Boiling in microgravity

Size: px
Start display at page:

Download "Boiling in microgravity"

Transcription

1 University of Ljubljana Faculty of Mathematics and Physics Department of Physics Seminar I 1 st year, Second cycle degree Boiling in microgravity Author: Anja Dobravec Advisor: doc. dr. Miha Ravnik November 29, 2017 Abstract Experience with fluids (liquids and gases) seems common in Earth environment. However, this is different in microgravity. Boiling is a very complicated phenomenon and analytical solutions are only rough approximations. In this seminar I will present some basic effects of microgravity on boiling of liquids and their consequences. Specifically I will explain basic principles of pool boiling and heat transfer, bubble growth model and experimental observations of bubble growth in microgravity. A basic comparison between experimental observations and related theory will be given. More generally, the aim of this seminar is to present some fascination, which emerges in fluids when subjected to microgravity conditions.

2 Physics of fluids in microgravity 1 INTRODUCTION Contents 1 Introduction 1 2 Microgravity 2 3 Boiling regimes 2 4 Bubble growth model Influence of gravity on heat transfer correlation Experimental observations of bubble dynamics 6 6 Conclusion 9 References 9 1 Introduction Explorations in microgravity environment are interesting in many different areas, such as space and Earth applications. Many things behave differently in microgravity than on Earth. Crystals grow better and have more perfect shapes, flames of fire are more round, fluids behave differently. In this seminar we will concentrate on boiling phenomenon in microgravity. Boiling is one of the most efficient heat transfer mechanisms [1]. Even though it has been studied for more than 50 years, we still do not understand the whole process. Boiling is a very complex phenomenon, which combines heat and mass transfers, hydrodynamics, and interfacial phenomena [2]. In order to use it in any application, we have to understand the fundamentals of the process itself, bubble dynamics and heat transfer during the first phase of boiling, called nucleate boiling. Then we can optimize the design and safe operation of heat exchange equipment that uses nucleate boiling as a heat transfer method in extreme environments such as in deep ocean or in microgravity. Research of boiling phenomena in low gravity started in the 1950s [3]. First experiments were performed in drop towers and later in parabolic flights, sounding rockets and aboard the space shuttle and they have shown that the stable boiling regimes exist in microgravity. Experiments in microgravity conditions aim to observe the effect of (micro)gravity on the boiling process because the dominance of Earth s gravity is excluded. Experiments show that the behaviour of boiling phenomena in microgravity is different than on Earth because of the absence of buoyancy, which means no separation between phases or components (i.e. no ordering of fluids due to density differences). There is no natural convection in microgravity which causes mixing of the boiling fluid on Earth, no hydrostatic pressure and no weight [4]. For example in low gravity bubbles grow bigger without departing from the heater surface as we will see later in the seminar [1]. In space technology boiling is used for cooling down engineering components through heat transfer as bubbles (vapour) are formed and detached from the surface. If we efficiently cool down the components, we can have smaller and lighter space exploration systems which means cheaper flights [5]. Nowadays there is an interest in long duration manned space flights such as a mission to Mars. Among all the challenges are also an increase of energy efficiency and reducing the weight and volume of the entire system [6]. Boiling heat transfer is also preferable for space applications because for a given power rating the size of a component can be significantly reduced. Other space applications using boiling heat transfer are fluid handling and control, power systems, on-orbit storage and supply systems for cryogenic propellants and life support fluids and electronics cooling. Because of the interest in Mars explorations we have to understand the effect of gravity on boiling heat transfer at gravity levels varying from 10 6 g µg /g 0 1, where g µg is a microgravity acceleration and g 0 10 m/s 2 is a gravity acceleration at the sea level. The seminar is structured as follows: in Paragraph 2 microgravity is described, in Paragraph 3 we explain the boiling phenomenon in microgravity and under normal gravity. In the last two paragraphs 1

3 Physics of fluids in microgravity 3 BOILING REGIMES are a review of bubble growth model and experimental observations of boiling process in microgravity, followed by the conclusion. 2 Microgravity Gravity is an attractive force between any two objects. Under classical physics the following Newton s equation [1] is used to calculate the gravitational force between two massive objects (m 1 and m 2 ): #» F grav = G m 1 m 2 r 2 #» r, (1) where G is the gravitational constant, m 1 and m 2 are the masses of corresponding objects and r is the distance between the centres of these two masses. If we relate this equation with the Newton s second law, which says #» i F i = m a, #» we can calculate the acceleration a of the object. We know that the acceleration due to Earth s gravity is g = 9.81 m/s 2 on the Earth s surface. If we go further away from the surface, the acceleration is getting smaller, but always different than zero. If we take a look on ISS (International Space Station), it orbits the Earth at about 330 km to 435 km height. The acceleration due to Earth s gravity at this height is around 90% of the acceleration on the Earth s surface, so the value is around 9 m/s 2. Thus, the centripetal acceleration due to the Earth gravity accelerates the ISS towards the center of the Earth and it is falling down all the time. But the ISS orbits the Earth at a precise speed ( km/h 7.7 km/s). At this speed gravity curves the trajectory of the ISS just as much as the Earth below it which keeps the ISS in a circular orbit. The astronauts are inside the ISS at the same distance from the center of the Earth, so gravity accelerates all equally. They are falling freely. Due to small residual accelerations of the spacecraft, including aerodynamic drag, vehicle rotation and venting of gases, the environment inside an orbiting space station is called microgravity [7]. There is no sharp cut-off where micrograity begins. Microgravity environment is defined as the acceleration conditions that exist on a microgravity platform, where the Earth s gravitational force is almost entirely balanced by the inertia force, which is proportional to the change in time of the velocity vector. A gravity acceleration inside the ISS, which orbits the Earth in Low Earth Orbit (LEO) is g µg 10 6 g 0 [4]. 3 Boiling regimes Boiling is a very efficient mode of heat transfer because it removes large amounts of heat by generating vapour from liquid. Therefore it is interesting in many technical applications. In this section boiling regimes are described for better understanding of the boiling phenomenon, which occurs in microgravity environment and under terrestrial conditions (by that expression is meant Earth gravity as it is on the Earth surface). Boiling occurs when we heat up the liquid until we reach a critical temperature, called boiling point or saturation temperature. At this temperature the ambient pressure is equal to vapour pressure of the liquid and the liquid vaporizes into gas phase. The higher the ambient pressure, the higher the boiling point. There are two types of boiling, depending on saturation temperature. If the liquid is at saturation temperature, we call it saturated boiling. If the liquid is at lower temperature than saturation, we call it subcooled boiling. When we provide enough heat to the liquid that it reaches the boiling point, we see bubbles. Molecules gain enough energy for phase transition and they transit from the liquid phase to the gas phase. When we boil the liquid, we see vapour of the liquid as bubbles. Figure 1 shows a comparison between nucleate pool boiling in microgravity and in Earth s gravity [5]. The experiment was done in a chamber. At its bottom is a heater surface with 5 artificial nucleate sites, cavities. The test liquid in this case was water, but experiments have been done with different liquids. We can see a difference in the bubble formation. In low gravity we see one big bubble on the heater surface. Small bubbles formed at the heater surface coalesce with the bigger one and therefore it is growing. It is attached to the surface and prevent liquid to reach the heater surface under the bubble. Under terrestrial conditions we see many small bubbles, ascending upward due to buoyancy [1]. 2

