# Liquid level measurement using hydrostatic pressure and buoyancy

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 iquid level measurement using hydrostatic pressure and buoyancy This worksheet and all related files are licensed under the Creative Commons Attribution icense, version 1.0. To view a copy of this license, visit or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. 1

2 Question 1 Questions A vessel containing a weak acid/water mixture has a calibrated level range of 0 to 10 feet, measured by a pressure transmitter at the bottom. Suppose that the specific gravity of the normal mixture is 1.12 (112% heavier than pure water, giving 1.12 inches of water column pressure for every inch of vertical height), and that the liquid level happens to be at 6 feet. Now, suppose some pure acid is added to the vessel, increasing the actual liquid level and increasing the liquid density at the same time. The new liquid level is 7 feet high and the specific gravity has increased to Assuming the transmitter has been calibrated for the original specific gravity of 1.12, what will its output signal correspond to in feet of liquid level? In other words, if this transmitter s output signal were driving a level indicator device for an operator to read, how many feet of level would the indicator device register? Identify an alternative method for liquid level measurement that would not be affected by changes in liquid density. file i00245 Question 2 An open vessel contains water at 60 o F. A pressure transmitter located at the bottom of the vessel measures the hydrostatic pressure ( head ) generated by the water and outputs a signal corresponding to level. Suppose that the temperature of this vessel were to increase over time to 110 o F due to exposure to very hot outside air (the vessel is located in Death Valley, California during the summer). Knowing that an increase in water temperature will result in a decrease in density, what will happen to the level transmitter s output as the vessel heats up? Will the transmitter output increase, decrease, or stay the same? Why?? Assume that no water enters or exits the vessel during the period of heating from 60 o F to 110 o F. file i

3 Question 3 A vessel holding some process liquid needs to have its level monitored. The range of level in this vessel is 0 to 20 feet, and the process liquid has a specific gravity of 1.0 (like water). Someone decides to attach a pressure transmitter to the bottom of the vessel to infer level from hydrostatic pressure like this: 20 feet Process liquid S.G. = 1.0 Pressure transmitter ater, a top is added to this vessel to keep rain from entering in. Unfortunately, though, this process liquid tends to emit vapor which will be trapped by the closed vessel and create a pressure inside of it. A small vent is added to the top of the vessel to permit the vapor to escape, but it is a small vent, not big enough to ensure a total absence of vapor pressure buildup at all times: (small) vent pressure 20 feet Process liquid S.G. = 1.0 Pressure transmitter What problem in level measurement will result from there being an occasional vapor pressure buildup inside this vessel? ow may this problem be corrected so that the liquid level will be accurately measured at all times? file i

4 Question 4 The principle of buoyancy may be used to create a level transmitter instrument, generating an output signal proportional to the change in weight of a displacer rod suspended in a liquid: Cap Vessel Process liquid Block valves displacer Weightmeasuring mechanism Displacer "cage" Drain valve Often, the displacer is housed inside its own cage for easy removal from the process, as shown above, or it may be inserted directly into the process vessel like this: Weightmeasuring mechanism Vessel displacer Process liquid If the vessel is open and the liquid inside is turbulent due to mixing or other agitation, a stilling well serves the same purpose as a cage: 4

5 Weight-measuring mechanism Vessel Process liquid Stilling well displacer To calibrate such an instrument, it must be isolated from the process liquid. Sometimes this means simply closing block valves and draining the cage. Other times it means removing the displacer mechanism from the vessel entirely. But once the displacer is hanging dry, there is the problem of simulating a 100% condition for calibration purposes. Describe a way to make the displacer think it is fully submerged in process liquid when it in fact is hanging freely in the air. Explain how you would be able to precisely and accurately simulate this condition, as well as any given condition of partial displacer submersion for that matter. file i

6 Question 5 The following storage vessel holds water. The hydrostatic-pressure level transmitter is located 5 feet below the bottom of the vessel, and the desired level measurement range is 8 feet to 12 feet: URV = 12 ft RV = 8 ft 4 ft 8 ft Water 5 feet transmitter Assuming a pneumatic transmitter with an output range of 3 PSI to 15 PSI, and a calibration accuracy of +/- 1% of span, complete the following calibration table for the transmitter: Process Percent of pressure Output signal Output signal Output signal level (ft) span (%) sensed ( W.C) ideal (PSI) min. (PSI) max. (PSI) file i

7 Question 6 Determine the RV and URV settings for the water seal drum lever transmitter (T-21), assuming the RV point is at the lower nozzle and the URV point is at the upper nozzle (the two nozzles being 3 feet 8 inches apart from each other), and that the remote seal fill fluid has a specific gravity of 0.934: Flare tip PG 36 P flare gas header Dwg ST ST A PG 35 S ST PG 37 A A Knockout drum G 20 IR 24 WirelessART C 21 I 21 T 21 Water seal drum S 22 G 25 T 24 Y 24 S 23 NC NC FO C 24 TT 27 RTD TT 26 FO TV 26 Process water Dwg OWS V 24 ST PG 12 V 21 FC WirelessART TIR 27 TC 26 Steam T trap PG PSI steam Dwg NC OWS ST P condensate Dwg file i

8 Question 7 Calculate the hydrostatic pressure generated at the bottom of this vessel (in units of PSI) when it is completely filled with water: Flow Overflow 11 ft (water) Pressure =??? Now calculate the hydrostatic pressure at the bottom of this vessel (in units of PSI) when it is completely filled with gasoline (density = 42 lb/ft 3 ): Flow Overflow 11 ft (gasoline) Pressure =??? 8

