mass of container full of air = g mass of container with extra air = g volume of air released = cm 3


 Frederick Nash
 1 years ago
 Views:
Transcription
1 1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate the resultant force on the cabin door, of area 3 m 2, caused by this difference in air pressure Q32 The apparatus in the diagram below may be used to measure the density of air. Using the foot pump, extra air. is pumped into the container. This extra air is released into the measuring cylinder as shown above and its volume measured. The following measurements, are recorded. mass of container full of air = g mass of container with extra air = g volume of air released = cm 3 What value do these results give for the density of air in kgm 3? 1994 Q33 Liquid nitrogen changes to its gaseous state at a temperature of 196 ºC What is this temperature in kelvin? Explain why a temperature of 0 kelvin is described as "the absolute zero of temperature".
2 1995 Q33 A skin diver carries her air supply in a steel cylinder on her back. She works at a depth where the pressure is 2.5 x 10 5 Pa. When full, the cylinder contains m 3 of air at a pressure of 1.6 x 10 7 Pa. Calculate the volume of air available to her at this depth from a full cylinder Q 32 Gas is often stored in cylinders at high pressure. The pressure of the gas must be reduced by a reduction valve before the gas can be used. The pressure of the gas in the cylinder is 20 x 10 5 Pa. The pressure of the gas as it leaves the reduction valve is 4 x 10 5 Pa. Gas with a volume of 0.01 m 3 enters the reduction valve from the cylinder. What is the volume of this gas when it leaves the reduction valve, assuming that the temperature of the gas does not change?
3 1991 Q4 The diagram below, taken from a physics textbook, shows the effect of increasing the force on a compression spring. This type of spring is used in the design of a safety device for a gas cylinder. The pressure of the gas in the cylinder is 5.0 x 10 5 Pa at a temperature of 20ºC. The area of the piston is 2.5 x 104 m 2. (i) What is the size of the force exerted by the gas on the piston? (ii) Explain how the device operates, if the gas pressure in the cylinder exceeds a safety limit. (c) The safety limit is set at a pressure of 9.0 x 10 5 Pa. At what temperature would this limit be reached by the gas described in part? Assume that any increase in volume of the gas in the cylinder can be neglected. The adjuster is screwed inwards. What would be the effect on the value of the pressure safety limit? Justify your answer.
4 1992 Q4 The apparatus shown below can be used as a type of thermometer. It consists of a bulb containing helium gas, the pressure of which can be monitored. The volume of the bulb is considered to be constant over the range of temperature measured by the thermometer. The following results for the temperature and pressure of the gas were obtained while calibrating the thermometer. (i) Copy the above table. Complete the table, giving the temperature in kelvin. (ii) Use the data from your completed table to establish the relationship between the pressure and temperature of the gas. (iii) Explain this change of pressure with temperature in terms of the movement of the helium molecules. When the bulb is immersed in a sample of liquid nitrogen, the meter gives a reading of 24 kpa for the pressure of the helium gas. Find the temperature of the liquid nitrogen sample.
5 1993 Q4 A pupil uses the apparatus below to investigate properties of a sample of gas. The volume of the sample of gas can be changed by moving the piston. The temperature of the sample of gas can be increased by using the heater. At the start, the pressure of the gas is 400 kpa and its volume is 1000 cm 3. During the investigation, the pressure and volume of the gas change as indicated by sections AB and BC on the graph below. During section AB, the temperature of the gas is constant at 300 K. (c) Calculate the volume of the gas when its pressure is 250 kpa during stage AB. State what happens to the pressure, volume and temperature of the gas over the section of the graph which starts at B and finishes at C. What is the temperature of the gas, in kelvin, corresponding to point C on the graph?
6 1994 Q3 A water rocket consists of a plastic bottle, partly filled with water. Air is pumped in through the water as shown in Figure 1. When the pressure inside the bottle is sufficiently high, water is forced out at the nozzle and the rocket accelerates vertically upwards as shown in Figure 2. (i) At takeoff, the volume of air in the bottle is 750 cm 3 at a pressure of 1.76 x 10 5 Pa. Figure 3 shows the rocket at a later stage in its flight, when the volume of the air in the bottle has increased to 900 cm 3. Calculate the new pressure of the compressed air at this later stage In its flight. (ii) The area of the water surface which is in contact with the compressed air in the bottle is 5.0 x 103 m 2. Calculate the force exerted on the water by the compressed air at the new pressure. Explain fully why the rocket rises as the water is forced out at the nozzle.
