mass of container full of air = g mass of container with extra air = g volume of air released = cm 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "mass of container full of air = g mass of container with extra air = g volume of air released = cm 3"

Transcription

1 1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate the resultant force on the cabin door, of area 3 m 2, caused by this difference in air pressure Q32 The apparatus in the diagram below may be used to measure the density of air. Using the foot pump, extra air. is pumped into the container. This extra air is released into the measuring cylinder as shown above and its volume measured. The following measurements, are recorded. mass of container full of air = g mass of container with extra air = g volume of air released = cm 3 What value do these results give for the density of air in kgm -3? 1994 Q33 Liquid nitrogen changes to its gaseous state at a temperature of -196 ºC What is this temperature in kelvin? Explain why a temperature of 0 kelvin is described as "the absolute zero of temperature".

2 1995 Q33 A skin diver carries her air supply in a steel cylinder on her back. She works at a depth where the pressure is 2.5 x 10 5 Pa. When full, the cylinder contains m 3 of air at a pressure of 1.6 x 10 7 Pa. Calculate the volume of air available to her at this depth from a full cylinder Q 32 Gas is often stored in cylinders at high pressure. The pressure of the gas must be reduced by a reduction valve before the gas can be used. The pressure of the gas in the cylinder is 20 x 10 5 Pa. The pressure of the gas as it leaves the reduction valve is 4 x 10 5 Pa. Gas with a volume of 0.01 m 3 enters the reduction valve from the cylinder. What is the volume of this gas when it leaves the reduction valve, assuming that the temperature of the gas does not change?

3 1991 Q4 The diagram below, taken from a physics textbook, shows the effect of increasing the force on a compression spring. This type of spring is used in the design of a safety device for a gas cylinder. The pressure of the gas in the cylinder is 5.0 x 10 5 Pa at a temperature of 20ºC. The area of the piston is 2.5 x 10-4 m 2. (i) What is the size of the force exerted by the gas on the piston? (ii) Explain how the device operates, if the gas pressure in the cylinder exceeds a safety limit. (c) The safety limit is set at a pressure of 9.0 x 10 5 Pa. At what temperature would this limit be reached by the gas described in part? Assume that any increase in volume of the gas in the cylinder can be neglected. The adjuster is screwed inwards. What would be the effect on the value of the pressure safety limit? Justify your answer.

4 1992 Q4 The apparatus shown below can be used as a type of thermometer. It consists of a bulb containing helium gas, the pressure of which can be monitored. The volume of the bulb is considered to be constant over the range of temperature measured by the thermometer. The following results for the temperature and pressure of the gas were obtained while calibrating the thermometer. (i) Copy the above table. Complete the table, giving the temperature in kelvin. (ii) Use the data from your completed table to establish the relationship between the pressure and temperature of the gas. (iii) Explain this change of pressure with temperature in terms of the movement of the helium molecules. When the bulb is immersed in a sample of liquid nitrogen, the meter gives a reading of 24 kpa for the pressure of the helium gas. Find the temperature of the liquid nitrogen sample.

5 1993 Q4 A pupil uses the apparatus below to investigate properties of a sample of gas. The volume of the sample of gas can be changed by moving the piston. The temperature of the sample of gas can be increased by using the heater. At the start, the pressure of the gas is 400 kpa and its volume is 1000 cm 3. During the investigation, the pressure and volume of the gas change as indicated by sections AB and BC on the graph below. During section AB, the temperature of the gas is constant at 300 K. (c) Calculate the volume of the gas when its pressure is 250 kpa during stage AB. State what happens to the pressure, volume and temperature of the gas over the section of the graph which starts at B and finishes at C. What is the temperature of the gas, in kelvin, corresponding to point C on the graph?

6 1994 Q3 A water rocket consists of a plastic bottle, partly filled with water. Air is pumped in through the water as shown in Figure 1. When the pressure inside the bottle is sufficiently high, water is forced out at the nozzle and the rocket accelerates vertically upwards as shown in Figure 2. (i) At take-off, the volume of air in the bottle is 750 cm 3 at a pressure of 1.76 x 10 5 Pa. Figure 3 shows the rocket at a later stage in its flight, when the volume of the air in the bottle has increased to 900 cm 3. Calculate the new pressure of the compressed air at this later stage In its flight. (ii) The area of the water surface which is in contact with the compressed air in the bottle is 5.0 x 10-3 m 2. Calculate the force exerted on the water by the compressed air at the new pressure. Explain fully why the rocket rises as the water is forced out at the nozzle.