4 Physics of fluids in microgravity 3 BOILING REGIMES Figure 1: Comparison between boiling in Earth s gravity and in microgravity environment. In Earth s gravity (left image) the action of buoyancy allows the bubbles to overcome surface tension forces. The bubbles rise upward away from the heater surface. In microgravity (right image) the buoyancy is weak and does not play role in the bubble dynamic. Therefore the bubbles remain attached to the surface of the heater because of large surface tension which is a consequence of produced vapor due to the continuous input of energy from the heater. Reproduced from [5]. Boiling curve on Figure 2 (left picture) represents various boiling regimes, described below. Figure 2: Sketch of a boiling curve in microgravity and and terrestrial 1g environment is on the left side. It is a plot of the heat flux density q = Q/A vs. the temperature difference T w or wall superheat, reffered to the driving temperature difference between the heater surface and the saturation temperature. A quantitative curve depends on the fluid, liquid state and heater configuration. Reproduced from [4]. On the right side is a boiling curve obtained from experiments for three different levels of gravity: microgravity (red), Earth gravity (blue) and high gravity (black) for various subcoolings. Normal and high gravity are similar but we see that boiling curve in microgravity is different. It has lower CHF. CHF increases with gravity and subcooling. Reproduced from [9]. 1. Nucleate boiling Nucleate boiling begins at lower wall superheat in microgravity than in 1-g, point C 1g, and µ g, point C µg but the first one at the higher heat flux. If the temperature of the surface is precisely controlled, the heat flux suddenly increase to point D. Vapour bubbles are formed at preferred 3

5 Physics of fluids in microgravity 3 BOILING REGIMES positions; these are microscopic cavities or cracks on the heater surface called nucleate sites. Any further increase in heat flux or saturation temperature activates more nucleate sites. We see this as growing of the boiling curve to the point E and F. Nucleate boiling is important for technical applications because it effectively transfers high heat flux. In this region a small rise of the surface temperature (saturation temperature) results on Earth in a large non-linear increase of the heat flux as q ( T sat ) m, 3 m 5. Up to the point E on the curve the system is in the isolated bubble regime where the active sites are few and widely separated. With increasing surface superheat, more sites become active and more bubbles are generated. The active sites are spaced so closely, that bubbles from adjacent sites start to interact with each other and merge together [8]. Vapor is being produced so rapidly that bubbles form columns of vapor slugs that rise up to the free surface under terrestrial conditions. This is a segment EF [4]. From experiments we know that the onset of nucleate boiling in microgravity occurs at lower wall superheat than in 1g environment. This is a consequence of gravity. If we have thermal convection like on Earth, it cools down the heated plate and delays the onset of boiling. In microgravity only liquid close to the heater surface reaches the saturation temperature. Liquid away from the heater surface has much lower temperature [2]. Experiments also showed that the heat transfer efficiency for saturated flow nucleate boiling is higher in microgravity than on Earth. This means that at the same saturation temperature we have higher heat flux in microgravity and lower in terrestrial conditions. This is because in microgravity the main bubble levitates above the surface for a long period and the liquid rewets the heater surface which leads to new bubble nucleation and high heat transfer that is observed as lower surface temperature. For subcooled flow boiling the heat transfer efficiency for low heat fluxes is larger in microgravity than on Earth and for high heat fluxes is lower than on Earth. Small bubbles coalesce into bigger one on the heater surface. On the other side, in nucleate pool boiling the heat transfer efficiency is lower in microgravity than on Earth. [2]. 2. Critical heat flux (CHF) It is reached at point F on the Figure 2 and marks the upper limit of the nucleate boiling regime or maximum of the heat flux. At that point the liquid can not move down toward the heater surface because of upward moving bubbles (vapour). The liquid flow rate is not big enough to keep the surface wet. On the heater surface occur dry spots. If the cooling is insufficient, the surface temperature can not be reduced and dry spots spread over the entire surface. Thus the slope of the curve on the Figure 2 starts to decrease [8]. We see the line F G on the Figure 2. It occurs at a constant heat flux and the temperature of the heater surface increases very fast. If the temperature reaches the melting point of the heater material, it may be disturbed. Gravity has a strong influence on CHF values because in microgravity the heater sufrace gets dry faster than on Earth. CHF decreases as gravity level decreases, so CHF is (much) lower in microgravity environment [1]. 3. Transition boiling The average heater surface temperature is controlled and we have a maximum heat flux in point F. With increasing temperature, the heat flux starts decreasing and more bubbles are generated than detached from the heater surface. Bubbles merge and form vapour films over portions of the surface and this leads to further decrease of the contact area between the heating surface and the saturated liquid. Layer of vapour conducts energy poorely than liquid. The surface temperature is not uniform, it varies with location and time. Any further rise of the surface temperature lowers the heat flux and dry spots increase. The upper temperature limit of the transition boiling, where the minimum heat flux is reached (point H on Figure 2) is called Leidenfrost temperature. The part of the boiling curve where unstable film is combined with partial nucleate boiling, F H on the graph, is called transition boling [8]. 4. Film boiling 4

6 Physics of fluids in microgravity 4 BUBBLE GROWTH MODEL If we raise the temperature above the Leidenfrost point, a stable vapour film on the heater surface is formed. It separates the bulk liquid and the heating surface. The energy is transferred to the liquid above vapour by radiation and conduction. We are now in film boiling regime shown on Figure 2 as a segment HG and beyond G. The heat flux is monotonically increasing function of the excess temperature. Pool boiling continues in this regime until the surface temperature reaches the maximum allowable temperature of the heating surface. In this case the phase change occurs at a liquid-vapour interface [4]. 4 Bubble growth model Bubbles are formed in the process of boiling. When liquid gets enough heat, a liquid-vapour phase transition occurs. Vapour bubbles are formed in the nucleation sites and they start to grow. Under terrestrial conditions buoyancy lifts the bubbles up to the surface and because of that, they are also expanding. There is no buoyancy in microgravity, so bubbles remain at the heater surface for a long time. Small bubbles coalesce with the bigger one, so there is only one big bubble, not many smaller like on Earth. There exists a correlation which connects the diameter of the bubble at the time of departure from the surface, called departure diameter D B, the gravity and surface tension. If we consider a static force balance between buoyancy and surface tension (σ), we can write a characteristic length scale - the Laplace coefficient L: ( ) σ 1/2 L = D B = C L, (2) g(ρ l ρ g ) where C is a constant dependent on wetting condition and fluid properties and g is an actual acceleration value [4]. This equation is based on the assumption of the bubble departing if the buoyancy overcomes the holding surface tension force. The gravity dependence of the departure diameter is expressed as: ( ) D B,µg g 1/2 =. (3) D B,1g g 0 The departing bubble is 10 times larger in the case of g/g 0 = 10 2 than under terrestrial conditions. 4.1 Influence of gravity on heat transfer correlation Many heat transfer correlations have been developed and all of them are empirically or semiempirically based. These correlations were developed because of the demand of industrial application to develop technical equipment and they are restricted to special fluids and limited in the liquid range. Here we are interested in correlation which describes gravity as a correct physical parameter. Rohsenow correlation (Eq. 4) is often used because it is valid for different fluids and under different gravity acceleration g. Rohsenow assumed that the heat transfer depends on successive bubble detachments and convection [10]. [ ] g(ρl ρ g ) 1/2 [ ] cpl (T w T sat ) 3.0 q = µ l h P r 5.15 σ C sf h l (4) where C sf is an empirical constant related to the fluid-heater surface combination and is between and , µ l is dynamic viscosity of the liquid, h is phase change enthalpy, g is gravity acceleration, ρ l and ρ g are densities of the liquid and of the vapour, σ is surface tension, c pl is isobaric specific heat capacity of the liquid, T w and T sat are the temperatures of the wall and of the saturation and P r is the Prandtl number [4]. The exponents were obtained by fitting experimental results. In this correlation we can see the gravity dependence and if we assume identical liquid, heater and superheat conditions, we get: ( ) q µg g 1/2 = (5) q 1g g 0 5