7 1996 Q4 The diagram below illustrates an experiment to investigate the relationship between pressure and volume of a gas. The apparatus consists of a calibrated syringe fitted with a gastight piston. Air is trapped in the syringe and the pressure of the trapped air can be monitored using a pressure sensor and a meter. The pressure of the trapped air can be altered by exerting a force on the piston. The temperature of the trapped air is assumed to be constant during the experiment. The following measurements of pressure and volume are recorded. Using all the data, establish the relationship between the pressure and volume of the trapped air. The force on the piston is now altered until the volume of the trapped air is 5.0 cm 3. Calculate the pressure of the trapped air. (c) (d) The force is now removed from the piston. Explain the subsequent motion of the piston in terms of the movement of the air molecules. The tubing between the syringe and the pressure sensor is replaced by one of longer length. What effect would this have on the results of the experiment?
8 1997 Q4 A pupil uses the apparatus shown in the diagram to investigate the relationship between the pressure and the temperature of a fixed mass of gas at constant volume. The cylinder is fully immersed in a beaker of water and the water is slowly heated. You may assume that the volume of the cylinder does not change as the temperature of the water changes. Explain why the cylinder must be fully immersed in the beaker of water. The pressure of the gas in the cylinder is 100 kpa when the gas is at a temperature of 17 ºC. Calculate the pressure of the gas in the cylinder when the temperature of the gas is 75 ºC. (c) The base of the cylinder has an area of m 2. What is the force exerted by the gas on the base when the temperature of the gas is 75 ºC? (d) What happens to the density of the gas in the cylinder as the temperature increases from 17 ºC to 75 ºC? Justify your answer.
9 1998 Q4 The rigid container of a garden sprayer has a total volume of 8.0 litres (8 x 103 m 3 ). A gardener pours 5.0 litres (5 x 103 m 3 ) of water into the container. The pressure of the air inside the container is 1.01 x 10 5 Pa. Calculate the mass of air in the sprayer. [Data: Density of air = 1.29 kgm 3 ]. The gardener now pumps air into the container until the pressure of the air inside it becomes 3.0 x 10 5 Pa. (i) The area of the water surface in contact with the compressed air is 7.0 x 103 m 2. Calculate the force which the compressed air exerts on the water. (ii) Water is now released through the nozzle. Calculate the final pressure of the air inside the sprayer when the volume of water falls from 5.0 litres (5 x 103 m 3 ) to 2.0 litres (2 x 103 m 3 ). Assume the temperature of the compressed air remains constant.
10 1999 Q4 Sketch a graph which shows how the pressure caused by a liquid depends on the depth below the surface of the liquid. Numerical values are not required but the axes should be clearly labelled. There is a buoyancy (upthrust) force on a submarine when it is submerged in sea water. (i) Explain fully how the buoyancy force is produced on the submarine. You may make reference to your graph from. (ii) The total volume of sea water displaced by the submarine is 14.5 m 3. Calculate the mass of sea water displaced by the submarine. [Data: Density of seawater = 1.02 x 103 kgm 3.] (iii) The submarine changes depth by altering the mass of water stored in tanks in the submarine. Compressed air replaces some water in the tanks. Explain, in terms of the forces acting on the submarine, why replacing water in the tanks with compressed air causes the submarine to accelerate upwards.