7 1996 Q4 The diagram below illustrates an experiment to investigate the relationship between pressure and volume of a gas. The apparatus consists of a calibrated syringe fitted with a gas-tight piston. Air is trapped in the syringe and the pressure of the trapped air can be monitored using a pressure sensor and a meter. The pressure of the trapped air can be altered by exerting a force on the piston. The temperature of the trapped air is assumed to be constant during the experiment. The following measurements of pressure and volume are recorded. Using all the data, establish the relationship between the pressure and volume of the trapped air. The force on the piston is now altered until the volume of the trapped air is 5.0 cm 3. Calculate the pressure of the trapped air. (c) (d) The force is now removed from the piston. Explain the subsequent motion of the piston in terms of the movement of the air molecules. The tubing between the syringe and the pressure sensor is replaced by one of longer length. What effect would this have on the results of the experiment?

8 1997 Q4 A pupil uses the apparatus shown in the diagram to investigate the relationship between the pressure and the temperature of a fixed mass of gas at constant volume. The cylinder is fully immersed in a beaker of water and the water is slowly heated. You may assume that the volume of the cylinder does not change as the temperature of the water changes. Explain why the cylinder must be fully immersed in the beaker of water. The pressure of the gas in the cylinder is 100 kpa when the gas is at a temperature of 17 ºC. Calculate the pressure of the gas in the cylinder when the temperature of the gas is 75 ºC. (c) The base of the cylinder has an area of m 2. What is the force exerted by the gas on the base when the temperature of the gas is 75 ºC? (d) What happens to the density of the gas in the cylinder as the temperature increases from 17 ºC to 75 ºC? Justify your answer.

9 1998 Q4 The rigid container of a garden sprayer has a total volume of 8.0 litres (8 x 10-3 m 3 ). A gardener pours 5.0 litres (5 x 10-3 m 3 ) of water into the container. The pressure of the air inside the container is 1.01 x 10 5 Pa. Calculate the mass of air in the sprayer. [Data:- Density of air = 1.29 kgm -3 ]. The gardener now pumps air into the container until the pressure of the air inside it becomes 3.0 x 10 5 Pa. (i) The area of the water surface in contact with the compressed air is 7.0 x 10-3 m 2. Calculate the force which the compressed air exerts on the water. (ii) Water is now released through the nozzle. Calculate the final pressure of the air inside the sprayer when the volume of water falls from 5.0 litres (5 x 10-3 m 3 ) to 2.0 litres (2 x 10-3 m 3 ). Assume the temperature of the compressed air remains constant.

10 1999 Q4 Sketch a graph which shows how the pressure caused by a liquid depends on the depth below the surface of the liquid. Numerical values are not required but the axes should be clearly labelled. There is a buoyancy (upthrust) force on a submarine when it is submerged in sea water. (i) Explain fully how the buoyancy force is produced on the submarine. You may make reference to your graph from. (ii) The total volume of sea water displaced by the submarine is 14.5 m 3. Calculate the mass of sea water displaced by the submarine. [Data: Density of seawater = 1.02 x 103 kgm- 3.] (iii) The submarine changes depth by altering the mass of water stored in tanks in the submarine. Compressed air replaces some water in the tanks. Explain, in terms of the forces acting on the submarine, why replacing water in the tanks with compressed air causes the submarine to accelerate upwards.