9 What do you think the pressure will be at the bottom of the vessel if it is exactly half-full of gasoline and half-full of water, with a gasoline-water interface at the 5.5 foot mark? Explain your reasoning. Flow Overflow 11 ft (gasoline) (water) Pressure =??? file i00308 Question 8 Calculate the differential pressure sensed by the level transmitter at three different water levels in this boiler steam-drum level measurement system: 0%, 50%, and 100%. Condensate pot 100% level Steam 10" 30" 0% level Water 9" Output 4-20 ma Assume a density for (hot) boiler drum water of 36 lb/ft 3, a density for steam in the drum of 7 lb/ft 3, and a density for (warm) water in the wet leg of 61.8 lb/ft 3. If the pressure at the low () side of the transmitter is greater than the pressure at the high () side, be sure to express the differential pressure quantity as a negative number. Credit will be given for correctly calculating each of the differential pressures: (6 points) Transmitter P at 0% water level = (6 points) Transmitter P at 50% water level = (6 points) Transmitter P at 100% water level = file i00516 W.C. W.C. W.C. 9

10 Question 9 A displacer-type density transmitter registers a displacer weight of 6.3 pounds with the cage completely full of sample liquid. The displacer has a dry weight of 14 pounds, a density of 120 lb/ft 3, and is cylindrical in shape. Calculate the density of the liquid in units of pounds per cubic foot. file i00283 Question 10 Determine a basic 5-point (0%, 25%, 50%, 75%, and 100%) calibration table for the displacer level transmitter in this scenario: 100% Measurement span = 40 in Water Block valves displacer 100% Measurement span = 40 in 0% 0% The cylindrical displacer weighs 15 pounds (dry) and has a diameter of 2 inches. The process liquid is water. The 0% process liquid level (RV) is even with the bottom of the displacer. Assume an electronic transmitter mechanism with an output range of 4 to 20 ma. file i00508 Process Percent of Buoyant Output signal level (in) span (%) force (lb) ideal (ma)

11 Question 11 Determine a basic 5-point (0%, 25%, 50%, 75%, and 100%) calibration table for the displacer level transmitter in this scenario: 100% Measurement span = 20 in Water Block valves displacer 100% Measurement span = 20 in 0% 0% The cylindrical displacer weighs 9 pounds (dry) and has a diameter of 2 inches. The process liquid is water. The 0% process liquid level (RV) is even with the bottom of the displacer. Assume an electronic transmitter mechanism with an output range of 4 to 20 ma. file i00509 Process Percent of Buoyant Output signal level (in) span (%) force (lb) ideal (ma)

12 Question 12 When installing a hydrostatic level transmitter on a working process, one must determine the proper lower- and upper-range values (RV and URV) for the transmitter in order to properly register 0% at the RV liquid level and 100% at the URV liquid level. If all fluid densities and physical dimensions are known in advance, this is a simple matter of a few mathematical calculations. owever, sometimes it is difficult to know all the physical dimensions in advance, especially the elevation or suppression. Consider this example, assuming clean water as the process liquid and a static pressure of 0 PSIG inside the (vented) process vessel: (vent) 38.5 inches URV Sightglass 17.3 inches RV T 1 Overview 2 PV AO RV URV ART communicator in2o ma in2o in2o This transmitter has already been calibrated at the instrument shop to accurately register applied pressure, but its range values have not been customized to the installation. Using a tape measure, we find a vertical distance of 38.5 inches between the RV and URV points marked on the sightglass, and we also see the current liquid level is 17.3 inches above the marked RV point. Using a ART communicator to interrogate this smart transmitter, we see that the registered pressure at this process condition is 47.9 inches of water column ( WC), which is greater than 17.3 inches registered by the sightglass due to the transmitter s suppression (physical location beneath the RV point, creating a hydrostatic pressure simply due to process water inside the impulse tube). Based on this information alone, calculate the appropriate RV and URV settings to program into the smart transmitter, so that it will output 4 ma when the process water level is at the RV height and 20 ma when the water level is at the URV height: RV = WC URV = WC file i

13 Answer 1 Answers If the liquid level in the vessel rises to 7 feet, the transmitter should (ideally) output a final signal corresponding to 7 feet of level. owever, since the transmitter in question is a hydrostatic pressure type, and the liquid density has increased as well, it will not register accurately anymore. The old specific gravity was 1.12, and the new specific gravity is The error in span will be the ratio of the new specific gravity to the old, or 1.35/1.12 = In other words, the new acid/water mixture is times denser than it is supposed to be, according to how the transmitter was calibrated. Thus, the transmitter output will correspond to a liquid level of 7 feet times the error factor of , or feet. A good way to solve this problem is to apply the problem-solving technique of simplification. Imagine the two specific gravities being much simpler numbers: 1 and 2 instead of 1.12 and 1.35, respectively. It should be obvious now that a doubling of specific gravity will result in a doubling of level indication (i.e. the transmitter will register twice as much liquid level as there actually is inside the vessel). It should also be obvious that the error factor is 2:1, which is precisely the ratio of new:old specific gravity. Alternatively, liquid level could be measured with a float, a capacitive sensor, ultrasonic or radar gauge, or some other instrument functioning on the detection of the liquid/vapor interface. 13