7 Physics of fluids in microgravity 5 EXPERIMENTAL OBSERVATIONS OF BUBBLE DYNAMICS In the space shuttle with g/g 0 = 10 4 the heat flux is reduced to 1% compared with Earth gravity. But the exponent in Eq. 5 varies with different theoretical models from 0.3 to 1.5 for most of the usual corelations. But these correlations anticipate lower heat flux than observed in experiments. It was suggested that g is a constant and does not affect the heat transfer in microgravity, which is domiated by the surface tension and depends on the heater size [2]. In the presence of gravity a large part of the entire heat transfer at boiling is transported by convection while in microgravity convection is an almost neglecting part of the heat transport. The bubbles in microgravity environment are not affected by external forces such as buoyancy and shear force. This tells us that there are other important mechanisms for the heat transfer. In microgravity heat transfer is mainly due to evaporation at the foot of the primary bubble. It was also found out that gravity has a weak influence on heat transfer but it strongly affects the process when heater plate becomes dry and reduce CHF in microgravity [2]. Another observation is that with increasing heat flux, heat transfer decreases. We can understand it because with increasing heat flux, more bubbles are formed and there are more dry spots on the heater surface which decrease the heat transfer. In 1969 scientists observed in microgravity experiments that the frequencies of the fluctuations of the heater surface temperature under the bubbles and their departure are the same. This was an experimental discovery for a thin liquid microlayer which is formed underneath the bubble at the solid surface. The heat transfer occurs across this layer and the evaporation process takes place here. The thickness of the microlayer is wedge-shaped and at the lifetime of the bubble (t 0 ) with radius R 0 is: δ 0 = 2 (3 νl t 0 ) 1/2 ( r R 0 ) 3/2, (6) where, ν l is kinematic viscosity [4]. Bubbles are formed in the process of nucleation and after that their growth is controlled by the evaporation process at the liquid-vapour interface. The heat flux density at the vapour-liquid interface (bubble surface) is: ( ) T q(r, φ) = λ l = f(r, φ), (7) r r=r,φ where, λ l is the thermal conductivity of the liquid. Bubbles grow rapidly and therefore push the surrounding liquid away. The generated vapour volume can be up to three orders of magnitude larger than the volume of the liquid which evaporates [4]. The extension of the vapour bubble presses the bubble at the heater surface, flattens the bubble base and because of the viscous effects between moving bubble s interface and the solid heater form a thin wedge-shaped liquid microlayer. In microgravity some assumptions can be made to simplify the equations: the main heat transport to the bubble takes place across the microlayer δ(r, t) from the heater wall to the liquid-vapour interface where, the liquid is evaporating and only conduction takes place in the microlayer. In this case we can write the local heat flux at the bubble base as: q(r, t) = λ l δ(r, t) [T w(r, t) T i (r, t)] (8) where, T w is the wall temperature and T i is the liquid-vapour interface temperature. T i is a little bit higher than the saturation temperature to overcome the kinetic resistance at the evaporation. The highest heat fluxes are expected beneath the centre of the bubble because the thickness of the microlayer is very thin in this region. The prediction of boiling heat transfer still remains a difficult task regardless more than 50 years of experiments because many mechanisms such as bubble nucleation, coalescence, bubble detachment, oscillations, heater size, evaporation and condensation are involved [2]. 5 Experimental observations of bubble dynamics We can study physics under microgravity conditions in different ways, each has different duration of microgravity conditions. We know drop towers (5 s - 10 s), parabolic flights (20 s), sounding rockets 6

8 Physics of fluids in microgravity 5 EXPERIMENTAL OBSERVATIONS OF BUBBLE DYNAMICS (700 s) and orbiting platforms (space shuttle missions (Soyuz), space station ISS) (years). Bubble dynamics under boiling is a complicated phenomenon and is in standard approach under gravity solved numerically. The standard result for bubble radius growth as function of time is in the form: R B = C (at) 1/2 (9) where, a is the thermal diffusivity, t is time and C is a function of thermophysical properties and the wall superheat. Experiments in microgravity show that the bubbles in microgravity are growing slower than the numerical equations predict. Instead of the exponent 1/2 in Eq. 9 scientists found out that it decreases with the growing bubble. For small bubbles the exponent is about 0.5 and for bigger bubbles it decreases. At the top of bigger bubbles condensation takes place. These bubbles don t grow any more. If the condensation mass flow at the top of the bubble is greater than the evaporating one on the base, bubbles shrink [4]. Figure 3: The left plot shows the growth curve of the first bubble after onset of boiling. The data is from experiment TEXUS 10, liquid was Freon113. We see that R B t which is in a good agreement with Equation 9. The right plot shows the growth curves under different gravities. It represents a dependence of the bubble diameter to time. We can see that the bubble grows rapidly at the beginning and later it grows slower. Reproduced from [4, 11]. In experiments one big bubble is observed in the middle of the heater surface. At low superheat small bubbles generated on the heater surface merge together lateral to the surface and form a large bubble. This bubble grows to the size of the heater surface. In experiments with higher wall superheat a large bubble departs the surface, otherwise not. When two bubbles touch each other and coalesce, their mass centre is lifted from the heater surface. At high gravity levels, the bubbles detach from nucleation sites on the heater surface and move away fom the heater. Buoyancy forces dominates over surface tension force for gravity levels g/g 1g > In microgravity where buoyancy is much lower, bubbles grow to a large size on the surface before it departs. A large bubble is in the middle of the surface and smaller bubbles move radially inwards and merge with it. [1] The coalesced bubble oscillates perpendicular and tangential to the surface due to the released surface energy. Energy is released because of the difference of surface energy of the two bubbles and the coalesced bubble [4]. The new small bubbles are absorbed by bigger bubbles. The momentum induced by the liquid underneath the bubble pushes the bubbles away from the surface of the heater. This is a typical process of vapour transport in saturated boiling. The bubbles are getting larger and further away from the heater [12]. Another problem to solve is bubble detachment from the heater surface. In the presence of gravity the bubbles detach through buoyancy, and by the inertia force of the displaced liquid during growth which could effect in 1g and µg. It was found out from experiments that the relation (Eq. 2) for the departure diameter D D can be extended over a range of saturation pressures 0.1 < p/p c < 0.8. Only exponent m should be modified. This relation is based on the assumption that bubble departures if the buoyancy predominates the 7

