ph.D. Department of Environmental Engineering, Warsaw University of Technology

More information

Remotely Operated Underwater Vehicle (ROV) 25% Report

Remotely Operated Underwater Vehicle (ROV) 25% Report EML 4551 Senior Design Project A B.S. THESIS PREPARED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING Remotely Operated Underwater Vehicle (ROV)

More information

U S F O S B u o y a n c y And Hydrodynamic M a s s

U S F O S B u o y a n c y And Hydrodynamic M a s s 1 U S F O S B u o y a n c y And Hydrodynamic M a s s 2 CONTENTS: 1 INTRODUCTION... 3 2 ACCURACY LEVELS... 3 2.1 LEVEL-0... 3 2.2 LEVEL-1... 3 2.3 PANEL MODEL... 3 3 EX 1. SINGLE PIPE. NON FLOODED... 4

More information

Algorithm for Line Follower Robots to Follow Critical Paths with Minimum Number of Sensors

Algorithm for Line Follower Robots to Follow Critical Paths with Minimum Number of Sensors International Journal of Computer (IJC) ISSN 2307-4523 (Print & Online) Global Society of Scientific Research and Researchers http://ijcjournal.org/ Algorithm for Line Follower Robots to Follow Critical

More information

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD

OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD http:// OPTIMIZATION OF SINGLE STAGE AXIAL FLOW COMPRESSOR FOR DIFFERENT ROTATIONAL SPEED USING CFD Anand Kumar S malipatil 1, Anantharaja M.H 2 1,2 Department of Thermal Power Engineering, VTU-RO Gulbarga,

More information

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy

Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy Computational Analysis of Oil Spill in Shallow Water due to Wave and Tidal Motion Madhu Agrawal Durai Dakshinamoorthy 1 OUTLINE Overview of Oil Spill & its Impact Technical Challenges for Modeling Review

More information

Chapter 9 Solids and Fluids

Chapter 9 Solids and Fluids 2/17/16 Chapter 9 Solids and Fluids Units of Chapter 9 Solids and Elastic Moduli Fluids: Pressure and Pascal s Buoyancy and Archimedes Fluid Dynamics and Bernoulli s Surface Tension, Viscosity, and Poiseuille

More information

Saab Seaeye Cougar XT Compact

Saab Seaeye Cougar XT Compact The Seaeye Cougar-XT Compact is a highly flexible and extremely powerful electric ROV with working depths of 300 metres. This system comes with almost all of the specifications of the very reliable Couger-XT

More information

Slide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3?

Slide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 1 / 68 1 What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 2 / 68 2 What is the mass of a rectangular shaped ice block with dimensions of 0.04m x 0.05m

More information

Designing Wave Energy Converting Device. Jaimie Minseo Lee. The Academy of Science and Technology The Woodlands College Park High School, Texas

Designing Wave Energy Converting Device. Jaimie Minseo Lee. The Academy of Science and Technology The Woodlands College Park High School, Texas Designing Wave Energy Converting Device Jaimie Minseo Lee The Academy of Science and Technology The Woodlands College Park High School, Texas Table of Contents Abstract... i 1.0 Introduction... 1 2.0 Test

More information

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car

Volume 2, Issue 5, May- 2015, Impact Factor: Structural Analysis of Formula One Racing Car Structural Analysis of Formula One Racing Car Triya Nanalal Vadgama 1, Mr. Arpit Patel 2, Dr. Dipali Thakkar 3, Mr. Jignesh Vala 4 Department of Aeronautical Engineering, Sardar Vallabhbhai Patel Institute

More information

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study

Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study ISSN 1750-9823 (print) International Journal of Sports Science and Engineering Vol. 03 (2009) No. 01, pp. 017-021 Effect of Diameter on the Aerodynamics of Sepaktakraw Balls, A Computational Study Zahari

More information

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

SPH 4C Unit 4 Hydraulics and Pneumatic Systems SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that