11 2000 Q4 A toy diving bell consists of an inverted glass bulb, open at one end. The bulb contains a fixed mass of air trapped by water. The diving bell floats below the surface of the water in a sealed plastic bottle. The bottle is flexible and can be squeezed. The diving bell has a mass of 2.5 x 10-3 kg. Calculate the size of the upthrust (buoyancy force) acting on the bell when it is stationary. The trapped air inside the diving bell has a volume of 0.71 cm 3, and is at a pressure of 1.01 x 10 5 Pa. The bottle is now squeezed. This reduces the volume of air trapped inside the bell to 0.63 cm 3. The temperature of the trapped air remains constant. (i) Calculate the pressure of the trapped air after the bottle is squeezed. (ii) What happens to the volume of water inside the bell when the plastic bottle is squeezed? (iii) Explain why the diving bell sinks when the plastic bottle is squeezed Q4 A diver is a member of a marine archaeology team. The diver's air tank has an internal volume of 1.20 x 10-2 m 3. The pressure of the air in the tank is 2.50 x 10 7 Pa at 20 ºC. (i) Calculate the volume that the air in this tank would occupy at an atmospheric pressure of 1.01 x 10 5 Pa. Assume that the temperature remains constant. (ii) The density of air at a temperature of 20 ºC and at a pressure of 1.01 x 10 5 Pa is 1.20 kg m -3. Calculate the mass of the air in the tank.

MS.RAJA ELGADY/PRESSURE PAPER 3

MS.RAJA ELGADY/PRESSURE PAPER 3 1- (a) A water tank has a rectangular base of dimensions 1.5m by 1.2m and contains 1440 kg of water. Calculate (i) the weight of the water, weight =...... [1] (ii) the pressure exerted by the water on

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ

Slide 5 / What is the difference between the pressure on the bottom of a pool and the pressure on the water surface? A ρgh B ρg/h C ρ/gh D gh/ρ Slide 1 / 47 1 Two substances mercury with a density 13600 kg/m3 and alcohol with a density 800 kg/m3 are selected for an experiment. If the experiment requires equal masses of each liquid, what is the

More information

Chapter 9. Forces and Fluids

Chapter 9. Forces and Fluids Chapter 9 Forces and Fluids Key Terms hydraulic systems incompressible mass neutral buoyancy pascal pneumatic systems pressure unbalanced forces weight Archimedes principle average density balanced forces

More information

Slide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3?

Slide 1 / What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 1 / 68 1 What is the density of an aluminum block with a mass of 4050 kg and volume of 1.5 m 3? Slide 2 / 68 2 What is the mass of a rectangular shaped ice block with dimensions of 0.04m x 0.05m

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Fluids PROCEDURE. 1. Record the mass of the block of wood. 2. Record the mass of the beaker of water (without the block).

Fluids PROCEDURE. 1. Record the mass of the block of wood. 2. Record the mass of the beaker of water (without the block). Fluids This format for this experiment will be a little different from what you re used to. Instead of spending all your time at one station interacting with a single apparatus you ll be spending 10-15

More information

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy

ACTIVITY 1: Buoyancy Problems. OBJECTIVE: Practice and Reinforce concepts related to Fluid Pressure, primarily Buoyancy LESSON PLAN: SNAP, CRACKLE, POP: Submarine Buoyancy, Compression, and Rotational Equilibrium DEVELOPED BY: Bill Sanford, Nansemond Suffolk Academy 2012 NAVAL HISTORICAL FOUNDATION TEACHER FELLOWSHIP ACTIVITY

More information

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D non-metallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights

More information

Students measure the change in pressure by varying the volume of trapped air in a syringe while:

Students measure the change in pressure by varying the volume of trapped air in a syringe while: How Does a Trapped Gas Behave? Teacher Information Objective Students investigate the effect of changes in the volume of a confined gas on pressure at constant temperature. Using the pressure sensor, students

More information

Pressure is defined as force per unit area. Any fluid can exert a force

Pressure is defined as force per unit area. Any fluid can exert a force Physics Notes Chapter 9 Fluid Mechanics Fluids Fluids are materials that flow, which include both liquids and gases. Liquids have a definite volume but gases do not. In our analysis of fluids it is necessary

More information

Density, Pressure Learning Outcomes

Density, Pressure Learning Outcomes 1 Density, Pressure Learning Outcomes Define density and pressure, and give their units. Solve problems about density and pressure. Discuss pressure in liquids and gases. State Boyle s Law. Demonstrate

More information

Page 1

Page 1 Contents: 1. Thrust and Pressure 2. Pressure in Fluids 3. Buoyancy 4. Why objects sink or Float when placed on surface of water? 5. Archimedes Principle 6. Relative Density Learning Objectives: The students

More information

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser

More information

Conclusions: 1. What happens to the volume of the gas inside the dropper as you put pressure on the container?