14 Answer 2 The transmitter output will stay the same. If you thought that the transmitter output would decrease due to the water becoming less dense, I recommend you explore the concept of density a little deeper with the following thought experiment: Imagine the vessel filled half-way with liquid. Imagine that liquid heating up and expanding until it is only half as dense as it was at the beginning of the experiment. Calculate the new hydrostatic pressure with the expanded, less-dense liquid. In a way, this is a trick question. As any given mass of water heats up, its volume will increase. This is what makes it less dense than before: increased volume with the same mass (weight). Knowing how to calculate hydrostatic pressure from height and specific gravity, you might have approached this problem by assuming the water column height would have stayed the same while its density decreased, resulting in a lesser hydrostatic pressure and decreased transmitter output. owever, this answer is incorrect. If the water volume expands as a result of a temperature increase, the level inside the vessel must rise, because it will require a higher vessel level to contain a greater volume of water. The level will rise by the same percentage that the density decreases, resulting in a cancellation of level increase with density decrease. As a result, the hydrostatic pressure at any point in the vessel remains constant. If you have difficulty picturing this effect, consider an exaggerated example to make things simpler. Suppose that a vessel has been filled to a height of 10 feet with cold liquid: 10 feet cold Pressure transmitter Now, imagine that same vessel being heated until the liquid expands to exactly twice its former volume: 14

15 10 feet hot (twice original volume) 10 feet Pressure transmitter Source of heat The liquid level must double to accommodate twice the volume in the same vessel, assuming a vessel of constant diameter, and its density will be cut in half (twice the volume with the same mass). Consequently, the two factors of liquid level change and liquid density change cancel each other out to give the exact same hydrostatic pressure as before. In other words, the transmitter will register the same liquid level as it did when the liquid was cold, and will output the exact same signal, even though the actual vessel level is quite a bit more than it was when cold. Pretty tricky, huh? 15

16 Answer 3 Any vapor pressure will be sensed by the transmitter and interpreted as increased liquid level! Two solutions to this problem: (1) Use two transmitters (one at top of vessel, one at bottom) and electronically subtract their output signals. (2) Connect the ow side of the one P transmitter to the top of the vessel to naturally compensate for vapor pressure. Since the transmitter infers level from the amount of pressure sensed at the bottom of the vessel, any vapor pressure buildup inside the vessel will be falsely interpreted as additional liquid level, since the transmitter senses the sum total of hydrostatic pressure plus any vapor pressure trapped inside the vessel. For example, if the process liquid level were at 10 feet (50% of range), the hydrostatic pressure generated by the liquid column would be 120 inches W.C., assuming a specific gravity of 1.0, equal to water. If, however, the vessel contained a vapor pressure equal to 15 inches W.C., this pressure would add with the 120 inches W.C. of pressure generated by liquid head to create 135 inches W.C. of total pressure sensed by the transmitter. As a result, the transmitter would think it was detecting a liquid level of feet (135 inches high) instead of the true level of 10 feet (120 inches high). Essentially, any vapor pressure in the vessel results in a zero shift of the transmitter s indication. In many applications, the gas pressure inside a vessel far exceeds the hydrostatic pressure generated by the column of liquid inside of it, so this problem can be a very serious one in level measurement. We need to fully understand the nature of the problem and how to solve it in order to successfully measure liquid level in many industrial applications. The solution to this dilemma is to measure the difference in pressure between the top and bottom of the vessel. We could do this by using two pressure transmitters, one at the top and one at the bottom, and detect hydrostatic pressure by subtracting the top transmitter s measurement from the bottom transmitter s measurement. A computer may be used to perform the mathematical subtraction of signals: (small) vent Pressure transmitter pressure A-B B Output 20 feet Process liquid S.G. = 1.0 Pressure transmitter A Another, more elegant method, incorporates a differential pressure transmitter with pipe connections to both ends of the vessel. This solution performs the subtraction mechanically, by directly exposing the transmitter s sensing element to the difference of two applied pressures: 16

17 (small) vent pressure Pipe or tubing 20 feet Process liquid S.G. = 1.0 Differential pressure transmitter Output Pipe or tubing Because the differential pressure transmitter solution requires only one sensing instrument rather than two, and results in better accuracy because we are only dealing with the inaccuracies of a single instrument rather than the compounded inaccuracies of two instruments (three, if you include the subtraction unit), the differential, or d/p solution is the one more widely used. In this particular level measurement application, a differential pressure instrument would have the exact same calibration points (lower and upper range-values) as a normal pressure transmitter connected to an open vessel. 17

18 Answer 4 One way to simulate a full condition is to use a hand scale: "Dry" calibration Pull up on string until scale registers the desired force Scale Vessel Process liquid valves closed displacer Weightmeasuring mechanism iquid drained out of cage valve open Answer 5 Process Percent of pressure Output signal Output signal Output signal level (ft) span (%) sensed ( W.C) ideal (PSI) min. (PSI) max. (PSI)