More information

EDEXCEL NATIONALS UNIT 6 MECHANICAL PRINCIPLES and APPLICATIONS. ASSIGNMENT No. 4

EDEXCEL NATIONALS UNIT 6 MECHANICAL PRINCIPLES and APPLICATIONS. ASSIGNMENT No. 4 EDEXCEL NATIONALS UNIT 6 MECHANICAL PRINCIPLES and APPLICATIONS ASSIGNMENT No. 4 NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted is my own work. Signature

More information

NAVIGATOR Product demonstration prop building instructions

NAVIGATOR Product demonstration prop building instructions NAVIGATOR Product demonstration prop building instructions Regional competitions may build product demonstration props out of materials other than PVC pipe. Your regional coordinator will inform you of

More information

Vibration isolation system 1VIS10W. User manual

Vibration isolation system 1VIS10W. User manual Vibration isolation system 1VIS10W User manual Standa 2014 Table of contents 1. General information 3 1.1. Introduction 3 1.1.1. Safety 5 1.2. Location of the table 5 1.3. Air supply requirements 5 2.

More information

Two-way Fluid Structure Interaction (FSI) Analysis on the Suction Valve Dynamics of a Hermetic Reciprocating Compressor

Two-way Fluid Structure Interaction (FSI) Analysis on the Suction Valve Dynamics of a Hermetic Reciprocating Compressor Volume 118 No. 18 2018, 4241-4252 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Two-way Fluid Structure Interaction (FSI) Analysis on the Suction

More information

Figure 8: Buoyancy Force and Weight Acting on an Object

Figure 8: Buoyancy Force and Weight Acting on an Object Working in Water 2 Cornerstone Electronics Technology and Robotics III (Notes primarily from Underwater Robotics Science Design and Fabrication, an excellent book for the design, fabrication, and operation

More information

2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?

2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force? CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How

More information

Full scale measurements and simulations of the wind speed in the close proximity of the building skin

Full scale measurements and simulations of the wind speed in the close proximity of the building skin Full scale measurements and simulations of the wind speed in the close proximity of the building skin Radoslav Ponechal 1,* and Peter Juras 1 1 University of Zilina, Faculty of Civil Engineering, Department

More information

6995(Print), ISSN (Online) Volume 4, Issue 1, January- April (2013), IAEME TECHNOLOGY (IJDMT)

6995(Print), ISSN (Online) Volume 4, Issue 1, January- April (2013), IAEME TECHNOLOGY (IJDMT) International INTERNATIONAL Journal of Design JOURNAL and Manufacturing OF DESIGN Technology AND MANUFACTURING (IJDMT), ISSN 0976 TECHNOLOGY (IJDMT) ISSN 0976 6995 (Print) ISSN 0976 7002 (Online) Volume

More information

Development of Fish type Robot based on the Analysis of Swimming Motion of Bluefin Tuna Comparison between Tuna-type Fin and Rectangular Fin -

Development of Fish type Robot based on the Analysis of Swimming Motion of Bluefin Tuna Comparison between Tuna-type Fin and Rectangular Fin - Development of Fish type Robot based on the Analysis of Swimming Motion of Bluefin Tuna Comparison between Tuna-type Fin and Rectangular Fin - Katsuya KUGAI* Abstract The swimming motion of Tuna type fishes

More information

Application of Simulation Technology to Mitsubishi Air Lubrication System

Application of Simulation Technology to Mitsubishi Air Lubrication System 50 Application of Simulation Technology to Mitsubishi Air Lubrication System CHIHARU KAWAKITA *1 SHINSUKE SATO *2 TAKAHIRO OKIMOTO *2 For the development and design of the Mitsubishi Air Lubrication System

More information

Bio-sample testing on an adaptation to a tensile testing machine

Bio-sample testing on an adaptation to a tensile testing machine Bio-sample testing on an adaptation to a tensile testing machine Design Team Collin Creegan, Sarah Chamberland Kristine Murphy, Christine Sniezek Design Advisor Prof. Kai-Tak Wan Abstract The purpose of

More information

Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14.