Conclusions: 1. What happens to the volume of the gas inside the dropper as you put pressure on the container? Gas Stations Chemistry Gas Station 1 Pressure Purpose: To observe the affect of pressure of a gas Safety: Wear goggles and aprons!!! Obtain an empty canister. Fill it half way with water and ½ an alka

More information

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas.

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas. Unit 4 THE GAS STATE CHAPTER KEY TERMS HOME WORK 9. Kinetic Molecular Theory States of Matter Solid, Liquid, gas Page 4 # to 4 9. Boyles Law P α /V PV = Constant P V = P V Pressure Atmospheric Pressure

More information

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

More information

In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.

In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19. In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

More information

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B4. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the

More information

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define

More information

1Pressure 2 21Volume 2 2. or Temperature 2. where the subscript 1 signifies the initial conditions and the subscript 2 signifies the final conditions.

1Pressure 2 21Volume 2 2. or Temperature 2. where the subscript 1 signifies the initial conditions and the subscript 2 signifies the final conditions. 10-4 Gases The ideal gas law expresses the relationship between the pressure, volume, and temperature of a gas. In the exercises in this chapter, the mass of the gas remains constant. You will be examining

More information

20 Gases. Gas molecules are far apart and can move freely between collisions.

20 Gases. Gas molecules are far apart and can move freely between collisions. Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to

More information

Gas molecules are far apart. collisions The Atmosphere

Gas molecules are far apart. collisions The Atmosphere Gas molecules are far apart and can move freely between collisions. Gases are similar to liquids in that they flow; hence both are called fluids. In a gas, the molecules are far apart, allowing them to

More information

2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force?

2 Buoyant Force. TAKE A LOOK 2. Identify What produces buoyant force? CHAPTER 3 2 Buoyant Force SECTION Forces in Fluids BEFORE YOU READ After you read this section, you should be able to answer these questions: What is buoyant force? What makes objects sink or float? How

More information

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams.

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams. Heat Engine Equipment: Capstone, 2 large glass beakers (one for ice water, the other for boiling water), temperature sensor, pressure sensor, rotary motion sensor, meter stick, calipers, set of weights,

More information

AP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43

AP B Fluids Practice Problems. Multiple Choice. Slide 2 / 43. Slide 1 / 43. Slide 4 / 43. Slide 3 / 43. Slide 6 / 43. Slide 5 / 43 Slide 1 / 43 Slide 2 / 43 P Fluids Practice Problems Multiple hoice Slide 3 / 43 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 kg/m 3 are selected for an experiment.

More information

CARTESIAN DIVER (1 Hour)

CARTESIAN DIVER (1 Hour) (1 Hour) Addresses NGSS Level of Difficulty: 2 Grade Range: K-2 OVERVIEW In this activity, students will build a Cartesian diver and discover how compression and changes in density cause the diver to mysteriously

More information

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1 Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage

More information

More About Solids, Liquids and Gases ASSIGNMENT

More About Solids, Liquids and Gases ASSIGNMENT More About Solids, Liquids and Gases ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below: List : water, density, altitudes, lateral, intermolecular, force, cohesion,

More information

Unit A: Mix and Flow of Matter

Unit A: Mix and Flow of Matter Unit A: Mix and Flow of Matter Science 8 1 Section 3.0 THE PROPERTIES OF GASES AND LIQUIDS CAN BE EXPLAINED BY THE PARTICLE MODEL OF MATTER. 2 1 Viscosity and the Effects of Temperature Topic 3.1 3 Viscosity

More information

Ideal gas law. Introduction

Ideal gas law. Introduction Ideal gas law Introduction We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls. The

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 10 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Density and Buoyancy Notes

Density and Buoyancy Notes Density and Buoyancy Notes Measuring Mass and Volume 3.1 Density A balance can be used to measure the mass of an object. If the object is a liquid, pour it into a graduated cylinder to measure the volume.