19 Answer 6 The elevation for this transmitter (i.e. the total differential pressure applied by the height of fill fluid on both sides) is equal to the total height difference between the remote seal diaphragms multiplied by the specific gravity of the fill fluid: P elevation = (44 in)(0.934) = 41.1 WC In the RV condition, this is the only pressure seen by the transmitter. Therefore, 41.1 WC is the appropriate RV setting for this transmitter. If we assume that the port of this DP transmitter connects to the lower nozzle, the RV will be WC. If we assume the port connects to the upper nozzle, the RV will be WC. In the URV condition, we have the exact same amount of elevation (the fill fluid inside the capillary tubes) but on the lower nozzle we have the hydrostatic pressure of 44 vertical inches of water (i.e. the water inside the seal drum). Thus, in the URV condition the transmitter sees a differential pressure of: P differential = 44 WC 41.1 WC = 2.9 WC If we assume the port of this DP transmitter connects to the lower nozzle, the URV will be +2.9 WC. If we assume the port of this DP transmitter connects to the upper nozzle, the URV will be -2.9 WC. URV = -2.9 "WC URV = +2.9 "WC RV = "WC T 21 RV = "WC T 21 Answer 7 ydrostatic pressure when completely full of water = PSI ydrostatic pressure when completely full of gasoline = PSI ydrostatic pressure when water-gasoline interface is at the 50% level = PSI Answer 8 (6 points) Transmitter P at 0% water level = W.C. (6 points) Transmitter P at 50% water level = W.C. (6 points) Transmitter P at 100% water level = W.C. Answer 9 The liquid has a density of 66 pounds per cubic foot. 19

20 Answer 10 Process Percent of Buoyant Output signal level (in) span (%) force (lb) ideal (ma) Answer 11 Process Percent of Buoyant Output signal level (in) span (%) force (lb) ideal (ma) Answer 12 If the transmitter registers an actual applied pressure of 47.9 WC when the process water level is known to be 17.3 inches above the RV, it means the transmitter must be mounted 30.6 inches below that RV height: 47.9 WC 17.3 WC = 30.6 WC This 30.6 inch suppression then becomes the transmitter s lower-range value, so that it will output 4 ma (0% signal) when the process water level is at the RV height and the only pressure sensed by the transmitter is the hydrostatic pressure produced by water inside the 30.6 vertical inches of impulse tube. The necessary upper-range value is simply this RV added to the known span of 38.5 inches: 30.6 WC WC = 69.1 WC RV = 30.6 WC URV = 69.1 WC 20

### Level MEASUREMENT 1/2016

Level MEASUREMENT 1/2016 AGENDA 2 A. Introduction B. Float method C. Displacer method D. Hydrostatic pressure method E. Capacitance method G. Ultrasonic method H. Radar method I. Laser method J. Level

### Liquid Level Measurement

Technical Article Liquid Level Measurement A pressure transmitter can be used to determine the liquid level in a tank, well, river or other body of liquid. The pressure at the bottom of a liquid filled

### The Discussion of this exercise covers the following points: Range with an elevated or suppressed zero Suppressed-zero range Elevated-zero range

Exercise 4-3 Zero Suppression and Zero Elevation EXERCISE OBJECTIVE In this exercise, you will learn the effect that mounting a pressure transmitter above or below the reference level has on the hydrostatic

### L 100. Bubble-Tube Level System. Installation, Operation and Maintenance Instructions

L 100 Bubble-Tube Level System Installation, Operation and Maintenance Instructions Figure 1 Contents Section Description Page 1.0 Introduction 2 2.0 Specifications 3 3.0 Installation 3 4.0 Warranty 6

### The Discussion of this exercise covers the following points:

Exercise 5-3 Wet Reference Leg EXERCISE OBJECTIVE Learn to measure the level in a vessel using a wet reference leg. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Measuring

### In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container.

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

### In the liquid phase, molecules can flow freely from position. another. A liquid takes the shape of its container. 19.

In the liquid phase, molecules can flow freely from position to position by sliding over one another. A liquid takes the shape of its container. In the liquid phase, molecules can flow freely from position

### Exercise 5-2. Bubblers EXERCISE OBJECTIVE DISCUSSION OUTLINE. Bubblers DISCUSSION. Learn to measure the level in a vessel using a bubbler.

Exercise 5-2 Bubblers EXERCISE OBJECTIVE Learn to measure the level in a vessel using a bubbler. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Bubblers How to measure

### Pressure measurement Applying remote seal, isolation diaphragms between process fluids and transmitters

ABB MEASUREMENT & ANALYTICS WHITE PAPER Pressure measurement Applying remote seal, isolation diaphragms between process fluids and transmitters Remote seals protect transmitters when measuring difficult

### How to specify a product. Process Sensors and Mechanical Instruments

How to specify a product Process Sensors and Mechanical Instruments Keep the overview. Here is some guideline information on how to specify our products. Intended as supplementary help to specification

### CONTROL and INSTRUMENTATION

CONTROL and INSTRUMENTATION COURSE 500: 5 DAYS: Max 8 Candidates This course covers the key aspects of current instrumentation and process control technology and is designed to enable maintenance personnel

### The Discussion of this exercise covers the following points:

Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

### Practical Guide. By Steven T. Taylor, P.E., Member ASHRAE

ractical Guide The following article was published in ASHRAE Journal, March 2003. Copyright 2003 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented for educational

### Pressure Measurement Single-range transmitters for general applications

Siemens AG 07 Overview Function U const. p U I EM Sensor Connection for auxiliary power supply Vent pipe with humidity filter Protective conductor connection/ Equipotential bonding Diaphragm The pressure

### Hydrostatic & Submersible. Level instruments. for the Australian market

Hydrostatic & Submersible Level instruments for the Australian market Hydrostatic and Submersible level transmitters Hydrostatic and submersible level instruments use the head pressure of a fluid to infer