9 Physics of fluids in microgravity 5 EXPERIMENTAL OBSERVATIONS OF BUBBLE DYNAMICS Figure 4: Visual observation of nucleate boiling in microgravity. We see how the main bubble is growing in time because small bubbles merge with it in lateral direction. Reproduced from [1]. holding surface tension force. This is true only for g/g 0 > The departure diameter can be empirically fitted as: ( ) 2σ m D D = β 0, (10) g(ρ l ρ g ) where β 0 is a contact angle, σ is surface tension, ρ l and ρ g are densities of the liquid and gas phase, respectively. The gravity dependence is expressed with the ratio: ( ) D D,µg g m =. (11) D D,0 g 0 m depends on the liquid and the geometry of the heater surface but usually 0.24 < m < 0.5. For a flat plate m 1/4 [4]. The observed bubble departure diameters in microgravity (g/g ) are 3-4 times larger than under terrestrial conditions. If we extrapolate this relation to g/g , the departure diameter should be timer larger. But this was not observed in the experiments. It follows that in high gravity buoyancy is not a driving force for the bubble detachment and there must be some other important mechanisms. It was also concluded that lower gravity results in higher bubble growth rate, see Fig.3. There is no effect of gravity on bubble departure radius for fast growing bubbles, so their departure diameter is very similar (slightly larger) to those in 1-g [11]. For slow growing bubbles m = 1/2 in Equation 11 [12]. In microgravity the bubble departure diameter is around 3-4 times larger than under terrestrial conditions. These bubbles carry times more energy as those on Earth. Time of detachment grows approximately with the square of the departure diameter, which means the bubbles in microgravity remain 10 times longer at the heater surface. The experimental departure diameters are below the numerically predicted. But the bubbles did not depart from the surface. According to numerical results, the boiling chamber would have to be much bigger to allow bubbles to grow enough to detach from the surface [13]. Bubble growth is a local and transient event of heat and mass transfer combined with the interaction and transient heat conduction in the wall. At the bubble base evaporation occurs and generates, together with dynamic growth, holding forces F h. These forces press the bubble at the wall like a spring, flatten and deform the bubble s base. The force balance is: Fh = 2σ R B πr 2 rest = 2πR B σsin 2 ψ (12) where, σ is the surface tension, R B is the bubble radius and R rest is a radius the bubble rests on the surface: R rest = R B sinψ [4]. After a short growth period of the bubble the wall temperature drops down due to the high heat flux at the base. The wall temperature oscillates with the frequency of bubble departure. The heat supply across the microlayer is slowed down and with it the recoil pressure. Therefore, the bubble growth and all dynamic forces which hold the bubble tends to zero. The surface tension transforms the 8

10 Physics of fluids in microgravity Figure 5: This schematic picture shows the detachment of the bubble and reformation to spherical shape due to surface tension forces. We can see the angle ψ too. Reproduced from [4]. bubble s shape into a sphere. Consequently, the bubble is elevated above the wall by z = R B cosψ. Liquid flow between the bubble and the wall can occur and detaches the bubble from the heater. In microgravity bubbles immediately detach the surface if the power of the heater is turned off. In the presence of gravity, bubbles are detached at a smaller diameter, before they ripen [4]. 6 Conclusion Boiling is a very efficient mode of heat transfer and there are different stages during the boiling process. The comparison of the results from microgravity boiling with results made under terrestrial conditions (in the presence of normal gravity) shows us that the heat transfer mechanisms in both environments are of similar nature. The main mechanism for boiling heat transfer in microgravity is evaporation process in the wedge-shaped microlayer which is formed by the rapid bubble growth beneath the bubble interface and the solid wall. Surface tension forces are the reason for bubble detachment. Further detachment and vapour transport are caused by coalescence mechanisms. Bubbles in microgravity are bigger, small bubbles merge with the bigger one and bubbles remain at the heater surface longer than on Earth. These research are important in many technical applications on Earth and in space. It can be used as a heat transfer mechanism in space vehicles. Improved efficiency in cooling systems can also lead to positive impacts on global economy and environment. References [1] G.R. Warrier, V.K. Dhir, D.F. Chao, "Nucleate Pool Boiling experiment (NPBX) in microgravity: International Space Station," International Journal of Heat and Mass Transfer 83, (2015). [2] C. Colin et al., "Nucleate pool boiling in microgravity: Recent progress and future prospects," Comptes Rendus Mecanique 345, (2017). [3] C. Konishi et al., "Flow boiling in microgravity: Part 1 Interfacial behavior and experimental heat transfer results," International Journal of Heat and Mass Transfer 81, (2015). [4] R. Monti, Physics of Fluids in Microgravity, pp (Taylor & Francis, London, 2001). [5] ( ) [6] C. Konishi et al., "Flow boiling in microgravity: Part 2 Critical heat flux interfacial behavior, experimental data, and model," International Journal of Heat and Mass Transfer 81, (2015). [7] ( ) [8] ( ) [9] J. Kim et al., "Pool boiling heat transfer on small heaters: effect of gravity and subcooling," International Journal of Heat and Mass Transfer 45, (2002). [10] J. M. Saiz Jabardo et al., "Evaluation of the Rohsenow Correlation Through Experimental Pool Boiling of Halocarbon Refrigerants on Cylindrical Surfaces," J. of the Braz. Soc. of Mech. Sci. & Eng. XXVI, (2004). [11] Y. Yang et al., "Effects of microgravity on Marangoni convection and growth characteristic of a single bubble," Acta Astronautica 100, (2014). [12] V.K. Dhir, G.R. Warrier, E. Aktinol et al., "Nucleate Pool Boiling Experiments (NPBX) on the International Space Station," Microgravity Sci. Technol. 24, (2012). [13] E. Aktinol, G.R. Warrier, V.K. Dhir, "Single bubble dynamics under microgravity conditions in the presence of dissolved gas in the liquid," International Journal of Heat and Mass Transfer 79, (2014). 9

Visual Observation of Nucleate Boiling and Sliding Phenomena of Boiling Bubbles on a Horizontal Tube Heater

Visual Observation of Nucleate Boiling and Sliding Phenomena of Boiling Bubbles on a Horizontal Tube Heater Proceedings of the 2 nd World Congress on Mechanical, Chemical, and Material Engineering (MCM'16) Budapest, Hungary August 22 23, 216 Paper No. HTFF 146 DOI:.11159/htff16.146 Visual Observation of Nucleate

More information

Air Bubble Departure on a Superhydrophobic Surface

Air Bubble Departure on a Superhydrophobic Surface Air Bubble Departure on a Superhydrophobic Surface A. Kibar 1, R. Ozbay 2, C.H. Choi 2 1 Department of Mechanical and Material Technologies, Kocaeli University, 41285, Kocaeli, Turkey 2 Department of Mechanical

More information

Numerical Investigation of Air Bubbles Evolution and Coalescence from Submerged Orifices Based on OpenFOAM

Numerical Investigation of Air Bubbles Evolution and Coalescence from Submerged Orifices Based on OpenFOAM Numerical Investigation of Air Bubbles Evolution and Coalescence from Submerged Orifices Based on OpenFOAM Pan Feng, He Ying, Li-zhong Mu 2018-7-6 Dalian University of Technology, China Outline Background

More information

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Hong Xu, Chokri Guetari ANSYS INC. Abstract Transient numerical simulations of the rise of a train of gas bubbles in a liquid

More information

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid

. In an elevator accelerating upward (A) both the elevator accelerating upward (B) the first is equations are valid IIT JEE Achiever 2014 Ist Year Physics-2: Worksheet-1 Date: 2014-06-26 Hydrostatics 1. A liquid can easily change its shape but a solid cannot because (A) the density of a liquid is smaller than that of

More information

Energy and mass transfer in gas-liquid reactors.