Workshop 1: Bubbly Flow in a Rectangular Bubble Column. Multiphase Flow Modeling In ANSYS CFX Release ANSYS, Inc. WS1-1 Release 14. Workshop 1: Bubbly Flow in a Rectangular Bubble Column 14. 5 Release Multiphase Flow Modeling In ANSYS CFX 2013 ANSYS, Inc. WS1-1 Release 14.5 Introduction This workshop models the dispersion of air bubbles

More information

Questions. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Edexcel Drag Viscosity. Questions. Date: Time: Total marks available:

Questions. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Edexcel Drag Viscosity. Questions. Date: Time: Total marks available: Name: Edexcel Drag Viscosity Questions Date: Time: Total marks available: Total marks achieved: Questions Q1. A small helium balloon is released into the air. The balloon initially accelerates upwards.

More information

Design of a double quadruped for the Tech United soccer robot

Design of a double quadruped for the Tech United soccer robot Design of a double quadruped for the Tech United soccer robot M.J. Naber (0571509) DCT report number: 2009.134 Master Open Space project Eindhoven, 21 December 2009 Supervisor dr.ir. P.C.J.N. Rosielle

More information

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics

CFD Study of Solid Wind Tunnel Wall Effects on Wing Characteristics Indian Journal of Science and Technology, Vol 9(45), DOI :10.17485/ijst/2016/v9i45/104585, December 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 CFD Study of Solid Wind Tunnel Wall Effects on

More information

International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

International Journal of Technical Research and Applications e-issn: ,  Volume 4, Issue 3 (May-June, 2016), PP. DESIGN AND ANALYSIS OF FEED CHECK VALVE AS CONTROL VALVE USING CFD SOFTWARE R.Nikhil M.Tech Student Industrial & Production Engineering National Institute of Engineering Mysuru, Karnataka, India -570008

More information

SOFTWARE. Sesam user course. 12 May 2016 HydroD Hydrostatics & Stability. Ungraded SAFER, SMARTER, GREENER DNV GL 2016

SOFTWARE. Sesam user course. 12 May 2016 HydroD Hydrostatics & Stability. Ungraded SAFER, SMARTER, GREENER DNV GL 2016 SOFTWARE Sesam user course DNV GL 1 SAFER, SMARTER, GREENER Scope of presentation Describe features & commands for performing a hydrostatic analysis, and their concepts Analysis setup Code-checking Reporting

More information

Computer Simulation Helps Improve Vertical Column Induced Gas Flotation (IGF) System

Computer Simulation Helps Improve Vertical Column Induced Gas Flotation (IGF) System JOURNAL ARTICLES BY FLUENT SOFTWARE USERS JA187 Computer Simulation Helps Improve Vertical Column Induced Gas Flotation (IGF) System Computer simulation has helped NATCO engineers make dramatic improvements

More information

PropaGator Autonomous Surface Vehicle

PropaGator Autonomous Surface Vehicle PropaGator Autonomous Surface Vehicle Andrew Wegener December 4, 2012 University of Florida Department of Electrical and Computer Engineering EEL 5666C IMDL Final Report Instructors: A. Antonio Arroyo,

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

1.5 m. 2.4 m. Fig the pressure exerted by the oil on the base of the tank, the force exerted by the oil on the base of the tank.