More information

Matter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its

Matter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its Kinetic Theory of Matter Matter is made up of particles which are in continual random motion Misconception: Only when a substance is in its liquid or gas state do its particles move because in these two

More information

Chapter 9 Fluids CHAPTER CONTENTS

Chapter 9 Fluids CHAPTER CONTENTS Flowing fluids, such as the water flowing in the photograph at Coors Falls in Colorado, can make interesting patterns In this chapter, we will investigate the basic physics behind such flow Photo credit:

More information

Determination of the Gas-Law Constant (R) using CO2

Determination of the Gas-Law Constant (R) using CO2 Determination of the Gas-Law Constant (R) using CO2 EXPERIMENT 11 Prepared by Edward L. Brown and Miranda Raines, Lee University The student will become familiar with ideal gases and how their properties

More information

PRESSURE. 7. Fluids 2

PRESSURE. 7. Fluids 2 DENSITY Fluids can flow, change shape, split into smaller portions and combine into a larger system One of the best ways to quantify a fluid is in terms of its density The density, ρ, of a material (or

More information

Unit A-2: List of Subjects

Unit A-2: List of Subjects ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A-1: Introduction to Thermodynamics A-2: Engineering Properties Unit A-2: List of Subjects Basic Properties and Temperature Pressure

More information

Guide for Reading. Vocabulary compressibility

Guide for Reading. Vocabulary compressibility 14.1 Properties of Gases Connecting to Your World In organized soccer, there are rules about equipment. For international competitions, the ball s mass must be not more than 450 grams and not less than

More information

Fluids: Floating & Flying. Student Leaning Objectives 2/16/2016. Distinguish between force and pressure. Recall factors that allow floating

Fluids: Floating & Flying. Student Leaning Objectives 2/16/2016. Distinguish between force and pressure. Recall factors that allow floating Fluids: Floating & Flying (Chapter 3) Student Leaning Objectives Distinguish between force and pressure Recall factors that allow floating Differentiate between cohesion and adhesion Analyze Pascal s principle

More information

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc. Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

More information

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

SPH 4C Unit 4 Hydraulics and Pneumatic Systems SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that

More information

Exercises The Atmosphere (page 383) 20.2 Atmospheric Pressure (pages )

Exercises The Atmosphere (page 383) 20.2 Atmospheric Pressure (pages ) Exercises 20.1 The Atmosphere (page 383) 1. The energizes the molecules in Earth s atmosphere. 2. Why is gravity important to Earth s atmosphere? 3. What would happen to Earth s atmosphere without the

More information

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high)

Exploring the Properties of Gases. Evaluation copy. 10 cm in diameter and 25 cm high) Exploring the Properties of Gases Computer 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Kinetic Molecular Theory Name Period Unit 7 HW 1 Worksheet (Goals 1 & 2) 1. Describe how gases, liquids, and solids compare using the following table. Volume (definite or indefinite) Molecular Motion (high,

More information

Chapter 3 PRESSURE AND FLUID STATICS

Chapter 3 PRESSURE AND FLUID STATICS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGraw-Hill

More information

Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

Chapter 13 Gases. H. Cannon, C. Clapper and T. Guillot Klein High School. Pressure/Temperature Conversions

Chapter 13 Gases. H. Cannon, C. Clapper and T. Guillot Klein High School. Pressure/Temperature Conversions Chapter 13 Gases Pressure/Temperature Conversions Convert the following: 1. 3.50 atm = kpa 2. 123 atm = mmhg 3. 970.0 mmhg = torr 4. 870.0 torr = kpa 5. 250.0 kpa = atm 6. 205.0 mmhg = kpa 7. 12.4 atm

More information

Fluids, Pressure and buoyancy

Fluids, Pressure and buoyancy Fluids, Pressure and buoyancy Announcements: CAPA due Friday at 10pm. Comment on the hint in Problem 5. CAPA solutions from previous sets can be found by logging onto CAPA and selecting View Previous Set

More information

Chapter Five: Density and Buoyancy

Chapter Five: Density and Buoyancy Chapter Five: Density and Buoyancy 5.1 Density 5.2 Buoyancy 5.3 Heat Affects Density and Buoyancy 5.1 Mass and Weight Mass is the amount of matter in an object. Weight is a measure of the pulling force

More information

Name Date Class CHAPTER ASSESSMENT. 1. Equal volumes of gases at the same temperature and pressure contain equal numbers of particles.