11 2000 Q4 A toy diving bell consists of an inverted glass bulb, open at one end. The bulb contains a fixed mass of air trapped by water. The diving bell floats below the surface of the water in a sealed plastic bottle. The bottle is flexible and can be squeezed. The diving bell has a mass of 2.5 x 103 kg. Calculate the size of the upthrust (buoyancy force) acting on the bell when it is stationary. The trapped air inside the diving bell has a volume of 0.71 cm 3, and is at a pressure of 1.01 x 10 5 Pa. The bottle is now squeezed. This reduces the volume of air trapped inside the bell to 0.63 cm 3. The temperature of the trapped air remains constant. (i) Calculate the pressure of the trapped air after the bottle is squeezed. (ii) What happens to the volume of water inside the bell when the plastic bottle is squeezed? (iii) Explain why the diving bell sinks when the plastic bottle is squeezed Q4 A diver is a member of a marine archaeology team. The diver's air tank has an internal volume of 1.20 x 102 m 3. The pressure of the air in the tank is 2.50 x 10 7 Pa at 20 ºC. (i) Calculate the volume that the air in this tank would occupy at an atmospheric pressure of 1.01 x 10 5 Pa. Assume that the temperature remains constant. (ii) The density of air at a temperature of 20 ºC and at a pressure of 1.01 x 10 5 Pa is 1.20 kg m 3. Calculate the mass of the air in the tank.
FLOATING AND SINKING
NAME SCHOOL INDEX NUMBER DATE FLOATING AND SINKING 1. 1994 Q5a P2 (a) State Archimedes s principal (1 mark) 2. 1996 Q29 P1 A solid copper sphere will sink in water while a hollow copper sphere of the same
More informationMS.RAJA ELGADY/PRESSURE PAPER 3
1 (a) A water tank has a rectangular base of dimensions 1.5m by 1.2m and contains 1440 kg of water. Calculate (i) the weight of the water, weight =...... [1] (ii) the pressure exerted by the water on
More information. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid
IIT JEE Achiever 2014 Ist Year Physics2: Worksheet1 Date: 20140626 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of
More informationSlide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ
Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the
More informationEnd of Chapter Exercises
End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water
More informationEnd of Chapter Exercises
End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water
More informationSlide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3?
Slide 1 / 68 1 What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 2 / 68 2 What is the mass of a rectangular shaped ice block with dimensions of 0.04m x 0.05m
More informationWhat happens to the mass and what happens to the weight of the liquid in the cup? decreases stays the same decreases stays the same
1 cup contains hot liquid. Some of the liquid evaporates. What happens to the mass and what happens to the weight of the liquid in the cup? mass stays the same stays the same weight stays the same stays
More informationPHYS 101 Previous Exam Problems
PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep
More informationFluids always move from high pressure to low pressure. Air molecules pulled by gravity = atmospheric pressure
9.1 Fluids Under Pressure Fluids always move from high pressure to low pressure w Fluids under pressure and compressed gases are used for a variety of everyday tasks Air molecules pulled by gravity = atmospheric
More informationChapter 9. Forces and Fluids
Chapter 9 Forces and Fluids Key Terms hydraulic systems incompressible mass neutral buoyancy pascal pneumatic systems pressure unbalanced forces weight Archimedes principle average density balanced forces
More informationVacuum P=0. h=76 cm A B C. Barometer
Recap: Pressure Pressure = Force per unit area (P = F /A; units: Pascals) Density of object = mass / volume (ρ = m /V; units: kg / m 3 ) Pascal s Law:Pressure is transmitted equally in all directions throughout
More informationHydrostatics Physics Lab XI
Hydrostatics Physics Lab XI Objective Students will discover the basic principles of buoyancy in a fluid. Students will also quantitatively demonstrate the variance of pressure with immersion depth in
More informationQuestions. theonlinephysicstutor.com. facebook.com/theonlinephysicstutor. Name: Edexcel Drag Viscosity. Questions. Date: Time: Total marks available:
Name: Edexcel Drag Viscosity Questions Date: Time: Total marks available: Total marks achieved: Questions Q1. A small helium balloon is released into the air. The balloon initially accelerates upwards.
More information[2] After a certain time, the temperature of the water has decreased to below room temperature.
1 (a) Explain, in terms of molecules, why it is possible to compress a gas, but not a liquid. (b) Two containers made of insulating material contain the same volume of water at room temperature. The containers
More information2.1 Simple Kinetic Molecular Model of Matter
For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 2.1 Simple Kinetic Molecular Model of Matter Question Paper Level IGSE Subject Physics (625) Exam oard Topic Sub Topic ooklet
More informationL 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather
L 13 Fluid Statics [2] More on fluids. How can a steel boat float. A ship can float in a cup of water! Today s weather The deeper you go the higher the pressure P Top A hypothetical volume of water inside
More informationGrade 8 Science: Unit 2Fluids Chapter 9: Force, Pressure Area
Grade 8 Science: Unit 2Fluids Chapter 9: Force, Pressure Area Key Terms: hydraulic systems, incompressible, mass, neutral buoyancy, pascal, pneumatic systems, pressure, unbalanced forces, weight, Archimedes
More informationA B isothermal compression at a temperature of 300 K. The work done on the air is 104 J.