Energy and mass transfer in gas-liquid reactors. Energy and mass transfer in gas-liquid reactors. John M Smith School of Engineering (D2) University of Surrey, Guildford GU2 7XH, UK j.smith@surrey.ac.uk 1 Energy and mass transfer in gas-liquid reactors.

More information

MODELING OF THERMAL BEHAVIOR INSIDE A BUBBLE

MODELING OF THERMAL BEHAVIOR INSIDE A BUBBLE CAV2001:sessionB6.002 1 MODEING OF THERMA BEHAVIOR INSIDE A BUBBE Boonchai ERTNUWAT *, Kazuyasu SUGIYAMA ** and Yoichiro MATSUMOTO *** *, ***Dept. of Mechanical Engineering, The University of Tokyo, Tokyo,

More information

Effect of Evaporation Momentum Force on a Bubble Under Asymmetric Temperature Conditions

Effect of Evaporation Momentum Force on a Bubble Under Asymmetric Temperature Conditions Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 7-2014 Effect of Evaporation Momentum Force on a Bubble Under Asymmetric Temperature Conditions Pruthvik A. Raghupathi

More information

A model for the bubble lift-off diameter in subcooled boiling flow in a horizontal channel

A model for the bubble lift-off diameter in subcooled boiling flow in a horizontal channel Advances in Fluid Mechanics X 215 A model for the bubble lift-off diameter in subcooled boiling flow in a horizontal channel S. Shabannejad & N. Ashgriz Department of Mechanical and Industrial Engineering,

More information

Gas Vapor Injection on Refrigerant Cycle Using Piston Technology

Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 Gas Vapor Injection on Refrigerant Cycle Using Piston Technology Sophie

More information

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories

Agood tennis player knows instinctively how hard to hit a ball and at what angle to get the ball over the. Ball Trajectories 42 Ball Trajectories Factors Influencing the Flight of the Ball Nathalie Tauziat, France By Rod Cross Introduction Agood tennis player knows instinctively how hard to hit a ball and at what angle to get

More information

Numerical simulation of an intermediate sized bubble rising in a vertical pipe

Numerical simulation of an intermediate sized bubble rising in a vertical pipe Computational Methods in Multiphase Flow V 111 Numerical simulation of an intermediate sized bubble rising in a vertical pipe J. Hua 1, S. Quan 2 & J. Nossen 1 1 Department of Process and Fluid Flow Technology,

More information

EXPERIMENTAL ANALYSIS OF VAPOUR BUBBLE GROWING ON A HEATED SURFACE

EXPERIMENTAL ANALYSIS OF VAPOUR BUBBLE GROWING ON A HEATED SURFACE EXPERIMENTAL ANALYSIS OF VAPOUR BUBBLE GROWING ON A HEATED SURFACE T.A. KOWALEWSKI, R. TRZCIŃSKI, A. CYBULSKI 1, J. PAKLEZA, M.-C. DULUC 2 ABSTRACT Using high speed video camera and numerical processing

More information

Flow in Porous Media. Module 1.c Fundamental Properties of Porous Media Shahab Gerami

Flow in Porous Media. Module 1.c Fundamental Properties of Porous Media Shahab Gerami Flow in Porous Media Module 1.c Fundamental Properties of Porous Media Shahab Gerami Forces acting on a fluid in a reservoir Capillary forces Viscous forces Gravitational forces Surface Tension Interfacial

More information

Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling

Study of Lateral Merger of Vapor Bubbles During Nucleate Pool Boiling 9 A. Mukherjee V. K. Dhir e-mail: vdhir@seas.ucla.edu Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095 Phone: (310) 825-8507; Fax: (310) 206-4830 Study of

More information

Presented at the 5 th International Conference on Boiling Heat Transfer Montego Bay, Jamaica, May 4-8, 2003

Presented at the 5 th International Conference on Boiling Heat Transfer Montego Bay, Jamaica, May 4-8, 2003 Presented at the 5 th International Conference on Boiling Heat Transfer Montego Bay, Jamaica, May 4-8, 23 Heat Transfer from a Single Nucleation Site During Pool Boiling of FC-72: Effect of Subcooling

More information

Vapour pressure of liquids SURFACE TENSION

Vapour pressure of liquids SURFACE TENSION Vapour pressure of liquids A liquid in a closed container is subjected to partial vapour pressure due to the escaping molecules from the surface; it reaches a stage of equilibrium when this pressure reaches

More information

Visual analysis of flow boiling at different gravity levels in 4.0 mm tube

Visual analysis of flow boiling at different gravity levels in 4.0 mm tube Journal of Physics: Conference Series OPEN ACCESS Visual analysis of flow boiling at different gravity levels in 4.0 mm tube To cite this article: C M Valencia-Castillo et al 2014 J. Phys.: Conf. Ser.

More information

Predicting and Controlling Bubble Clogging in Bioreactor for Bone Tissue Engineering

Predicting and Controlling Bubble Clogging in Bioreactor for Bone Tissue Engineering Predicting and Controlling Bubble Clogging in Bioreactor for Bone Tissue Engineering Marina Campolo, Dafne Molin, Alfredo Soldati Centro Interdipartimentale di Fluidodinamica e Idraulica and Department

More information

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder

Influence of rounding corners on unsteady flow and heat transfer around a square cylinder Influence of rounding corners on unsteady flow and heat transfer around a square cylinder S. K. Singh Deptt. of Mech. Engg., M. B. M. Engg. College / J. N. V. University, Jodhpur, Rajasthan, India Abstract

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

An underwater explosion is an explosion where the point of detonation is below the surface of the water.

An underwater explosion is an explosion where the point of detonation is below the surface of the water. Underwater Explosion 1 Introduction An underwater explosion is an explosion where the point of detonation is below the surface of the water. Underwater explosion are categorized in accordance with their

More information

Flow and Mixing in the Liquid between Bubbles

Flow and Mixing in the Liquid between Bubbles Excerpt from the Proceedings of the COMSOL Conference 2009 Boston Flow and Mixing in the Liquid between Bubbles Bruce A. Finlayson, Professor Emeritus of Chemical Engineering Department of Chemical Engineering,

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

Two interconnected rubber balloons as a demonstration showing the effect of surface tension

Two interconnected rubber balloons as a demonstration showing the effect of surface tension Two interconnected rubber balloons as a demonstration showing the effect of surface tension Abstract Science One 28-9 CHEN, Chieh-Shan The two interconnected rubber balloons system is a demonstration widely

More information

Experimental study on path instability of rising bubbles

Experimental study on path instability of rising bubbles Experimental study on path instability of rising bubbles V. MOTURI, D. FUNFSCHILLING, J. DUSEK ICube, UMR 7357 Mécanique des fluids,2 rue Boussingault,67000,Strasbourg,France. viswa-maitreyi.moturi@etu.unistra.fr