Name Date Class CHAPTER ASSESSMENT. 1. Equal volumes of gases at the same temperature and pressure contain equal numbers of particles. Name ate lass HPTER 14 HPTER SSESSMENT Gases Reviewing Vocabulary Match the definition in olumn with the term in olumn. olumn 1. Equal volumes of gases at the same temperature and pressure contain equal

More information

UNIQUE SCIENCE ACADEMY

UNIQUE SCIENCE ACADEMY 1 (a) UNIQUE SIENE EMY Test (Unit 7) Name :... Paper: Physics ate : 04.07.2011 ode: 5054 lass: I Time llowed: 35Minutes Maximum Marks: 25 1 Theory Section: What do you understand by the term pressure.

More information

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7.

Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7. Phys101 Lectures 24-25 luids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 10-1,2,3,4,5,6,7. Page 1 10-1 Phases of Matter The three common phases of matter are solid,

More information

INSTRUCTIONAL GOAL: Explain and perform calculations regarding the buoyant force on a

INSTRUCTIONAL GOAL: Explain and perform calculations regarding the buoyant force on a Snap, Crackle, Pop! Submarine Buoyancy, Compression, and Rotational Equilibrium Bill Sanford, Physics Teacher, Nansemond Suffolk Academy, Suffolk 2012 Naval Historical Foundation STEM-H Teacher Fellowship

More information

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8. Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

More information

Multiple Choice (40%)

Multiple Choice (40%) AP Chemistry Test (Chapter 5) Please do not write on this test thank you! Multiple Choice (40%) 1) A sealed rigid container is filled with three ideal gases: A, B and C. The partial pressure of each gas

More information

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same

More information

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

More information

Chapter 4, Problem 30.

Chapter 4, Problem 30. Chapter 4, Problem 30. A well-insulated rigid tank contains 5 kg of a saturated liquid vapor mixture of water at l00 kpa. Initially, three-quarters of the mass is in the liquid phase. An electric resistor

More information

Final Gas Law Review

Final Gas Law Review Name: ate: 1 t which temperature is the vapor pressure of ethanol equal to 80 kpa?. 48. 73. 80. 101 4 Gas Molecular Mass (g/mol) 2 4 17 20 The table shown lists four gases and their molecular mass. Which

More information

States of Matter Review

States of Matter Review States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

Homework of chapter (3)

Homework of chapter (3) The Islamic University of Gaza, Civil Engineering Department, Fluid mechanics-discussion, Instructor: Dr. Khalil M. Al Astal T.A: Eng. Hasan Almassri T.A: Eng. Mahmoud AlQazzaz First semester, 2013. Homework

More information

THE BEHAVIOR OF GASES

THE BEHAVIOR OF GASES 14 THE BEHAVIOR OF GASES SECTION 14.1 PROPERTIES OF GASES (pages 413 417) This section uses kinetic theory to explain the properties of gases. This section also explains how gas pressure is affected by

More information

To play movie you must be in Slide Show Mode CLICK HERE EXERCISE! EXERCISE! To play movie you must be in Slide Show Mode CLICK HERE

To play movie you must be in Slide Show Mode CLICK HERE EXERCISE! EXERCISE! To play movie you must be in Slide Show Mode CLICK HERE Boyle s Law Boyle s law Pressure and volume are inversely related (constant T, temperature, and n, # of moles of gas). PV k (kis a constant for a given sample of air at a specific temperature) P V P V

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes Name Period CRHS Academic Chemistry Unit 11 Gas Laws Notes Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

Experiment 8 GAS LAWS

Experiment 8 GAS LAWS Experiment 8 GAS LAWS FV 6/25/2017 MATERIALS: Amontons Law apparatus, Boyle s Law apparatus, Avogadro s Corollary apparatus, four beakers (2 L), warm-water bath, ice, barometer, digital thermometer, air

More information

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy

More information

Multiple Choice. AP B Fluids Practice Problems. Mar 22 4:15 PM. Mar 22 4:15 PM. Mar 22 4:02 PM

Multiple Choice. AP B Fluids Practice Problems. Mar 22 4:15 PM. Mar 22 4:15 PM. Mar 22 4:02 PM P Fluids Practice Problems Mar 22 4:15 PM Multiple hoice Mar 22 4:15 PM 1 Two substances mercury with a density 13600 kg/m 3 and alcohol with a density 0.8 g/cm 3 are selected for an experiment. If the

More information

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases Chemistry HP Unit 6 Gases Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases 6-1. Define pressure using a mathematical equation. 6-2. Perform calculations involving pressure,

More information

Please do not write on this test. Please use the answer sheet. 1) Please choose all conditions that would allow a gas sample to behave ideally.