1.5 m. 2.4 m. Fig the pressure exerted by the oil on the base of the tank, the force exerted by the oil on the base of the tank. 1 Fig. 3.1 shows an oil tank that has a rectangular base of dimensions 2.4 m by 1.5 m. oil depth of oil 1.5 m 2.4 m Fig. 3.1 1.5 m The tank is filled with oil of density 850 kg / m 3 to a depth of 1.5

More information

Design and Development of an Autonomous Surface Watercraft

Design and Development of an Autonomous Surface Watercraft Design and Development of an Autonomous Surface Watercraft Sponsor: Dr. D. Dunlap Advisor: Dr. J. Clark Instructors: Dr. N. Gupta, Dr. C. Shih Team 18: Kyle Ladyko, Donald Gahres, Samuel Nauditt, Teresa

More information

Gas density monitor With integrated transmitter Model GDM-100-TI

Gas density monitor With integrated transmitter Model GDM-100-TI SF 6 gas solutions Gas density monitor With integrated transmitter Model GDM-100-TI grid Products WIKA data sheet SP 60.05 for further approvals see page 5 Applications Gas density monitoring of closed

More information

Operating instruction

Operating instruction Operating instruction MV, XV, HG, HP, RKO, D2G, TV, BV, WB & SLV 1 Introduction 2 2 Stafsjö s knife gate valves 2 3 Technical information 2 3.1 Pressure test 2 3.2 Labelling 2 4 Storage 3 5 Transportation

More information

Pneumatic dead-weight tester Model CPB3500

Pneumatic dead-weight tester Model CPB3500 Calibration technology Pneumatic dead-weight tester Model CPB3500 WIKA data sheet CT 31.22 Applications Primary standard for calibrating the scale in a pneumatic range from -1... 120 bar / -14.5... 1,600

More information

mass of container full of air = g mass of container with extra air = g volume of air released = cm 3

mass of container full of air = g mass of container with extra air = g volume of air released = cm 3 1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate

More information

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY

3D CDF MODELING OF SHIP S HEELING MOMENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Journal of KONES Powertrain and Transport, Vol. 17, No. 4 21 3D CDF ODELING OF SHIP S HEELING OENT DUE TO LIQUID SLOSHING IN TANKS A CASE STUDY Przemysaw Krata, Jacek Jachowski Gdynia aritime University,

More information

Numerical Simulation of Fluid-Structure Interaction in the Design Process for a New Axial Hydraulic Pump

Numerical Simulation of Fluid-Structure Interaction in the Design Process for a New Axial Hydraulic Pump Numerical Simulation of Fluid-Structure Interaction in the Design Process for a New Axial Hydraulic Pump Bettina Landvogt¹, Leszek Osiecki², Tomasz Zawistowski³, Bartek Zylinski 4 1 Fraunhofer SCAI, Germany,

More information

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure

Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Determination of the wind pressure distribution on the facade of the triangularly shaped high-rise building structure Norbert Jendzelovsky 1,*, Roland Antal 1 and Lenka Konecna 1 1 STU in Bratislava, Faculty

More information

Over 20,000 Strain Gage Target flowmeters installed since 1952.

Over 20,000 Strain Gage Target flowmeters installed since 1952. Over 20,000 Strain Gage Target flowmeters installed since 1952. Liquid, gases, superheated and saturated steam from -320 to 500 O F and up to 15,000 psi. No frictional moving parts. Designed to withstand

More information

5.0 Neutral Buoyancy Test

5.0 Neutral Buoyancy Test 5.0 Neutral Buoyancy Test Montgolfier balloons use solar energy to heat the air inside the balloon. The balloon used for this project is made out of a lightweight, black material that absorbs the solar

More information

Torque Tube TB300 Digital Transmitters

Torque Tube TB300 Digital Transmitters Page 1 of 7 7E.300-E Issue 4-2009 Description Series TB300 torque tube liquid level instruments utilize the buoyancy exerted on a displacer when immersed in a liquid. The buoyancy on the displacer is proportional