Q1. In an ideal hot air engine, a fixed mass of air is continuously taken through the following four processes: A B isothermal compression at a temperature of 300 K. The work done on the air is 104 J.
More informationDensity, Pressure Learning Outcomes
Density, Pressure Learning Outcomes Define density and pressure, and give their units. Solve problems about density and pressure. Discuss pressure in liquids and gases. State Boyle s Law. Demonstrate atmospheric
More informationUnit 1 Lesson 5 Fluids and Pressure. Copyright Houghton Mifflin Harcourt Publishing Company
Feel the Pressure! What are fluids? A fluid is any material that can flow and that takes the shape of its container. A fluid can flow because its particles easily move past each other. Liquids and gases,
More informationChapter 10. When atmospheric pressure increases, what happens to the absolute pressure at the bottom of a pool?
When atmospheric pressure increases, what happens to the absolute pressure at the bottom of a pool? A) It does not change B) It increases by an amount less than the atmospheric change. C) It increases
More information3. Moments and Pressure
Leaving Cert Physics Long Questions 20172002 3. Moments and Pressure Remember to photocopy 4 pages onto 1 sheet by going A3 A4 and using back to back on the photocopier Contents Moments: ordinary level
More informationFluids PROCEDURE. 1. Record the mass of the block of wood. 2. Record the mass of the beaker of water (without the block).
Fluids This format for this experiment will be a little different from what you re used to. Instead of spending all your time at one station interacting with a single apparatus you ll be spending 1015
More informationACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy
LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY
More information1. All fluids are: A. gases B. liquids C. gases or liquids D. nonmetallic E. transparent ans: C
Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D nonmetallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights
More informationStudents measure the change in pressure by varying the volume of trapped air in a syringe while:
How Does a Trapped Gas Behave? Teacher Information Objective Students investigate the effect of changes in the volume of a confined gas on pressure at constant temperature. Using the pressure sensor, students
More informationPHYSICS  CLUTCH CH 17: FLUID MECHANICS.
!! www.clutchprep.com INTRO TO DENSITY LIQUIDS and GASES are types of. So we use the term to refer generally to both Liquids AND Gases. The DENSITY of a material is a measure of how tight the molecules
More information29 Pressure, Temperature relationship of a gas
Chemistry Sensors: Loggers: Gas Pressure, Temperature Any EASYSENSE Logging time: EasyLog Teacher s notes 29 Pressure, Temperature relationship of a gas Read The ideal gas laws tell us that if we keep
More informationDensity, Pressure Learning Outcomes
1 Density, Pressure Learning Outcomes Define density and pressure, and give their units. Solve problems about density and pressure. Discuss pressure in liquids and gases. State Boyle s Law. Demonstrate
More informationKNOWN: Mass, pressure, temperature, and specific volume of water vapor.
.0 The specific volume of 5 kg of water vapor at.5 MPa, 440 o C is 0.60 m /kg. Determine (a) the volume, in m, occupied by the water vapor, (b) the amount of water vapor present, in gram moles, and (c)
More informationBOYLE S / CHARLES LAW APPARATUS  1m long
BOYLE S / CHARLES LAW APPARATUS  1m long Cat: MF0340101 (combination Boyle s and Charles without mercury) DESCRIPTION: The IEC Boyle's & Charles Law apparatus is a high quality instrument designed to
More informationProperties of Fluids SPH4C
Properties of Fluids SPH4C Fluids Liquids and gases are both fluids: a fluid is any substance that flows and takes the shape of its container. Fluids Liquids and gases are both fluids: a fluid is any substance
More informationConclusions: 1. What happens to the volume of the gas inside the dropper as you put pressure on the container?