More information

Figure 1 Schematic of opposing air bearing concept

Figure 1 Schematic of opposing air bearing concept Theoretical Analysis of Opposing Air Bearing Concept This concept utilizes air bearings to constrain five degrees of freedom of the optic as shown in the figure below. Three pairs of inherently compensated

More information

A Simple Horizontal Velocity Model of a Rising Thermal Instability in the Atmospheric Boundary Layer

A Simple Horizontal Velocity Model of a Rising Thermal Instability in the Atmospheric Boundary Layer A Simple Horizontal Velocity Model of a Rising Thermal Instability in the Atmospheric Boundary Layer (In other words, how to take a closer look at downwind thermal drift) Abstract This pilot, as well as

More information

Technical Note. Determining the surface tension of liquids by measurements on pendant drops

Technical Note. Determining the surface tension of liquids by measurements on pendant drops Technical Note Pendant Drop Measurements Technical note: TN316e Industry section: all Author: FT, TW Date: 12/2010 Method: Drop Shape Analyzer DSA100 Keywords: Methods, surface tension, interfacial tension,

More information

Experimental Studies on the Instabilities of Viscous Fingering in a Hele-Shaw Cell

Experimental Studies on the Instabilities of Viscous Fingering in a Hele-Shaw Cell Korean J. Chem. Eng., 17(2), 169-173 (2000) Experimental Studies on the Instabilities of Viscous Fingering in a Hele-Shaw Cell Chung Gi Baig, Young Ho Chun*, Eun Su Cho* and Chang Kyun Choi School of Chemical

More information

Chapter 9 Solids and Fluids

Chapter 9 Solids and Fluids 2/17/16 Chapter 9 Solids and Fluids Units of Chapter 9 Solids and Elastic Moduli Fluids: Pressure and Pascal s Buoyancy and Archimedes Fluid Dynamics and Bernoulli s Surface Tension, Viscosity, and Poiseuille

More information

Parasite Drag. by David F. Rogers Copyright c 2005 David F. Rogers. All rights reserved.

Parasite Drag. by David F. Rogers  Copyright c 2005 David F. Rogers. All rights reserved. Parasite Drag by David F. Rogers http://www.nar-associates.com Copyright c 2005 David F. Rogers. All rights reserved. How many of you still have a Grimes rotating beacon on both the top and bottom of the

More information

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection

Waves. harmonic wave wave equation one dimensional wave equation principle of wave fronts plane waves law of reflection Waves Vocabulary mechanical wave pulse continuous periodic wave amplitude wavelength period frequency wave velocity phase transverse wave longitudinal wave intensity displacement wave number phase velocity

More information

Chapter 13. liquids. gases. 1) Fluids exert pressure. a) because they're made up of matter and therefore forces are applied to them

Chapter 13. liquids. gases. 1) Fluids exert pressure. a) because they're made up of matter and therefore forces are applied to them \ Chapter 13 Fluids 1) Fluids exert pressure a) because they're made up of matter and therefore forces are applied to them liquids gases b) they are made of matter in constant motion colliding with other

More information

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS

EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS EXPERIMENTAL STUDY ON THE HYDRODYNAMIC BEHAVIORS OF TWO CONCENTRIC CYLINDERS *Jeong-Rok Kim 1), Hyeok-Jun Koh ), Won-Sun Ruy 3) and Il-Hyoung Cho ) 1), 3), ) Department of Ocean System Engineering, Jeju

More information

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c

Study on the Influencing Factors of Gas Mixing Length in Nitrogen Displacement of Gas Pipeline Kun Huang 1,a Yan Xian 2,b Kunrong Shen 3,c Applied Mechanics and Materials Online: 2013-06-13 ISSN: 1662-7482, Vols. 321-324, pp 299-304 doi:10.4028/www.scientific.net/amm.321-324.299 2013 Trans Tech Publications, Switzerland Study on the Influencing

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

Use a Controlled Vibration to Mixing and Separation of a Gas Bubbles and a Liquid Under Reduced and Microgravity Conditions

Use a Controlled Vibration to Mixing and Separation of a Gas Bubbles and a Liquid Under Reduced and Microgravity Conditions ng & Process Technology rijournal of Chemical Enginee Research Article Article Journal of Chemical Engineering & Process Technology Shoikhedbrod, J Chem Eng Process Technol 2016, 7:4 DOI: 10.4172/2157-7048.1000305

More information

Scott Denning CSU CMMAP 1

Scott Denning CSU CMMAP 1 Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic Lapse Rates Dry and Moist Convective Motions Present Atmospheric Composition What

More information

Development of High-speed Gas Dissolution Device

Development of High-speed Gas Dissolution Device Development of High-speed Gas Dissolution Device Yoichi Nakano*, Atsushi Suehiro**, Tetsuhiko Fujisato***, Jun Ma**** Kesayoshi Hadano****, Masayuki Fukagawa***** *Ube National College of Technology, Tokiwadai

More information

Bioreactor System ERT 314. Sidang /2011

Bioreactor System ERT 314. Sidang /2011 Bioreactor System ERT 314 Sidang 1 2010/2011 Chapter 2:Types of Bioreactors Week 4 Flow Patterns in Agitated Tanks The flow pattern in an agitated tank depends on the impeller design, the properties of

More information

Bubble Dynamics in a Vibrating Liquid. By: James Wymer, Jaggar Henzerling, Aaron Kilgallon, Michael McIntire, Mohammed Ghallab

Bubble Dynamics in a Vibrating Liquid. By: James Wymer, Jaggar Henzerling, Aaron Kilgallon, Michael McIntire, Mohammed Ghallab Bubble Dynamics in a Vibrating Liquid By: James Wymer, Jaggar Henzerling, Aaron Kilgallon, Michael McIntire, Mohammed Ghallab Background In the early 1960 s a series of rocket failures plagued leading

More information

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497

Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Chapter 13 Temperature, Kinetic Theory, and the Gas Laws 497 Figure 13.25 This photograph of Apollo 17 Commander Eugene Cernan driving the lunar rover on the Moon in 1972 looks as though it was taken at

More information

Pendant Drop Measurements

Pendant Drop Measurements KRÜSS pplication Note TN316d Page 1 Pendant Drop Measurements pplication note: TN316d Industry section: all uthor: Dr. Tobias Winkler Date: December 2010 Method: Drop Shape nalysis System DS100 Drop Shape

More information

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION

INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Proceedings of COBEM 2009 Copyright 2009 by ABCM 20th International Congress of Mechanical Engineering November 15-20, 2009, Gramado, RS, Brazil INCLINOMETER DEVICE FOR SHIP STABILITY EVALUATION Helena

More information

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC!

