Positive end-expiratory pressure Luciano Gattinoni a,b, Eleonora Carlesso b, Luca Brazzi a,b and Pietro Caironi a,b

Size: px
Start display at page:

Download "Positive end-expiratory pressure Luciano Gattinoni a,b, Eleonora Carlesso b, Luca Brazzi a,b and Pietro Caironi a,b"

Transcription

1 Positive end-expiratory pressure Luciano Gattinoni a,b, Eleonora Carlesso b, Luca Brazzi a,b and Pietro Caironi a,b a Dipartimento di Anestesia, Rianimazione (Intensiva e Subintensiva) e Terapia del Dolore, Fondazione IRCCS Ospedale Maggiore Policlinico Mangiagalli Regina Elena di Milano and b Dipartimento di Anestesiologia, Terapia Intensiva e Scienze Dermatologiche, Università degli Studi, Milan, Italy Correspondence to Professor Luciano Gattinoni, MD, FRCP, Dipartimento di Anestesiologia, Terapia Intensiva e Scienze Dermatologiche, Fondazione IRCCS Ospedale Maggiore Policlinico, Mangiagalli, Regina Elena di Milano, Via Francesco Sforza 35, Milan, Italy Tel: ; fax: ; gattinon@policlinico.mi.it Current Opinion in Critical Care 2010, 16:39 44 Purpose of review In the last 2 years, several reports have dealt with recruitment/positive end-expiratory pressure (PEEP) selection. Most of them confirm previous results and few add new information. Recent findings It has been definitely confirmed that opening pressures are different throughout the acute respiratory distress syndrome lung parenchyma, ranging from 5 10 up to cmh 2 O. The highest opening pressures are required to open the most dependent lung regions. It has been found that in 2 s, most of the recruitable lung regions may be open when a proper pressure is applied. The best way to assess recruitment is computed tomography scanning, whereas lung mechanics are a reasonable bedside surrogate. Impedance tomography has been increasingly tested, whereas gas exchange is the less reliable indicator of recruitment. A large outcome study showed that higher PEEP might provide survival benefit in a subgroup of more severe patients as compared with lower PEEP. To set PEEP in each individual patient, the use of the expiratory limb of the pressure volume curve has been suggested. Setting PEEP according to transpulmonary pressure has a robust physiological background, although it requires confirmatory study. Summary Indiscriminate application of recruitment maneuver in unselected acute respiratory distress syndrome population does not provide benefits. However, in the most severe patients, recruitment maneuver has to be considered and higher PEEP applied. To individualize PEEP, the expiratory phase has to be considered, and the esophageal pressure measurement to compute the transpulmonary pressure should be progressively introduced in clinical practice. Keywords computed tomography scanning, esophageal pressure, lung recruitment, positive endexpiratory pressure, pressure volume curve Curr Opin Crit Care 16:39 44 ß 2010 Wolters Kluwer Health Lippincott Williams & Wilkins Introduction It is a common notion that mechanical ventilation may induce per se a lung injury when leading to unphysiological stress and strain of the lung parenchyma, resulting in inflammatory responses and mechanical lesions up to stress at rupture. Therefore, it is widely accepted that limiting tidal volume to 6 ml/kg ideal body weight (IBW) and/or plateau airway pressure below 30 cmh 2 O may prevent or limit possible injury of mechanical ventilation in patients affected by acute lung injury (ALI) [1]. Low tidal volume and limited plateau pressure, however, are a part of a more integrated ventilator strategy known as lung protective strategy [2]. This is based on two basic concepts: limiting global stress and strain (plateau pressure and tidal volume), and preventing intratidal collapse of pulmonary units by providing an end-expiratory pressure (positive end-expiratory pressure, PEEP) sufficient to keep the lung open throughout the respiratory cycle. Whereas the first part of the protective lung strategy has been tested and proved effective in a randomized trial [1], the second part related to the PEEP selection has not been proved and is still a subject of debate. In this area, we deal with two kinds of approaches that are sometimes difficult to integrate. The first one tests a given clinical strategy as lower versus higher PEEP on an epidemiological basis, typically in large outcome studies. The second one aims to understand the mechanism through which a given maneuver (such as PEEP selection or recruitment maneuver) is operating, and on which basis it should provide benefit, thereby individualizing the PEEP level to be applied. In this brief review, we will try to integrate these two approaches when discussing the most recent studies that appeared in the literature dealing with PEEP selection and recruitment maneuver in acute respiratory distress syndrome (ARDS) ß 2010 Wolters Kluwer Health Lippincott Williams & Wilkins DOI: /MCC.0b013e