Gas Stations Chemistry Gas Station 1 Pressure Purpose: To observe the affect of pressure of a gas Safety: Wear goggles and aprons!!! Obtain an empty canister. Fill it half way with water and ½ an alka
More informationPHYS:1200 LECTURE 13 FLUIDS (2)
1 PHYS:1200 LECTURE 13 FLUIDS (2) Lecture 13 deals with the properties of fluids at rest or fluid statics. We will be discussing mostly liquids and will introduce two important principles of fluid statics:
More informationOldExam.QuestionsCh14 T072 T071
OldExam.QuestionsCh14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density
More informationPHY131H1S  Class 23. Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle. A little preclass reading quiz
PHY131H1S  Class 23 Today: Fluids Pressure Pascal s Law Gauge Pressure Buoyancy, Archimedes Principle Archimedes (287212 BC) was asked to check the amount of silver alloy in the king s crown. The answer
More informationPressure is defined as force per unit area. Any fluid can exert a force
Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary
More informationProcess Nature of Process
AP Physics Free Response Practice Thermodynamics 1983B4. The pvdiagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the
More information2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio
1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditions shown, determine. 2. A tanker truck carries water, and the cross section of the truck s tank is shown
More informationCambridge International Examinations Cambridge International General Certificate of Secondary Education
Cambridge International Examinations Cambridge International General Certificate of Secondary Education *8269683414* PHYSICS 0625/31 Paper 3 Extended October/November 2014 1 hour 15 minutes Candidates
More informationPhysics General Physics. Lecture 19  Fluids. Fall 2016 Semester Prof. Matthew Jones
Physics 22000 General Physics Lecture 19  Fluids Fall 2016 Semester Prof. Matthew Jones 1 2 What s New This Time? Previously, we had ignored the effect of gravity on the gas particles that were described
More informationStudent Exploration: Boyle s Law and Charles Law
Name: Date: Student Exploration: Boyle s Law and Charles Law Vocabulary: absolute zero, Boyle s law, Charles law, GayLussac s law, Kelvin scale, pressure Prior Knowledge Question (Do this BEFORE using
More informationDensity and Specific Gravity
Fluids Phases of Matter Matter is anything that has mass and takes up space (volume). The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a
More informationFluids. How do fluids exert pressure? What causes objects to float? What happens when pressure in a fluid changes? What affects the speed of a fluid?
CHAPTER 3 SECTION 3 States of Matter Fluids KEY IDEAS As you read this section, keep these questions in mind: How do fluids exert pressure? What causes objects to float? What happens when pressure in a
More informationConstantVolume Process
ConstantVolume Process A constantvolume process is called an isochoric process. Consider the gas in a closed, rigid container. Warming the gas with a flame will raise its pressure without changing its
More informationStudent Exploration: Boyle s Law and Charles Law
Name: Date: Student Exploration: Boyle s Law and Charles Law Vocabulary: absolute zero, Boyle s law, Charles law, Kelvin scale, pressure Prior Knowledge Question (Do this BEFORE using the Gizmo.) A small
More informationSave My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Pressure.
For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 1.8 Pressure Question Paper Level IGSE Subject Physics (0625) Exam oard Topic Sub Topic ooklet ambridge International Examinations(IE)
More informationIn the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More information17.2 and 17.3 Classifying Matter Liquids. Liquids
17.2 and 17.3 Classifying Matter Liquids Read p.295301 in book Liquids Liquids have an indefinite shape, but a definite volume. the same shape as their container. particles that are close together, but
More informationIn the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.
In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position
More informationName Class Date. (pp ) Write the letter of the correct answer in the space provided.
Skills Worksheet Directed Reading A Section: Buoyancy and Density (pp. 412 419) 1. What is the upward force that fluids exert on all matter called? a. pascal force b. atmospheric pressure c. buoyant force
More informationKey Terms Chapter 7. boiling boiling point change of state concentration condensation deposition evaporation flow rate fluid freezing point
Foldable Activity Using the instructions on page 267 in your textbook on how to make foldables, write a key term on each front tab, and the definition on the inside (see example that I made up). You will
More informationGas volume and pressure are indirectly proportional.