### To connect the words of Archimedes Principle to the actual behavior of submerged objects.

Archimedes Principle PURPOSE To connect the words of Archimedes Principle to the actual behavior of submerged objects. To examine the cause of buoyancy; that is, the variation of pressure with depth in

### Rig Math. Page 1.

Page 1 The Calculator and Main Keyboard Display Numerical 10-key pad used for entering numerical values Trigonometric Functions These keys will be used where wellbore angle is an issue These are the keys

### SPD Pressure Sensor Families

DATASHEET SPD Pressure Sensor Families 1/7 Introduction to the principals of Smart Pressure Devices 1 Basic principles Pressure sensors are based on the principle of bending a membrane caused by the pressure

### . In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

### AP Lab 11.3 Archimedes Principle

ame School Date AP Lab 11.3 Archimedes Principle Explore the Apparatus We ll use the Buoyancy Apparatus in this lab activity. Before starting this activity check to see if there is an introductory video

### Old-Exam.Questions-Ch-14 T072 T071

Old-Exam.Questions-Ch-14 T072 Q23. Water is pumped out of a swimming pool at a speed of 5.0 m/s through a uniform hose of radius 1.0 cm. Find the mass of water pumped out of the pool in one minute. (Density

### 3. A fluid is forced through a pipe of changing cross section as shown. In which section would the pressure of the fluid be a minimum?

AP Physics Multiple Choice Practice Fluid Mechanics 1. A cork has weight mg and density 5% of water s density. A string is tied around the cork and attached to the bottom of a water-filled container. The

### Ratio Regulator Zero Governor. FRG/6 Series

Ratio Regulator Zero Governor FRG/6 Series CSA Certified ANSI Z21.18 / CSA 6.3 CSA Requirement # 5.01 Zero Governor and Gas/Air Regulator File # 157406 US and Canadian Models FRG 705/6 FRG 707/6 FRG 710/6

### CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO Walnut Lake Rd th Street Houston TX Garner, IA 50438

CALCULATING THE SPEED OF SOUND IN NATURAL GAS USING AGA REPORT NO. 10 Jerry Paul Smith Joel Clancy JPS Measurement Consultants, Inc Colorado Engineering Experiment Station, Inc (CEESI) 13002 Walnut Lake

### PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

### STANDARD SPECIFICATION FOR LEVEL INSTRUMENTS DOCUMENT NO : 44-LK /J.02/0007-A4

Page 1 of 8 STANDARD SPECIFICATION FOR LEVEL INSTRUMENTS DOCUMENT NO : 44-LK-5100-00/J.02/0007-A4 Rev No. Issue Date Pages Rev Description Prepared A 12.08.08 8 Issued for Comments / Approval By Checked

### Diagnosing EVAP systems By: Bernie Thompson

Diagnosing EVAP systems By: Bernie Thompson Perhaps one of the toughest jobs in the automotive field is diagnosing small leaks, especially A/C and Fuel Vapor (EVAP) leaks. Finding these leaks can be time

### COMBINATION AIR RELEASE DEGASSING (CARD) VALVES INSTALLATION AND MAINTENANCE MANUAL

COMBINATION AIR RELEASE DEGASSING (CARD) VALVES INSTALLATION AND MAINTENANCE MANUAL SPECIFICATIONS: The CARD series air valves are available in 3 pipe sizes, 1, 2 and 4 NPT or socket. Maximum inlet pressure

### Air Operated Hydraulic Pumping Systems to 50,000 psi

High Pressure Equipment Air Operated Hydraulic Pumping Systems to 50,000 psi PS-10: 10,000 psi PS-20: 20,000 psi PS-30: 30,000 psi PS-40: 40,000 psi PS-50: 50,000 psi PS-90: 90,000 psi High Pressure air

### Differential Pressure Level Solutions. Bulletin 01C25A04-01EN-Y

Differential Pressure Level Solutions Bulletin 01C25A04-01EN-Y Differential Pressure Level Solutions Liquid tank level is one of the basic measurements used in process plants but, its importance cannot

### Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy

### Chapter 13 Fluids. Copyright 2009 Pearson Education, Inc.

Chapter 13 Fluids Phases of Matter Density and Specific Gravity Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal s Principle Units of Chapter 13 Measurement of Pressure; Gauges and the

### MEASUREMENT BEST PRACTICES FORIMPROVEDREFINERY SAFETY, AVAILABILITY & EFFICIENCY

MEASUREMENT BEST PRACTICES FORIMPROVEDREFINERY SAFETY, AVAILABILITY & EFFICIENCY Mark Menezes, PlantWeb Marketing Manager Rosemount Inc. Eric Wickberg, Pressure Applications Marketing Manager Rosemount

### The M-Series Eletta Flow Meter High accuracy DP Flow Meter with multiple functions

The M-Series Eletta Flow Meter High accuracy DP Flow Meter with multiple functions Flow Meter with multiple functions for gases and liquids M3 The M-series Flow Meter, with its versatile and user-friendly

### Ball Float Steam Trap UNA 45 MAX, UNA 46 MAX, UNA 46A MAX PN 40/Class 300 DN 40, 50, 65

Data Sheet 819346-02 Issue Date: 05/17 Ball Float Steam Trap UNA 45 MAX, UNA 46 MAX, UNA 46A MAX PN 40/Class 300, 50, 65 UNA 45hl MAX, UNA 46hl MAX, UNA 46Ahl MAX UNA 45v MAX with cover for mounting electrode