Please do not write on this test. Please use the answer sheet. 1) Please choose all conditions that would allow a gas sample to behave ideally. AP Chemistry Test (Chapter 5) Please do not write on this test. Please use the answer sheet. Multiple Choice (50%) 1) Please choose all conditions that would allow a gas sample to behave ideally. I) Nonpolar

More information

Multiple Representations of Buoyancy. Meredith Weglarz, Jessica Oliveira, James Vesenka University of New England, Department of Chemistry and Physics

Multiple Representations of Buoyancy. Meredith Weglarz, Jessica Oliveira, James Vesenka University of New England, Department of Chemistry and Physics Multiple Representations of Buoyancy Meredith Weglarz, Jessica Oliveira, James Vesenka University of New England, Department of Chemistry and Physics Abstract: A modeling lab exercise, based on multiple,

More information

Mix and Flow of Matter Unit Test. For each of the following hazardous products match the correct WHMIS symbol

Mix and Flow of Matter Unit Test. For each of the following hazardous products match the correct WHMIS symbol /40 Student Name Class Section 1.1 WHMIS For each of the following hazardous products match the correct WHMIS symbol 1 Flammable A. 2 Corrosive B. 3 Dangerously Reactive C. Section 1.2 The Many Uses of

More information

then the work done is, if the force and the displacement are in opposite directions, then the work done is.

then the work done is, if the force and the displacement are in opposite directions, then the work done is. 1. What is the formula for work? W= x 2. What are the 8 forms of energy? 3. Write the formula for the following: Kinetic Energy Potential Energy 4. If the force and the displacement are in the same direction,

More information

Lesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids

Lesson 12: Fluid statics, Continuity equation (Sections ) Chapter 9 Fluids Lesson : luid statics, Continuity equation (Sections 9.-9.7) Chapter 9 luids States of Matter - Solid, liquid, gas. luids (liquids and gases) do not hold their shapes. In many cases we can think of liquids

More information

Unit 8 Gas Laws. Progress Tracker. Essential Vocabulary: Essential Outcomes: Test Date: Test Readiness Checks: Webassign Due Score

Unit 8 Gas Laws. Progress Tracker. Essential Vocabulary: Essential Outcomes: Test Date: Test Readiness Checks: Webassign Due Score Unit 8 Gas Laws Progress Tracker Test Date: Webassign Due Score Packet Progress Checks Essential Vocabulary: Ideal gas Pressure (atmospheres) Volume Temperature (Kelvin and Celsius) Barometer Partial pressure

More information

10.4 Buoyancy is a force

10.4 Buoyancy is a force Chapter 10.4 Learning Goals Define buoyancy. Explain the relationship between density and buoyancy. Discuss applications of Archimedes principle. 10.4 Buoyancy is a force Buoyancy is a measure of the upward

More information

Physics 1021 Experiment 4. Buoyancy

Physics 1021 Experiment 4. Buoyancy 1 Physics 1021 Buoyancy 2 Buoyancy Apparatus and Setup Materials Force probe 1000 ml beaker Vernier Calipers Plastic cylinder String or paper clips Assorted bars and clamps Water Attach the force probe

More information

Bernoulli's Principle

Bernoulli's Principle Bernoulli's Principle Bernoulli's Principle states that as the speed of a moving fluid increases, the pressure within the fluid decreases. Introduction The Bernoulli's Principle explains the behavior of

More information

A) It cannot be predicted. B) It is squared. C) It is doubled. D) It is halved. E) It does not change.

A) It cannot be predicted. B) It is squared. C) It is doubled. D) It is halved. E) It does not change. AP Chemistry Test (Chapter 5) Class Set Multiple Choice (50%) 1) A sample of argon gas is sealed in a container. The volume of the container is doubled at a constant temperature. What happens to the pressure

More information

AP Lab 11.3 Archimedes Principle

AP Lab 11.3 Archimedes Principle ame School Date AP Lab 11.3 Archimedes Principle Explore the Apparatus We ll use the Buoyancy Apparatus in this lab activity. Before starting this activity check to see if there is an introductory video

More information

FLUID STATICS II: BUOYANCY 1

FLUID STATICS II: BUOYANCY 1 FLUID STATICS II: BUOYANCY 1 Learning Goals After completing this studio, you should be able to Determine the forces acting on an object immersed in a fluid and their origin, based on the physical properties

More information

Enter your parameter set number (1-27)

Enter your parameter set number (1-27) 1- Helium balloons fly and balloons with air sink. Assume that we want to get a balloon that is just floating in the air, neither rising nor falling, when a small weight is placed hanging in the balloon.