Section 2 The Gas Laws Key Terms Boyle s law Charles s law combined gas law absolute zero GayLussac s law Scientists have been studying physical properties of gases for hundreds of years In 1662, Robert
More informationStatic Fluids. **All simulations and videos required for this package can be found on my website, here:
DP Physics HL Static Fluids **All simulations and videos required for this package can be found on my website, here: http://ismackinsey.weebly.com/fluidshl.html Fluids are substances that can flow, so
More informationTHERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)
THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser
More informationMotion, Forces, and Energy Revision (Chapters 3+4)
Motion, Forces, and Energy Revision (Chapters 3+4) What is force? The force exerted on a surface divided by the total area over which the force is exerted. What is the link between pressure & area? Pressure
More informationLAB 7. ROTATION. 7.1 Problem. 7.2 Equipment. 7.3 Activities
LAB 7. ROTATION 7.1 Problem How are quantities of rotational motion defined? What sort of influence changes an object s rotation? How do the quantities of rotational motion operate? 7.2 Equipment plumb
More informationBuoyancy and Density. Buoyant Force and Fluid Pressure. Key Concept Buoyant force and density affect whether an object will float or sink in a fluid.
2 Buoyancy and Density Key Concept Buoyant force and density affect whether an object will float or sink in a fluid. What You Will Learn All fluids exert an upward buoyant force on objects in the fluid.
More informationPage 1
Contents: 1. Thrust and Pressure 2. Pressure in Fluids 3. Buoyancy 4. Why objects sink or Float when placed on surface of water? 5. Archimedes Principle 6. Relative Density Learning Objectives: The students
More informationUnit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book.
Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections 10.1 10.2 of your book. Convert the following to Celsius and Kelvin temperatures: 1. 80.0 o F Early E. C.:
More informationFluids. James H Dann, Ph.D. Say Thanks to the Authors Click (No sign in required)
Fluids James H Dann, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit
More informationChapter 9 Fluids and Buoyant Force
Chapter 9 Fluids and Buoyant Force In Physics, liquids and gases are collectively called fluids. 3/0/018 8:56 AM 1 Fluids and Buoyant Force Formula for Mass Density density mass volume m V water 1000 kg
More informationCHAPTER 31 IDEAL GAS LAWS
CHAPTER 31 IDEAL GAS LAWS EXERCISE 144, Page 317 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume
More information3 1 PRESSURE. This is illustrated in Fig. 3 3.
P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than
More informationAdditional Information
Buoyancy Additional Information Any object, fully or partially immersed in a fluid, is buoyed up by a force equal to the weight of the fluid displaced by the object. Archimedes of Syracuse Archimedes principle
More informationUnit 14 Gas Laws Funsheets
Name: Period: Unit 14 Gas Laws Funsheets Part A: Vocabulary and Concepts Answer the following questions. Refer to your notes and the PowerPoint for help. 1. List 5 different common uses for gases: a.
More informationAP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43
Slide 1 / 43 Slide 2 / 43 P Fluids Practice Problems Multiple hoice Slide 3 / 43 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 kg/m 3 are selected for an experiment.
More informationQuiz name: Chapter 13 Test Review  Fluids
Name: Quiz name: Chapter 13 Test Review  Fluids Date: 1. All fluids are A gases B liquids C gasses or liquids D nonmetallic E transparent 2. 1 Pa is A 1 N/m B 1 m/n C 1 kg/(m s) D 1 kg/(m s 2 ) E 1 N/m
More information(a) Calculate the speed of the sphere as it passes through the lowest point of its path.
1991 Q33 A sphere of mass 3 kg on the end of a wire is released from rest and swings through a vertical distance of 0.4 m. (Neglect air friction.) (a) Calculate the speed of the sphere as it passes through
More informationHydrostatic pressure Consider a tank of fluid which contains a very thin plate of (neutrally buoyant) material with area A. This situation is shown in Figure below. If the plate is in equilibrium (it does
More information3. How many kilograms of air is in the room?
1. Astronomers use density as a clue to the composition of distant objects. Judging by the orbits of its moons the mass of Saturn is found to be 5.68 10 26 kg. (a) Use its mean radius 58 230 km to determine
More informationIrrigation &Hydraulics Department lb / ft to kg/lit.
CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering
More informationLecture 19 Fluids: density, pressure, Pascal s principle and Buoyancy.
Lecture 19 Water tower Fluids: density, pressure, Pascal s principle and Buoyancy. Hydraulic press Pascal s vases Barometer What is a fluid? Fluids are substances that flow. substances that take the shape
More information8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.