### Lab 11 Density and Buoyancy

b Lab 11 Density and uoyancy Physics 211 Lab What You Need To Know: Density Today s lab will introduce you to the concept of density. Density is a measurement of an object s mass per unit volume of space

### 2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications

Application Description AG/266PILD-EN Rev. C 2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic Pressure Measurement Engineered solutions for all applications Increase plant productivity

### Applications of trigonometry

Applications of trigonometry This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

### Gas Measurement Fundamentals Certification. Curriculum

Gas Certification Institute, LLC P.O. Box 131525 Houston, Texas 77219-1525 281-598-7200 Phone 281-598-7199 Fax contact@gascertification.com www.gascertification.com Curriculum Copyright 2007-2012 Gas Certification

### Liquid level switch BM 34

KROHNE 09/2001 7.02370.21.00 GR/PRINTO Liquid level switch Status: 10/99 Variable area flowmeters Vortex flowmeters Flow controllers Electromagnetic flowmeters Ultrasonic flowmeters Mass flowmeters Level

### Botlek Studiegroep Badotherm. Solving measurements issues with Diaphragm seals 3 Case Studies

Botlek Studiegroep 9-4-2015 Badotherm Solving measurements issues with Diaphragm seals 3 Case Studies Prepared: 10/04/2015 Badotherm Company Summary Badotherm introduction Family owned company Founded

### The Application of Temperature and/or Pressure Correction Factors in Gas Measurement

The Application of Temperature and/or Pressure Correction Factors in Gas Measurement COMBINED BOYLE S CHARLES GAS LAWS To convert measured volume at metered pressure and temperature to selling volume at

### Density, Pressure Learning Outcomes

1 Density, Pressure Learning Outcomes Define density and pressure, and give their units. Solve problems about density and pressure. Discuss pressure in liquids and gases. State Boyle s Law. Demonstrate

### Pressure Measurement

Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid

### Level transmitter LT 100

KROHNE 09/2001 7.02363.21.00 GR/PRINTO Level transmitter LT 100 Status: 10/99 Variable area flowmeters Vortex flowmeters Flow controllers Electromagnetic flowmeters Ultrasonic flowmeters Mass flowmeters

### BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY

BASIC PHYSICS APPLIED TO ANAESTHESIOLOGY Dr.R.Selvakumar.M.D.D.A.DNB Professor of Anaesthesiology, K.A.P.Viswanatham Govt medical college, Trichy. The current practice of Anaesthesiology demands knowledge

Inerting System Design for Medium Speed Vertical Spindle Coal Pulverizers The PRB Coal Users Group plans to develop a Design Guide for Mill Inerting as an aid to users when designing a mill inerting system.

### Fluid Mechanics - Hydrostatics. AP Physics B

luid Mechanics - Hydrostatics AP Physics B States of Matter Before we begin to understand the nature of a luid we must understand the nature of all the states of matter: The 3 primary states of matter

### Float Operated Level Controllers

CONTENTS Float Operated Level Controllers IM0015 Nov. 2014 PAGE Introduction 1 Scope 1 Description 1 Specification 1 Control Installation 2 INTRODUCTION Side Mount Back Mount Prior to installing, the instructions

### 1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D non-metallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights

### CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University. Final Exam

CVEN 311 Fluid Dynamics Fall Semester 2011 Dr. Kelly Brumbelow, Texas A&M University Final Exam 8 pages, front & back, not including reference sheets; 21 questions An excerpt from the NCEES Fundamentals

### Chapter 9 Fluids CHAPTER CONTENTS

Flowing fluids, such as the water flowing in the photograph at Coors Falls in Colorado, can make interesting patterns In this chapter, we will investigate the basic physics behind such flow Photo credit:

### Pressure Control. where: p is the pressure F is the normal component of the force A is the area

Pressure Control First of all, what is pressure, the property we want to control? From Wikipedia, the free encyclopedia. Pressure is the application of force to a surface, and the concentration of that

### For Multi-Parameter Meters see mvx

Design Features VORTEX IN-LINE FLOW METERS For Multi-Parameter Meters see m Principles of Operation n No moving parts to wear or fail. n Electronics can be remotely mounted up to 30.5 m (0 ft). n No fluid

### Over 20,000 Strain Gage Target flowmeters installed since 1952.

Over 20,000 Strain Gage Target flowmeters installed since 1952. Liquid, gases, superheated and saturated steam from -320 to 500 O F and up to 15,000 psi. No frictional moving parts. Designed to withstand

### For Multi-Parameter Meters see mvx

VORTEX IN-LINE FLOW METERS Design Features For Multi-Parameter Meters see mvx Principles of Operation VX No moving parts to wear or fail. Electronics can be remotely mounted up to 30.5 m (0 ft). No fluid

### Point level switches for safety systems

Point level switches for safety systems By: Bill Sholette Level Products Business Manager Northeast US - Endress+Hauser Point level switches are often used in applications designed to prevent accidents.