2 40 Respiratory system Inspiratory recruitment, opening pressure, and time Recruitment is an inspiratory phenomenon and may be defined as the inflation of previously collapsed pulmonary units. To reopen the lung unit, a sufficient pressure must be applied. It has been shown, since several years [3], that the distribution of opening pressures throughout parenchyma of the lung is very wide (from 4 5 up to cmh 2 O or higher) and, according to computed tomography (CT) scan analysis, is Gaussian or bimodal [4]. However, Albert et al. [5 ], in an interesting work on the temporal dynamics of alveolar recruitment, studied a model of induced lung injury in rats via saline lavage and visualized alveolar recruitment as a function of time for different pressures. The authors used an in-vivo microscope to measure alveolar recruitment as well as digital films to measure macroscopic gross lung recruitment. In both measurements, increasing pressure increased the percentage of lung recruitment. The authors commented that the curve was characterized by a considerable scatter, but certainly, it cannot describe the curve by a cumulative Gaussian. A wide scatter of opening pressure was also found by Grychtol et al. [6] who used, for recruitment assessment, impedance tomography in an experimental model of lung lavage. In addition, they found, as previously described [7,8], that the distribution of opening pressure likely depends on the anatomical region (lower in nondependent regions, higher in dependent ones). For how long must a given opening pressure be applied? The issue has been studied by Albert et al. [5 ] who recruited rat s lung with 20, 30, or 40 cmh 2 O for 40 s. They found that most of the gross lung recruitment observed at 40 s occurs after 2 s of pressure application, and developed a logical model to describe the lung opening as a function of applied pressure and time. Therefore, the physiology of recruitment is quite well described and depends on the presence of collapsed regions, their anatomical location, the extent of the required opening pressure, and the duration of the opening pressure application. Inspiratory recruitment: clinical assessment and impact Does the application of recruitment maneuver have any clinical impact? Before discussing the recent work on this issue, it may be worth recalling the prerequisite for lung recruitment. In fact, for the lung to be opened, it is necessary that a part of it is collapsed before the application of airway pressure. Why does the ARDS lung collapse? In general, the main reasons for lung collapse are gas re-absorption, surfactant deficit, and/or compressive forces, including gravity, for which the pulmonary units of the most dependent lung regions are compressed by the weight of the regions above. It follows that the greater is the lung edema, the greater is the weight and the regional collapse and, consequently, the greater is the lung recruitability. Indeed, the gravitational mechanism is likely the primary reason of lung collapse in human ARDS, whereas surfactant deficit and airway occlusion play a minimal role. Therefore, we may expect that recruitment maneuver is very effective when lung recruitability is high and less effective, or even nil and dangerous, when lung recruitability is low. Actually, in unselected patient population, lung recruitability is highly variable [9] and, as average, quite low. Not surprisingly, when Meade et al. [10] studied the effectiveness of recruitment maneuver in a clinical scenario, in a high percentage of patients, they found no effect or even deleterious effects. Lung recruitment is correctly depicted as a gain of aeration of previously nonaerated lung tissue. CT scanning may easily detect and measure lung recruitability by applying, as an example, two different levels of airway pressure. However, in daily practice, CT scanning is rarely employed for clinical purposes and, even more rarely, is applied for quantification of lung recruitment. The open issue is, however, how to quantify lung recruitment at bedside. Two approaches are commonly used. The first one relies on pulmonary mechanics. Traditionally, the pressure volume curve has been used for this purpose, and the beginning of lung recruitment has been thought to occur at the lower inflection point, whereas the beginning of overdistension has been thought to occur at the upper inflection point. This model, however, is too simplistic, as it has been repeatedly shown by CT scan, either in humans or in animal models, that lung recruitment occurs along the entire pressure volume curve. Jonson et al. [11] proposed to measure lung recruitment by computing the gas volume changes at the same pressure recorded by tracing two different pressure volume curves starting from different PEEP levels. A slightly different approach implies the measurement of the hysteresis included between the inspiratory and the expiratory pressure volume curves normalized either for predicted body weight [12] or for lung gas volume at total lung capacity [13]. Both methods concluded that pressure volume curve hysteresis may be used to quantify lung recruitment. The problem is the identification of the gold standard method to quantify lung recruitment. Demory et al. [12] quantified it as the volume addition required to maintain 40 cmh 2 O during recruitment maneuver, whereas Koefoed-Nielsen et al. [13], in a porcine model of oleic acid-induced ARDS, quantified lung recruitment as a difference of end-expiratory lung