THE BRIDGE COLLAPSED IN NOVEMBER 1940 AFTER 4 MONTHS OF ITS OPENING TO TRAFFIC! OUTLINE TACOMA NARROWS BRIDGE FLOW REGIME PAST A CYLINDER VORTEX SHEDDING MODES OF VORTEX SHEDDING PARALLEL & OBLIQUE FLOW PAST A SPHERE AND A CUBE SUMMARY TACOMA NARROWS BRIDGE, USA THE BRIDGE COLLAPSED

More information

Theoretical Solution 1, 9 th Asian Physics Olympiad (Mongolia)

Theoretical Solution 1, 9 th Asian Physics Olympiad (Mongolia) Solutions: S1. The condition of the survival and growth for AB appeared in the water volume at height h < H is the competiveness of the pressures acting inside and outside (atmospheric, hydrostatic and

More information

Chapter 3 PRESSURE AND FLUID STATICS

Chapter 3 PRESSURE AND FLUID STATICS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGraw-Hill

More information

Chapter 3 Atmospheric Thermodynamics

Chapter 3 Atmospheric Thermodynamics Chapter 3 Atmospheric Thermodynamics Spring 2017 Partial Pressure and Dalton Dalton's law of partial pressure: total pressure exerted by a mixture of gases which do not interact chemically is equal to

More information

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006

ZIN Technologies PHi Engineering Support. PHi-RPT CFD Analysis of Large Bubble Mixing. June 26, 2006 ZIN Technologies PHi Engineering Support PHi-RPT-0002 CFD Analysis of Large Bubble Mixing Proprietary ZIN Technologies, Inc. For nearly five decades, ZIN Technologies has provided integrated products and

More information

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK ABSTRACT Ventilation stacks are becoming increasingly common in the design of naturally

More information

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C

1. All fluids are: A. gases B. liquids C. gases or liquids D. non-metallic E. transparent ans: C Chapter 14: FLUIDS 1 All fluids are: A gases B liquids C gases or liquids D non-metallic E transparent 2 Gases may be distinguished from other forms of matter by their: A lack of color B small atomic weights

More information

World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering Vol:6, No:1, 2012

World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering Vol:6, No:1, 2012 Perfect Plastic Deformation of a Circular Thin Bronze Plate due to the Growth and Collapse of a Vapour Bubble M.T. Shervani-Tabar, M. Rezaee and E. Madadi Kandjani Abstract Dynamics of a vapour bubble

More information

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS

CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Colloquium FLUID DYNAMICS 2008 Institute of Thermomechanics AS CR, v.v.i., Prague, October 22-24, 2008 p.1 CFD AND EXPERIMENTAL STUDY OF AERODYNAMIC DEGRADATION OF ICED AIRFOILS Vladimír Horák 1, Dalibor

More information

Thin Wire Nucleate Boiling of Water in Sustained Microgravity

Thin Wire Nucleate Boiling of Water in Sustained Microgravity Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 009 Thin Wire Nucleate Boiling of Water in Sustained Microgravity Justin P. Koeln Heng Ban Utah State University - Faculty

More information

Yasuyuki Hirose 1. Abstract

Yasuyuki Hirose 1. Abstract Study on Tsunami force for PC box girder Yasuyuki Hirose 1 Abstract In this study, a waterway experiment was performed in order to understand the influence of tsunami forms on tsunami forces acting on

More information

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey

Fluid Mechanics. Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Fluid Mechanics Fluid Mechanics Liquids and gases have the ability to flow They are called fluids There are a variety of LAWS that fluids obey Density Regardless of form (solid, liquid, gas) we can define

More information

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS

AERODYNAMICS I LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS LECTURE 7 SELECTED TOPICS IN THE LOW-SPEED AERODYNAMICS The sources of a graphical material used in this lecture are: [UA] D. McLean, Understanding Aerodynamics. Arguing from the Real Physics. Wiley, 2013.

More information

Engineering Flettner Rotors to Increase Propulsion

Engineering Flettner Rotors to Increase Propulsion Engineering Flettner Rotors to Increase Propulsion Author: Chance D. Messer Mentor: Jeffery R. Wehr Date: April 11, 2016 Advanced STEM Research Laboratory, Odessa High School, 107 E 4 th Avenue, Odessa

More information

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies

Wave Motion. interference destructive interferecne constructive interference in phase. out of phase standing wave antinodes resonant frequencies Wave Motion Vocabulary mechanical waves pulse continuous periodic wave amplitude period wavelength period wave velocity phase transverse wave longitudinal wave intensity displacement amplitude phase velocity

More information

Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find

Georgian University GEOMEDI. Abstract. In this article we perform theoretical analysis of long jumps with the purpose to find On the t Influence of Air Resistance and Wind during Long Jump Egoyan A. E. ( alex1cen@yahoo.com ), Khipashvili I. A. Georgian University GEOMEDI Abstract. In this article we perform theoretical analysis

More information

FLUID MECHANICS Time: 1 hour (ECE-301) Max. Marks :30

FLUID MECHANICS Time: 1 hour (ECE-301) Max. Marks :30 B.Tech. [SEM III(ME&CE)] QUIZ TEST-1 (Session : 2013-14) Time: 1 hour (ECE-301) Max. Marks :30 Note: Attempt all questions. PART A Q1. The velocity of the fluid filling a hollow cylinder of radius 0.1

More information

Photographic Study of Nucleate Boiling On the Surface of a Heated Rod

Photographic Study of Nucleate Boiling On the Surface of a Heated Rod Photographic Study of Nucleate Boiling On the Surface of a Heated Rod Lionel Nelson Lobo A thesis submitted in conformity with the requirements for the degree of Master of Engineering Graduate Department

More information

IMPROVING PLANT AERATION USING GAS INFUSION TECHNOLOGY

IMPROVING PLANT AERATION USING GAS INFUSION TECHNOLOGY IMPROVING PLANT AERATION USING GAS INFUSION TECHNOLOGY AERATION IN WASTEWATER Municipal sewer collection systems-odor Mgmt. Lift and transfer stations Lagoons / Retention Ponds BOD / COD treatment Enhanced

More information

Section 2 Multiphase Flow, Flowing Well Performance

Section 2 Multiphase Flow, Flowing Well Performance Section 2 Multiphase Flow, Flowing Well Performance Multiphase Vertical Flow When producing an oil or gas well, the flow of the fluids up the tubing will be in most cases be 2 phase, liquid and gas. The

More information

Development of a Simulation Model for Swimming with Diving Fins

Development of a Simulation Model for Swimming with Diving Fins Proceedings Development of a Simulation Model for Swimming with Diving Fins Motomu Nakashima 1, *, Yosuke Tanno 2, Takashi Fujimoto 3 and Yutaka Masutani 3 1 Department of Systems and Control Engineering,

More information

Investigating the Bubble Behavior in Pool Boiling in Microgravity Conditions Thilanka Munasinghe, Member, IAENG

Investigating the Bubble Behavior in Pool Boiling in Microgravity Conditions Thilanka Munasinghe, Member, IAENG Investigating the Bubble Behavior in Pool Boiling in Microgravity Conditions Thilanka Munasinghe, Member, IAENG In space, objects float without falling down. The floating effect happens because of the

More information

Application of Simulation Technology to Mitsubishi Air Lubrication System

Application of Simulation Technology to Mitsubishi Air Lubrication System 50 Application of Simulation Technology to Mitsubishi Air Lubrication System CHIHARU KAWAKITA *1 SHINSUKE SATO *2 TAKAHIRO OKIMOTO *2 For the development and design of the Mitsubishi Air Lubrication System

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant.