More information

DAMAGE STABILITY TESTS OF MODELS REPRESENTING RO-RC) FERRIES PERFORMED AT DMI

DAMAGE STABILITY TESTS OF MODELS REPRESENTING RO-RC) FERRIES PERFORMED AT DMI TECHNISCHE UNIVERSITET laboratoriurn vow Scheepshydromechareba slechlef Meketweg 2, 2628 CD. Delft Tel.: 015-788873 - Fax 015-781838 DAMAGE STABILITY TESTS OF MODELS REPRESENTING RO-RC) FERRIES PERFORMED

More information

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT

ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT ANALYSIS OF AERODYNAMIC CHARACTERISTICS OF A SUPERCRITICAL AIRFOIL FOR LOW SPEED AIRCRAFT P.Sethunathan 1, M.Niventhran 2, V.Siva 2, R.Sadhan Kumar 2 1 Asst.Professor, Department of Aeronautical Engineering,

More information

Offshore platforms survivability to underwater explosions: part I

Offshore platforms survivability to underwater explosions: part I Computational Ballistics III 123 Offshore platforms survivability to underwater explosions: part I A. A. Motta 1, E. A. P. Silva 2, N. F. F. Ebecken 2 & T. A. Netto 2 1 Brazilian Navy Research Institute,

More information

Development of virtual 3D human manikin with integrated breathing functionality

Development of virtual 3D human manikin with integrated breathing functionality SAT-9.2-2-HT-06 Development of virtual 3D human manikin with integrated breathing functionality Martin Ivanov Development of virtual 3D human manikin with integrated breathing functionality: The presented

More information

Computer Integrated Manufacturing (PLTW) TEKS/LINKS Student Objectives One Credit

Computer Integrated Manufacturing (PLTW) TEKS/LINKS Student Objectives One Credit Computer Integrated Manufacturing (PLTW) TEKS/LINKS Student Objectives One Credit Suggested Time Ranges First Six Weeks History of Manufacturing PFD 1.1(A) The student will describe why and how manufacturing

More information

Research and optimization of intake restrictor for Formula SAE car engine

Research and optimization of intake restrictor for Formula SAE car engine International Journal of Scientific and Research Publications, Volume 4, Issue 4, April 2014 1 Research and optimization of intake restrictor for Formula SAE car engine Pranav Anil Shinde Mechanical Engineering,

More information

Yokosuka Cruise Report YK11-02

Yokosuka Cruise Report YK11-02 Yokosuka Cruise Report YK11-02 Sea Trial of The HETL Fuel Cell System for Underwater Platform JAMSTEC ~ Sagami-Bay ~ JAMSTEC March 6, 2011 ~ March 9, 2011 Japan Agency for Marine-Earth Science and Technology

More information

Testing of hull drag for a sailboat

Testing of hull drag for a sailboat Testing of hull drag for a sailboat Final report For Autonomous Sailboat Project In Professor Ruina s Locomotion and Robotics Lab, Cornell Jian Huang jh2524@cornell.edu Mechanical Engineering, MEng student

More information

An Innovative Solution for Water Bottling Using PET

An Innovative Solution for Water Bottling Using PET An Innovative Solution for Water Bottling Using PET A. Castellano, P. Foti, A. Fraddosio, S. Marzano, M.D. Piccioni, D. Scardigno* DICAR Politecnico di Bari, Italy *Via Orabona 4, 70125 Bari, Italy, scardigno@imedado.poliba.it

More information

DIVERLESS SUBSEA HOT TAPPING OF PRODUCTION PIPELINES

DIVERLESS SUBSEA HOT TAPPING OF PRODUCTION PIPELINES DIVERLESS SUBSEA HOT TAPPING OF PRODUCTION PIPELINES Dale Calkins Senior Project Engineer, TD Williamson Inc Biography Dale Calkins joined TD Williamson Inc in November of 1999 after working as a consulting

More information

Analysis of dilatometer test in calibration chamber

Analysis of dilatometer test in calibration chamber Analysis of dilatometer test in calibration chamber Lech Bałachowski Gdańsk University of Technology, Poland Keywords: calibration chamber, DMT, quartz sand, FEM ABSTRACT: Because DMT in calibration test

More information

T e l N o : F a x N o : E m a i l : a i s h c m c - m e. c o m w w w. c m c - m e.