3 Positive end-expiratory pressure Gattinoni et al. 41 volumes before and after recruitment maneuver. Unfortunately, no reference to the real gold standard method (CT scanning) has been made. When we compared the pressure volume curve hysteresis versus lung recruitment as measured by CT scanning, we could not detect any relationship [14]. A second tool largely employed to investigate the effectiveness of lung recruitment or, vice versa, the development of lung derecruitment, is by the detection of gas exchange variations. It must be pointed out, however, that variations of gas exchange are inadequate to assess lung recruitment as shown by comparing gas exchange with CT scan [15] and as anticipated decades ago by Dantzker et al. [16]. In their study, the authors clearly showed that the changes in gas exchange were primarily due to changes of cardiac output. It is in fact well known that a decrease in cardiac output (as always occurs during a recruitment maneuver) is associated with an increase in systemic arterial oxygenation (arterial partial pressure of oxygen, pao 2 ). Therefore, any advantage or disadvantage attributed to either lung recruitment or lung derecruitment as assessed by oxygenation changes (as frequently used in literature) must be considered with caution. Therefore, in our opinion, lung CT scanning, to date, remains the gold standard for assessment of anatomical lung recruitment [15]. Nonetheless, other imaging technique, such as impedance tomography that has been used, in the last years, to evaluate lung volumes [17] as well as to analyze the regional distribution of alveolar ventilation and recruitment [18 23], is promising but still not applicable to clinical routine. The assessment of lung recruitment by changes of compliance of the respiratory system or by pressure volume curve taken at different pressures is probably the best bedside method now available, whereas oxygenation changes are inadequate to assess anatomical recruitment, being too dependent on the associated hemodynamic variations. Tailoring the end-expiratory pressure PEEP relates to the expiratory phase of the respiratory cycle, and it should keep the lung open by counteracting the compressive gravitational forces due to the lung weight. Therefore, as has been observed both in experimental models [24] and in humans [9], the response to PEEP is primarily a function of the extent of lung collapse, which, in turn, depends on the extent of lung edema. As the lung collapse is due to compressive forces along the sterno-vertebral axis in supine patients, it is obvious that in the nondependent lung regions (very close to the sternum), the lung collapse is near zero, while the compressive forces increase progressively from sternum to vertebra [7]. As a consequence, PEEP requirement is theoretically zero close to the sternum, while close to the vertebra, it has to be greater than the local compressive forces. In a normal size human, in whom the vertical height of the lung is approximately 15 cm, and the density of the lung during severe ARDS is around 0.7 g/cm 3, the magnitude of the compressive forces is of the order of ¼ 10.5 cmh 2 O. This pressure corresponds to the minimum requirement to counteract the compressive forces in the most dependent lung regions. Additional pressure must be added to lift up the thoracic cage. Therefore, if the elastance of the thoracic cage is normal, we may estimate that the PEEP applied to counteract the compressive forces of the lung and to lift up the thoracic cage in severe ARDS is around 15 cmh 2 O or greater. These, at the moment, are theoretical considerations, although based on robust physiological background. As the compressive forces and the chest wall elastance are usually not assessed in clinical practice, how should the PEEP be selected at the bedside? Over the last 30 years, several approaches have been proposed focusing first on lung mechanics (setting PEEP 2 cmh 2 O greater than lower inflection point [25]), then analyzing the shape of the inspiratory pressure time curve (linear, curvilinear, or concave, i.e., the stress index) [26], or considering the changing of the compliance of the respiratory system [27], and at the end testing the gas exchange variations, either focusing on oxygenation [4,28] or on CO 2 decrease, while maintaining unchanged total ventilation [29,30 ]. The three largest clinical studies on PEEP application have selected the PEEP level either focusing on gas exchange [ALVEOLI [31] and lung open ventilation (LOV) [32 ] studies] or focusing on lung mechanics (ExPress Study [33 ]). It is worth noting, however, that the average final PEEP found in the lower and higher PEEP groups resulted very similar, around cmh 2 O. These studies did not show any difference in outcome. However, in the last two studies (ExPress and LOV), it has been clearly shown that patients randomized to higher PEEP had a significantly lower rate of application of rescue therapy, finally leading to a survival benefit in the most severe ARDS [34 ]. In the last few years, attention has been paid to the expiratory phase of the volume pressure curve as a tool for PEEP setting [30,35 37]. The rationale of this approach is that, after lung opening (recruitment maneuver), the pressure to keep the lung open at a given volume is lower during the expiratory than during the inspiratory phase. However, this notion is not novel, as it has been previously called hysteresis and, more recently, closing pressure. With this approach, the PEEP value is selected according to the appearance of lung derecruitment during the expiratory phase. Unfortunately, the