Assumptions 1 At specified conditions, air behaves as an ideal gas. 2 The volume of the tire remains constant. PTT 04/ Applied Fluid Mechanics Sem, Session015/016 ASSIGNMENT 1 CHAPTER AND CHAPTER 1. The air in an automobile tire with a volume of 0.0740 m is at 0 C and 140 kpa. Determine the amount of air that must

More information

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that:

1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: University Physics (Prof. David Flory) Chapt_15 Thursday, November 15, 2007 Page 1 Name: Date: 1. The principle of fluid pressure that is used in hydraulic brakes or lifts is that: A) pressure is the same

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 10 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

HOW FAST/FAR DOES FLY LINE FALL? N. Perkins of the University of Michigan, March 2003

HOW FAST/FAR DOES FLY LINE FALL? N. Perkins of the University of Michigan, March 2003 HOW FAST/FAR DOES FLY LINE FALL? N. Perkins of the University of Michigan, March 003 This report summarizes a simple model for the free fall dynamics of a length of fly line. The line is assumed to remain

More information

Normal Cryogenic Fluid Behavior (emphasis on helium, but not superfluid, which will be covered later) Tom Peterson, SLAC January 2017

Normal Cryogenic Fluid Behavior (emphasis on helium, but not superfluid, which will be covered later) Tom Peterson, SLAC January 2017 Normal Cryogenic Fluid Behavior (emphasis on helium, but not superfluid, which will be covered later), SLAC January 2017 Outline Cooling modes for superconducting devices Forced flow cooling Two-phase

More information

Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle

Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle RESEARCH ARTICLE OPEN ACCESS Investigation on Divergent Exit Curvature Effect on Nozzle Pressure Ratio of Supersonic Convergent Divergent Nozzle Shyamshankar.M.B*, Sankar.V** *(Department of Aeronautical

More information

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 15. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy

More information

Walking with coffee: when and why coffee spills

Walking with coffee: when and why coffee spills Walking with coffee: when and why coffee spills Hans C. Mayer and Rouslan Krechetnikov Department of Mechanical Engineering University of California at Santa Barbara February 20-24, 2012 Page 1/25 Motivation

More information

Student name: + is valid for C =. The vorticity

Student name: + is valid for C =. The vorticity 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #1 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS

CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS - 56 - CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS Gloth O., Rudolf A. ILF Consulting Engineers Zürich, Switzerland ABSTRACT This article investigates the

More information

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program

Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ISSN : 2250-3021 Aerodynamic Analyses of Horizontal Axis Wind Turbine By Different Blade Airfoil Using Computer Program ARVIND SINGH RATHORE 1, SIRAJ AHMED 2 1 (Department of Mechanical Engineering Maulana

More information

Tutorial. BOSfluids. Relief valve

Tutorial. BOSfluids. Relief valve Tutorial Relief valve The Relief valve tutorial describes the theory and modeling process of a pressure relief valve or safety valve. It covers the algorithm BOSfluids uses to model the valve and a worked

More information

Large-eddy simulation of a turbulent buoyant helium plume

Large-eddy simulation of a turbulent buoyant helium plume Center for Turbulence Research Annual Research Briefs 8 45 Large-eddy simulation of a turbulent buoyant helium plume By G. Blanquart AND H. Pitsch. Motivation and objectives The numerical simulation of

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods

THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL. By Mehrdad Ghods THEORY OF WINGS AND WIND TUNNEL TESTING OF A NACA 2415 AIRFOIL By Mehrdad Ghods Technical Communication for Engineers The University of British Columbia July 23, 2001 ABSTRACT Theory of Wings and Wind

More information

Gravity waves in stable atmospheric boundary layers

Gravity waves in stable atmospheric boundary layers Gravity waves in stable atmospheric boundary layers Carmen J. Nappo CJN Research Meteorology Knoxville, Tennessee 37919, USA Abstract Gravity waves permeate the stable atmospheric planetary boundary layer,

More information

Chapter 15 Fluid. Density

Chapter 15 Fluid. Density Density Chapter 15 Fluid Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle By Dr. Weining man 1 Units of Chapter 15 Fluid

More information

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber. Chapters 2 and 3 of the Pilot s Handbook of Aeronautical Knowledge (FAA-H-8083-25) apply to powered parachutes and are a prerequisite to reading this book. This chapter will focus on the aerodynamic fundamentals

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Study on Fire Plume in Large Spaces Using Ground Heating

Study on Fire Plume in Large Spaces Using Ground Heating Available online at www.sciencedirect.com Procedia Engineering 11 (2011) 226 232 The 5 th Conference on Performance-based Fire and Fire Protection Engineering Study on Fire Plume in Large Spaces Using

More information

Simulation of Gas Holdup in a Bubble Column with a Draft Tube for Gas Dispersion into an Annulus

Simulation of Gas Holdup in a Bubble Column with a Draft Tube for Gas Dispersion into an Annulus Simulation of Gas Holdup in a Bubble Column with a Draft Tube for Gas Dispersion into an Annulus Fukuji Yamashita Dept. of Applied Bioscience, Kanagawa Institute of Technology, Atsugi 243-292, Japan, yamasita@bio.kanagawa-it.ac.jp

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.06 Fluid Dynamics

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.06 Fluid Dynamics MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.06 Fluid Dynamics Practice Problems for Quiz 1, Spring Term 2013 Problem 1: Membrane Testing Membranes are thin, film-like porous

More information

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) 1 Definitions: The sea breeze is a local, thermally direct circulation arising from

More information

Air entrainment in Dip coating under vacuum

Air entrainment in Dip coating under vacuum Air entrainment in Dip coating under vacuum M.I. Khan, R. Patel, H. Benkreira, IRC, School of Engineering, Design and Technology, University of Bradford, BD7 1DP, Abstract Air entrainment studies in dip

More information

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class

Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class 0.30 Fall 004 Homework Problem Set 9 Due Wednesday, November 4, at start of class Part A. Consider an iron surface which serves as a catalyst for the production of ammonia from nitrogen and hydrogen. The

More information

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT

CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT 531 CRITERIA OF BOW-DIVING PHENOMENA FOR PLANING CRAFT Toru KATAYAMA, Graduate School of Engineering, Osaka Prefecture University (Japan) Kentarou TAMURA, Universal Shipbuilding Corporation (Japan) Yoshiho

More information

Chapter 15 Fluids. Copyright 2010 Pearson Education, Inc.

Chapter 15 Fluids. Copyright 2010 Pearson Education, Inc. Chapter 15 Fluids Density Units of Chapter 15 Pressure Static Equilibrium in Fluids: Pressure and Depth Archimedes Principle and Buoyancy Applications of Archimedes Principle Fluid Flow and Continuity

More information

WALL BOILING MODELING EXTENSION TOWARDS CRITICAL HEAT FLUX. ABSTRACT

WALL BOILING MODELING EXTENSION TOWARDS CRITICAL HEAT FLUX. ABSTRACT WALL BOILING MODELING EXTENSION TOWARDS CRITICAL HEAT FLUX C. Lifante 1, Th. Frank 1 and A. Burns 2,3 1 ANSYS Germany GmbH, Staudenfeldweg 12, 83624 Otterfing, Germany 2 ANSYS UK, 97 Milton Park, Abingdon,

More information

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision

Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision Ermenek Dam and HEPP: Spillway Test & 3D Numeric-Hydraulic Analysis of Jet Collision J.Linortner & R.Faber Pöyry Energy GmbH, Turkey-Austria E.Üzücek & T.Dinçergök General Directorate of State Hydraulic

More information