### Liquid level instruments BM 24 /BM 51

KROHNE 09/2001 7.02362.21.00 GR/PRINTO Liquid level instruments / Status: 10/99 Variable area flowmeters Vortex flowmeters Flow controllers Electromagnetic flowmeters Ultrasonic flowmeters Mass flowmeters

### Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15)

Buoyancy and the Density of Liquids (approx. 2 h) (11/24/15) Introduction Which weighs more, a pound of lead or a pound of feathers? If your answer to this question is "a pound of lead", then you are confusing

### Expert Hydrostatic Level Transmitters

Expert Hydrostatic s General Features MJK Expert hydrostatic level transmitters are designed for level measurement by submerging the transmitter in open channels, drains and tanks. Expert hydrostatic level

### Comments on Homework. Class 4 - Pressure. Atmospheric Pressure. Gauge vs. Absolute Pressure. 2. Gauge vs. Absolute Pressure. 1.

Class 4 - Pressure 1. Definitions 2. Gauge Pressure 3. Pressure and Height of Liquid Column (Head) 4. Pressure Measurement and Manometers Please don t forget the special problem for the next HW assignment

### HUMOR 20. High-precision Humidity Calibrator HUMOR 20. Operation

High-precision Humidity Calibrator The role of humidity calibrations that are accurate, reproducible, and documentable is becoming more and more important. ISO quality guidelines and regulations according

### Model 1159 Remote Diaphragm Seals Manual

00809-0100-4504 English June 1999 Rev. AB Model 1159 Remote Diaphragm Seals Manual With Model 1152, Model 1153 Series B, D, and F, and Model 1154 Alphaline Nuclear Pressure Transmitters Product Discontinued

### HUMOR 20. High Accuracy Humidity Calibrator. Water T, p1 HUMOR 20 V1.0

High Accuracy Humidity Calibrator The role of humidity calibrations that are accurate, reproducible, and documentable is becoming more and more important. ISO quality guidelines and regulations according

Document No. 129-082 RC 195 Receiver-Controller Product Description The POWERS RC 195 Receiver-Controller is a pneumatic instrument that receives one, two or three pneumatic inputs. It produces a pneumatic

### Gases and Pressure SECTION 11.1

SECTION 11.1 Gases and In the chapter States of Matter, you read about the kineticmolecular theory of matter. You were also introduced to how this theory explains some of the properties of ideal gases.

### U S F O S B u o y a n c y And Hydrodynamic M a s s

1 U S F O S B u o y a n c y And Hydrodynamic M a s s 2 CONTENTS: 1 INTRODUCTION... 3 2 ACCURACY LEVELS... 3 2.1 LEVEL-0... 3 2.2 LEVEL-1... 3 2.3 PANEL MODEL... 3 3 EX 1. SINGLE PIPE. NON FLOODED... 4

### Up Up and Away on Beautiful Balloons: Scaling up from Party Favors to Scientific Payloads

Up Up and Away on Beautiful Balloons: Scaling up from Party Favors to Scientific Payloads How many helium filled balloons would it take to lift you? To lift a big telescope? Take a guess for each and record

### No E. General Information. Averaging Pitot Tube Flow Sensor HITROL CO., LTD.

No. 2000-03E Averaging Pitot Tube Flow Sensor HITROL CO., LTD. M e a s u r e m e n t Pr i n c i p l e Measurement principle of Hitbar sensor is explained below. When a Hitbar is installed in the pipeline

### Experiment P18: Buoyant Force (Force Sensor)

PASCO scientific Physics Lab Manual: P18-1 Experiment P18: (Force Sensor) Concept Time SW Interface Macintosh file Windows file Newton's Laws 45 m 300/500/700 P18 P18_BUOY.SWS EQUIPMENT NEEDED CONSUMABLES

### Per Section I of the ASME

notifies the control room or other Maintenance Safer & Easier remote locations that a probe column The system s intelligence can BOILER INSPECTION GUIDELINES FOR distinguish dirty probes from BOILER INSPECTION

### Ball Float Steam Trap UNA 43 PN 16/CL 125/JIS 10K UNA 46 PN 40/CL 150/CL 300/JIS 10K/JIS 20K DN 80, 100, 150, 3", 4", 6"

Data Sheet 819584-00 Issue Date: 01/17 Ball Float Steam Trap UNA 43 PN 16/C 125/JIS 10K UNA 46 PN 40/C 150/C 300/JIS 10K/JIS 20K DN 80, 100, 150, 3", 4", 6" UNA 43 hl, UNA 46 hl UNA 43 v, UNA 46 v with

### Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

### Model 4000 Pressure Controller

FEATURES Multiple Configurations The 4000 series pressure controller can be configured into either proportional only or proportional plus reset mode with a minimum of parts. Rugged Design Die cast aluminum

### VACUUM TESTING PRECAST CONCRETE MANHOLES

1 OF 5 testing is a quick, safe and practical way to validate manhole system integrity. Manhole sections can be tested at the precast concrete plant prior to delivery or on site prior to backfilling. Here

### ESCONDIDO FIRE DEPT TRAINING MANUAL Section DRIVER OPERATOR Page 1 of 14 Hydraulics Revised

DRIVER OPERATOR Page 1 of 14 HYDRAULICS Hydraulics applied in the dynamic fire ground environment is an art that comes with study and experience. The following describes the factors that must be mastered

### 3.0 Pressure Transmitter Selection

3.0 Pressure Transmitter Selection Each Tronic Line pressure transmitter has different features to meet specific performance, environmental, and price requirements. It is not possible to describe every