T e l N o : F a x N o : E m a i l : a i s h c m c - m e. c o m w w w. c m c - m e. MU047: Practical Valve Technology: Selection, Installation, Upgrading, Inspection & Troubleshooting MU047 Rev.002 CMCT COURSE OUTLINE Page 1 of 7 Training Description: This five-day intensive course covers

More information

Unit A: Mix and Flow of Matter

Unit A: Mix and Flow of Matter Unit A: Mix and Flow of Matter Science 8 1 Section 3.0 THE PROPERTIES OF GASES AND LIQUIDS CAN BE EXPLAINED BY THE PARTICLE MODEL OF MATTER. 2 1 Viscosity and the Effects of Temperature Topic 3.1 3 Viscosity

More information

Science 8 Chapter 9 Section 1

Science 8 Chapter 9 Section 1 Science 8 Chapter 9 Section 1 Forces and Buoyancy (pp. 334-347) Forces Force: anything that causes a change in the motion of an object; a push or pull on an object balanced forces: the condition in which

More information

Fuzzy Logic System to Control a Spherical Underwater Robot Vehicle (URV)

Fuzzy Logic System to Control a Spherical Underwater Robot Vehicle (URV) Fuzzy Logic System to Control a Spherical Underwater Robot Vehicle (URV) Abdalla Eltigani Ibrahim Universiti Teknologi PETRONAS Malaysia abdotigani11@gmail.com Mohd Noh Karsiti Universiti Teknologi PETRONAS

More information

A Numerical Simulation of Fluid-Structure Interaction for Refrigerator Compressors Suction and Exhaust System Performance Analysis

A Numerical Simulation of Fluid-Structure Interaction for Refrigerator Compressors Suction and Exhaust System Performance Analysis 1131, Page 1 A Numerical Simulation of Fluid-Structure Interaction for Refrigerator Compressors Suction and Exhaust System Performance Analysis Shoufei Wu*, Zonghuai Wang Jiaxipera Compressor Co., Ltd.,

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

Measurement and simulation of the flow field around a triangular lattice meteorological mast

Measurement and simulation of the flow field around a triangular lattice meteorological mast Measurement and simulation of the flow field around a triangular lattice meteorological mast Matthew Stickland 1, Thomas Scanlon 1, Sylvie Fabre 1, Andrew Oldroyd 2 and Detlef Kindler 3 1. Department of

More information

THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS

THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS THE PERFORMANCE OF PLANING HULLS IN TRANSITION SPEEDS BY DOYOON KIM UNIVERSITY OF SOUTHAMPTON LIST OF CONTENTS AIM & OBJECTIVE HYDRODYNAMIC PHENOMENA OF PLANING HULLS TOWING TANK TEST RESULTS COMPUTATIONAL

More information

ITTC - Recommended Procedures and Guidelines

ITTC - Recommended Procedures and Guidelines 7.5 Page 1 of 5 Table of Contents 1. PURPOSE OF PROCEDURE... 2 2. DESCRIPTION OF PROCEDURE... 2 4. DOCUMENTATION... 4 5. REFERENCES... 4 3. PARAMETERS... 4 Updated by Approved Manoeuvring Committee of

More information

TECHNICAL SPECIFICATION SCHILLING UHD III WORK CLASS ROV SYSTEM

TECHNICAL SPECIFICATION SCHILLING UHD III WORK CLASS ROV SYSTEM TECHNICAL SPECIFICATION SCHILLING UHD III WORK CLASS ROV ROVOP, Silvertrees Drive, Westhill, Aberdeen AB32 6BH, Scotland, UK T +44 (0) 1224 472565 E rov@rovop.com www.rovop.com TECHNICAL SPECIFICATION

More information