More information

CHM111 Lab Gas Laws Grading Rubric

CHM111 Lab Gas Laws Grading Rubric Name Team Name CHM111 Lab Gas Laws Grading Rubric Criteria Points possible Points earned Lab Performance Printed lab handout and rubric was brought to lab 3 Safety and proper waste disposal procedures

More information

Shark Biology Buoyancy by Bill Andrake

Shark Biology Buoyancy by Bill Andrake Shark Biology Buoyancy by Bill Andrake Science Lesson: Buoyancy - Based on Webisode 45 - Shark Biology Grade Level: 6-8 Time: Four (45-50 minute) class periods Introduction Jonathan narrates an educational

More information

Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15)

Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15) Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15) Introduction Which weighs more, a pound of lead or a pound of feathers? If your answer to this question is "a pound of lead", then you are confusing

More information

Underwater Volcano Authors: Christian Bertsch, University of Vienna years

Underwater Volcano Authors: Christian Bertsch, University of Vienna years 9-11 years Science Content: Physics Target Concepts/Skills: Density of solids and fluids Target Age group: 9-11 years Duration of activity: 3 hours Summary: Students inquire the concept of floating and

More information

Chapter 14. Fluids. A fluid a substance that can flow (in contrast to a solid)

Chapter 14. Fluids. A fluid a substance that can flow (in contrast to a solid) Chapter 4 luids A luid a substance that can low (in contrast to a solid) Air Water luids comort to the boundaries o any container in which we put them, and do not maintain a ixed shape density and pressure

More information

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg. Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

More information

Today: Finish Chapter 13 (Liquids) Start Chapter 14 (Gases and Plasmas)

Today: Finish Chapter 13 (Liquids) Start Chapter 14 (Gases and Plasmas) Today: Finish Chapter 13 (Liquids) Start Chapter 14 (Gases and Plasmas) Gases and plasmas: Preliminaries Will now apply concepts of fluid pressure, buoyancy, flotation of Ch.13, to the atmosphere. Main

More information

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight;

QUESTION 1. Sketch graphs (on the axes below) to show: (1) the horizontal speed v x of the ball versus time, for the duration of its flight; QUESTION 1 A ball is thrown horizontally from a cliff with a speed of 10 ms -1 shown in the diagram at right. Neglecting the effect of air resistance and taking gravitational acceleration to be g +9.8ms

More information

PRESSURE-TEMPERATURE RELATIONSHIP IN GASES

PRESSURE-TEMPERATURE RELATIONSHIP IN GASES PRESSURE-TEMPERATURE RELATIONSHIP IN GASES LAB PS2.PALM INTRODUCTION Gases are made up of molecules that are in constant motion and exert pressure when they collide with the walls of their container. The

More information

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE

TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE TEMPERATURE S RELATIONSHIP TO GAS & VAPOR PRESSURE Adapted from "Chemistry with Computers" Vernier Software, Portland OR, 1997 ELECTRONIC LABORATORY NOTEBOOK (ELN) INSTRUCTIONS Read the directions and

More information

LECTURE 16: Buoyancy. Select LEARNING OBJECTIVES:

LECTURE 16: Buoyancy. Select LEARNING OBJECTIVES: Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 16: Buoyancy Understand that the buoyant force is a result of a pressure gradient within a fluid. Demonstrate the ability to analyze a scenario involving

More information

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. A Law for Scuba Divers

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. A Law for Scuba Divers 1/6 2009/11/14 上午 11:12 Manage this Assignment: Chapter 18 Due: 12:00am on Saturday, July 3, 2010 Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy

More information

Assistant Lecturer Anees Kadhum AL Saadi

Assistant Lecturer Anees Kadhum AL Saadi Pressure Variation with Depth Pressure in a static fluid does not change in the horizontal direction as the horizontal forces balance each other out. However, pressure in a static fluid does change with

More information