Charles s Law According to Charles s law, the volume of a fixed mass of gas varies directly with its Kelvin temperature if its pressure is constant. The following table contains Celsius temperature and
More informationGases. Unit 10. How do gases behave?
Gases Unit 10 How do gases behave? Gases are perhaps the most mysterious of all of the phases of matter. For the most part gases are invisible to us, and it was once believed that in the air there is no
More informationProperties of Fluids. How do ships float?
How do ships float? Despite their weight ships are able to float. This is because a greater force pushing up on the ship opposes the weight or force of the ship pushing down. How do ships float? This supporting
More informationChapter 10 Fluids. Which has a greater density? Ch 10: Problem 5. Ch 10: Problem Phases of Matter Density and Specific Gravity
Chapter 10 Fluids 101 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can
More informationPhys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 101,2,3,4,5,6,7.
Phys101 Lectures 2122 Fluids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 101,2,3,4,5,6,7. Page 1 101 Phases of Matter The three common phases of matter are solid,
More informationDensity and Buoyancy Notes
Density and Buoyancy Notes Measuring Mass and Volume 3.1 Density A balance can be used to measure the mass of an object. If the object is a liquid, pour it into a graduated cylinder to measure the volume.
More informationMaking a Cartesian Diver Toy
Making a Cartesian Diver Toy Abstract: The purpose of this activity is to construct a Cartesian Diver device illustrating the concept described by Boyle s Law, so that a theory may be constructed explaining
More informationExploring the Properties of Gases
Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment and materials and some general
More informationTHE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas.
Unit 4 THE GAS STATE CHAPTER KEY TERMS HOME WORK 9. Kinetic Molecular Theory States of Matter Solid, Liquid, gas Page 4 # to 4 9. Boyles Law P α /V PV = Constant P V = P V Pressure Atmospheric Pressure
More informationExploring the Properties of Gases
Exploring the Properties of Gases LabQuest 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment
More informationLESSON 3.2 Understanding pressure in liquids
LESSON 3.2 Understanding pressure in liquids Introduction Liquids have pressure because of their weights. For example, if you try to put your finger over the end of a tap when it is turned on, you can
More informationUnit A: Mix and Flow of Matter
Unit A: Mix and Flow of Matter Science 8 1 Section 3.0 THE PROPERTIES OF GASES AND LIQUIDS CAN BE EXPLAINED BY THE PARTICLE MODEL OF MATTER. 2 1 Viscosity and the Effects of Temperature Topic 3.1 3 Viscosity
More informationGases. Edward Wen, PhD
Gases Edward Wen, PhD Properties of Gases expand to completely fill their container take the shape of their container low density much less than solid or liquid state compressible when pressure is changed.
More informationCOURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET
COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in
More informationFluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey
Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define
More information3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?
AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a waterfilled container. The
More informationFloat a Big Stick. To investigate how objects float by analyzing forces acting on a floating stick
Chapter 19: Liquids Flotation 53 Float a Big Stick Purpose To investigate how objects float by analyzing forces acting on a floating stick Required Equipment/Supplies Experiment vernier calipers 250mL
More informationChapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.
Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely
More information20 Gases. Gas molecules are far apart and can move freely between collisions.
Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to
More informationThe water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine.
Fluids 1a. [1 mark] The water supply for a hydroelectric plant is a reservoir with a large surface area. An outlet pipe takes the water to a turbine. State the difference in terms of the velocity of the
More informationEach gas sample has the same A) density B) mass C) number of molecules D) number of atoms
1. A real gas behaves most like an ideal gas at A) low pressure and high temperature B) average potential energy of its particles C) ionization energy of its particles D) activation energy of its particles
More informationGas molecules are far apart. collisions The Atmosphere
Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to
More information2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?
CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How
More informationPRESSURE AND BUOYANCY
PRESSURE AND BUOYANCY CONCEPT SUMMARY So far The pressure applied to a confined liquid is transmitted to every point in the liquid (Pascal's Principle). At any given point in a liquid the pressure is the
More informationKinetic Model of Matter
For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Kinetic Model of Matter Question Paper Level Subject Exam oard Unit Topic ooklet Time llowed: O Level Physics ambridge International
More information