### Physics 221, March 1. Key Concepts: Density and pressure Buoyancy Pumps and siphons Surface tension

Physics 221, March 1 Key Concepts: Density and pressure Buoyancy Pumps and siphons Surface tension Fluids: Liquids Incompressible Gases Compressible Definitions Particle density: Density: Pressure: ρ particle

### Procedure of Xenon Transfer

Procedure of Xenon Transfer Feng Zhou,MIT CC: Martina Green February 28, 2005 In this write up, we discuss the procedure on how to transfer xenon to a designed gas storage vessel that supplies xenon to

### TEST FOR STABILOMETER VALUE OF BITUMINOUS MIXTURES

Test Procedure for TEST FOR STABILOMETER VALUE OF BITUMINOUS MIXTURES TxDOT Designation: Tex-208-F Effective Date: February 2005 1. SCOPE 1.1 Use this test method to determine the Hveem stability value

### Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Experiment THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law By Dale A. Hammond, PhD, Brigham Young University Hawaii The objectives of this experiment are to... LEARNING OBJECTIVES introduce

### Installation, operating and maintenance Instructions for Seemag bypass level indicator

Issue: S Date: 05-09-14 Type G35 General information The Seetru bypass magnetic level indicator, abbreviate SEEMAG, serves to show the filling level of fluids in tanks, basins, tubes etc. The Seemag operates

November 1993 Prepared By: Ken A. Steward. P.E. Linco-Electromatic, Inc. 4580 West Wall Street Midland, Texas 78703 LPG DRIVER ATTENDED TRANSPORT LOADING INTRODUCTION The safest and most accurate method

### 628 Differential Pressure Decay Leak Tester

628 Differential Pressure Decay Leak Tester The 628 puts Uson s industry leading differential pressure decay sensitivity in your hands and in your budget with no compromise in quality, reliability, and

### International Journal of Technical Research and Applications e-issn: , Volume 4, Issue 3 (May-June, 2016), PP.

DESIGN AND ANALYSIS OF FEED CHECK VALVE AS CONTROL VALVE USING CFD SOFTWARE R.Nikhil M.Tech Student Industrial & Production Engineering National Institute of Engineering Mysuru, Karnataka, India -570008

### RD(H)20/25 Pressure-Reducing Regulator User Manual

RD(H)20/25 Pressure-Reducing Regulator User Manual Read the complete manual before installing and using the regulator. 2 Safe Product Selection When selecting a product, the total system design must be

### 8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.

Charles s Law According to Charles s law, the volume of a fixed mass of gas varies directly with its Kelvin temperature if its pressure is constant. The following table contains Celsius temperature and

### CSC-2000 SERIES. Reset Volume Controllers MADE IN U.S.A. DESCRIPTION MODELS SPECIFICATIONS ORDERING

CSC-2000 SERIES Reset Volume Controllers MADE IN U.S.A. DESCRIPTION The CSC-2000 series are designed for use on VAV terminal units in HVAC systems. These are submaster air velocity controllers whose velocity

### Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define

### Organisation Internationale de Métrologie Légale

Organisation Internationale de Métrologie Légale OIML INTERNATIONAL RECOMMENDATION Pressure balances Manomètres à piston OIML R 110 Edition 1994 (E) CONTENTS Foreword... 3 1 Scope... 4 2 Terminology...

### POP Safety Valve. POP Safety Valve INTRODUCTION DEFINITIONS

POP Safety Valve POP Safety Valve INTRODUCTION The effects of exceeding safe pressure levels in an unprotected pressure vessel or system, can have catastrophic effects on both plant and personnel. Safety

### SINGLE VALVE WITH LOW-FLOW BYPASS

CONTROL VALVES Pressure Reducing Valve Sizing Guide Sizing pilot operated reducing valves is not a complicated process. It starts with determining requirements and following these guidelines in valve size

### Variable Area Flow Meters

Variable Area Flow Meters Over sixty years of variable area meter expertise Brooks started designing and manufacturing variable area (VA) meters, also referred to as rotameters, in 1946. Now, with more

### Phys101 Lectures Fluids I. Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle. Ref: 10-1,2,3,4,5,6,7.

Phys101 Lectures 24-25 luids I Key points: Pressure and Pascal s Principle Buoyancy and Archimedes Principle Ref: 10-1,2,3,4,5,6,7. Page 1 10-1 Phases of Matter The three common phases of matter are solid,

### OVERVIEW. Flow Coefficient C v. Operating Conditions. Specific Gravity

VERVIEW This valve sizing software program is based on the use of nomenclature and sizing equations from ISA Standard S75.01 and IEC Standard 534-2. The sizing equations are based on equations for predicting

### TECHNICAL DATA Q = C. v P S. 2 Model G-2000 Dry valve. Page 1 of 13

Page 1 of 13 1. Description The Viking 2 Model G-2000 Dry Valve Riser Assembly consists of a small profile, light weight, pilot operated valve that is used to separate the water supply from the dry sprinkler

### Fisher DSA Steam-Atomized Desuperheater

Instruction Manual DSA Desuperheater Fisher DSA Steam-Atomized Desuperheater Contents Introduction... 1 Scope of Manual... 1 Description... 1 Principle of Operation... 2 Installation... 2 Operating Instructions...

### S265 Remote seals with capillary tube. 2600T Series Pressure Transmitters. Engineered solutions for all applications

Contents Data Sheet S265 2600T Series Pressure Transmitters Engineered solutions for all applications Wide range of remote seal types Allows optimum design for each application without compromising performance