4 42 Respiratory system pressure at which lung derecruitment is identified is the one at which the compliance decreases and/or the oxygenation/oxygen saturation decreases. Once again, both are arbitrary thresholds. Lambermont et al. [38], in a porcine oleic acid-induced ARDS model, measured the functional residual capacity (FRC) and the respiratory system compliance during a sequential PEEP ramp, changing PEEP from 20 to 0 cmh 2 O by 5 cmh 2 O stepwise reduction. They found that 20 cmh 2 O PEEP was associated with FRC and pao 2 increase, while the maximal compliance value was obtained at 15 cmh 2 O, below which the compliance of the respiratory system and FRC progressively decreased. The authors discussed that the increase of FRC may indicate both lung recruitment and overdistension, and that the compliance change may discriminate between the two possibilities. Badet et al. [39] identified the best PEEP value using a decremental PEEP trial in 12 intubated and mechanically ventilated early ALI/ARDS patients. The best PEEP value was identified by a decrease in the ratio between pao 2 and the inspiratory oxygen fraction (FiO 2 ) higher than 20% or, if there was no decrease, by the maximal pao 2 value. The authors then tested three different strategies: the best PEEP alone, the optimal PEEP associated with sustained inflation, and the optimal PEEP associated with sighs ventilation (i.e., twice the basal tidal volume). They found that in the optimal PEEP associated with sighs, pao 2 and compliance were significantly greater than those recorded in the other two groups. Passaro et al. [40], furthermore, investigated, in an experimental rat model of ALI, the effects of low and high levels of PEEP. They tested four different PEEP levels (1.5, 3, 4.5, and 6 cmh 2 O) at constant tidal volume without recruitment maneuver. They found that both lower and higher PEEP levels induced an increase in elastance and viscoleastic pressure, a worsening of systemic oxygenation, and an increase in procollagen type III (PCIII) mrna expression. They concluded that PEEP selection titrated on the minimum elastance and the maximum oxygenation values may prevent lung injury, while deviation from these settings may be harmful. An interesting study, although with all the limits recognized for ARDS experimental models, has been provided by Caramez et al. [30 ]. They compared several methods for setting PEEP. The primary finding of the study is that dynamic tidal respiratory compliance, maximum pao 2, maximum pao 2 plus paco 2, minimum shunt, inflation lower Pflex and point of maximal compliance increase on the inflation limb yielded similar values for open-lung PEEP. However, the open-lung PEEP values obtained using the deflation upper Pflex and the point of maximal compliance decrease on the deflation limb were significantly higher, whereas true inflection point on the deflation limb and paco 2 were significantly lower than the other variables. Unfortunately, in this study, the gold standard technique to assess lung recruitment (CT scanning) has not been employed, as the authors arbitrarily chose the maximum dynamic compliance during a decremental PEEP titration as the reference. Finally, the most innovative study that appeared on PEEP selection was provided by Talmor et al. [41 ] and Sarge and Talmor [42]. They randomized 61 ARDS patients either to receive mechanical ventilation managed according to the ARDSnet trial or according to the esophageal pressure measurement. The authors hypothesized that the best PEEP to be applied was the one sufficient to maintain a positive transpulmonary pressure (i.e., esophageal pressure subtracted from airway pressure). The authors found that the pao 2 /FiO 2 at 72 h was 88 mmhg higher in patients treated with esophageal pressure-guided mechanical ventilation as compared with the control group. Similarly, the respiratory system compliance appeared to be greater in the esophageal pressure-guided group than in the control group. Despite not finding any significantly different index of clinical outcome, they found, in a multivariate analysis corrected for Acute Physiology and Chronic Health Evaluation (APACHE) II score, a significant reduction in 28-day mortality in the esophageal pressure-guided group as compared with the control group. This study has a number of limitations and may be criticized primarily because it assumes that the esophageal pressure (with or without correction) equals the pleural pressure. We all know that this is not true, but, despite this limitation, Talmor et al. [41 ] indicate a new physiological way for PEEP selection. In fact, the increased esophageal pressure observed in ARDS patients should be related to the compressive forces acting onto the lung parenchyma, which are the primary cause of collapse. Further studies are necessary to clear this issue, but the way is open. Conclusion Different opening pressures are present throughout the lung parenchyma, the highest in the most dependent lung regions. Most of the recruitable lung is open after 2 s of airway pressure application. CT scanning is still the gold standard technique for assessment of lung recruitment. However, lung mechanics is a better surrogate than gas exchange variations for assessment of lung recruitment at bedside. Promising tools, such as impedance tomography, are increasingly used and tested. The two largest outcome studies so far concluded suggested that higher PEEP should be preferred to lower PEEP in the most severe ARDS patients. Individual PEEP selection should be applied for considering the expiratory phase of the pressure volume curve or, even better, the transpulmonary pressure.

5 Positive end-expiratory pressure Gattinoni et al. 43 References and recommended reading Papers of particular interest, published within the annual period of review, have been highlighted as: of special interest of outstanding interest Additional references related to this topic can also be found in the Current World Literature section in this issue (pp ). 1 Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 2000; 342: Lachmann B. Open up the lung and keep the lung open. Intensive Care Med 1992; 18: Crotti S, Mascheroni D, Caironi P, et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 2001; 164: Borges JB, Okamoto VN, Matos GF, et al. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 2006; 174: Albert SP, DiRocco J, Allen GB, et al. The role of time and pressure on alveolar recruitment. J Appl Physiol 2009; 106: The authors studied and visualized alveolar recruitment as a function of time for different pressures. Interestingly, they found that most of the recruitable lung is open after 2 s of airway pressure application. 6 Grychtol B, Wolf GK, Arnold JH. Differences in regional pulmonary pressureimpedance curves before and after lung injury assessed with a novel algorithm. Physiol Meas 2009; 30:S137 S Gattinoni L, D Andrea L, Pelosi P, et al. Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome. JAMA 1993; 269: Pelosi P, D Andrea L, Vitale G, et al. Vertical gradient of regional lung inflation in adult respiratory distress syndrome. Am J Respir Crit Care Med 1994; 149: Gattinoni L, Caironi P, Cressoni M, et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 2006; 354: Meade MO, Cook DJ, Griffith LE, et al. A study of the physiologic responses to a lung recruitment maneuver in acute lung injury and acute respiratory distress syndrome. Respir Care 2008; 53: Jonson B, Richard JC, Straus C, et al. Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 1999; 159 (4 Pt 1): Demory D, Arnal JM, Wysocki M, et al. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med 2008; 34: Koefoed-Nielsen J, Nielsen ND, Kjaergaard AJ, Larsson A. Alveolar recruitment can be predicted from airway pressure-lung volume loops: an experimental study in a porcine acute lung injury model. Crit Care 2008; 12:R7. 14 Gattinoni L, Pesenti A, Avalli L, et al. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 1987; 136: Cressoni M, Caironi P, Polli F, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med 2008; 36: Dantzker DR, Lynch JP, Weg JG. Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest 1980; 77: Bikker IG, Leonhardt S, Bakker J, Gommers D. Lung volume calculated from electrical impedance tomography in ICU patients at different PEEP levels. Intensive Care Med 2009; 35: Meier T, Luepschen H, Karsten J, et al. Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 2008; 34: Frerichs I, Dargaville PA, van Genderingen H, et al. Lung volume recruitment after surfactant administration modifies spatial distribution of ventilation. Am J Respir Crit Care Med 2006; 174: Wrigge H, Zinserling J, Muders T, et al. Electrical impedance tomography compared with thoracic computed tomography during a slow inflation maneuver in experimental models of lung injury. Crit Care Med 2008; 36: Luepschen H, Meier T, Grossherr M, et al. Protective ventilation using electrical impedance tomography. Physiol Meas 2007; 28:S247 S Costa EL, Borges JB, Melo A, et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 2009; 35: Brunow dc, Fonseca MC, Johnston C. Electric impedance tomography, the final frontier is close: the bedside reality. Crit Care Med 2007; 35: Kloot TE, Blanch L, Melynne YA, et al. Recruitment maneuvers in three experimental models of acute lung injury. Effect on lung volume and gas exchange. Am J Respir Crit Care Med 2000; 161: Lemaire F, Harf A, Simonneau G, et al. Gas exchange, static pressure-volume curve and positive-pressure ventilation at the end of expiration. Study of 16 cases of acute respiratory insufficiency in adults. Ann Anesthesiol Fr 1981; 22: Grasso S, Terragni P, Mascia L, et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med 2004; 32: Suarez-Sipmann F, Bohm SH, Tusman G, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 2007; 35: Girgis K, Hamed H, Khater Y, Kacmarek RM. A decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care 2006; 51: Protti A, Chiumello D, Cressoni M, et al. Relationship between gas exchange response to prone position and lung recruitability during acute respiratory failure. Intensive Care Med 2009; 35: Caramez MP, Kacmarek RM, Helmy M, et al. A comparison of methods to identify open-lung PEEP. Intensive Care Med 2009; 35: The authors compared different methods for PEEP selection at bedside analyzing both inspiratory and expiratory parameters in an animal model. The best dynamic tidal respiratory compliance was set as a reference standard. Maximum pao 2, maximum pao 2 and paco 2, minimum shunt, inflation lower Pflex, and Pmci,i yield similar values for PEEP selection following a recruitment maneuver. Deflation upper Pflex and the point of maximal compliance decrease on the deflation limb were significantly higher, and the true inflection point on the inflation limb and minimum paco 2 were significantly lower than the other variables. 31 Brower RG, Lanken PN, MacIntyre N, et al. Higher versus lower positive endexpiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351: Meade MO, Cook DJ, Guyatt GH, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299: A large, randomized clinical trial examining the effects of PEEP level in 983 ALI/ ARDS patients. The control group was ventilated with target tidal volumes of 6 ml/ kg IBW, plateau airway pressures not exceeding 30 cmh 2 O, and conventional levels of PEEP. The experimental strategy included target tidal volumes of 6 ml/kg IBW predicted body weight, plateau pressures not exceeding 40 cmh 2 O, recruitment maneuvers, and higher PEEPs. The level of PEEP administered, either lower or higher, was selected according to an oxygenation scale conceptually similar to the one used in the previous ALVEOLI study. The authors did not find any significant difference in all-cause hospital mortality, barotrauma, and secondary outcome endpoints. 33 Mercat A, Richard JC, Vielle B, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008; 299: This is a large, randomized clinical trial on 767 ALI/ARDS patients. Patients were randomized either to a moderate PEEP strategy (minimal distension strategy) or to a level of PEEP to obtain cmh 2 O airway plateau pressure (increased recruitment strategy). The authors did not find any mortality reduction in the increased recruitment strategy group. However, it improved lung function and reduced the duration of mechanical ventilation and of organ failure. 34 Gattinoni L, Caironi P. Refining ventilatory treatment for acute lung injury and acute respiratory distress syndrome. JAMA 2008; 299: The authors performed an analysis of the latest large, international, randomized clinical trials on PEEP selection in ALI/ARDS patients, including subgroup analysis of the most severe patients. They concluded that random application of either higher or lower levels of PEEP in an unselected population does not significantly improve outcome. However, takingtogether LOV and ExPress studies, thenumber of patients with severe hypoxemia requiring rescue therapy in the higher PEEP level group was doubled compared with lower PEEP level group, suggesting that also the rate of pulmonary deaths was much lower. Taken together, the results suggest that the higher PEEP provides survival benefit in the most severe hypoxemic ARDS patients. 35 Albaiceta GM, Luyando LH, Parra D, et al. Inspiratory vs. expiratory pressurevolume curves to set end-expiratory pressure in acute lung injury. Intensive Care Med 2005; 31: Koefoed-Nielsen J, Andersen G, Barklin A, et al. Maximal hysteresis: a new method to set positive end-expiratory pressure in acute lung injury? Acta Anaesthesiol Scand 2008; 52:

6 44 Respiratory system 37 Jeon K, Jeon IS, Suh GY, et al. Two methods of setting positive end-expiratory pressure in acute lung injury: an experimental computed tomography volumetric study. J Korean Med Sci 2007; 22: Lambermont B, Ghuysen A, Janssen N, et al. Comparison of functional residual capacity and static compliance of the respiratory system during a positive end-expiratory pressure (PEEP) ramp procedure in an experimental model of acute respiratory distress syndrome. Crit Care 2008; 12:R Badet M, Bayle F, Richard JC, Guerin C. Comparison of optimal positive endexpiratory pressure and recruitment maneuvers during lung-protective mechanical ventilation in patients with acute lung injury/acute respiratory distress syndrome. Respir Care 2009; 54: Passaro CP, Silva PL, Rzezinski AF, et al. Pulmonary lesion induced by low and high positive end-expiratory pressure levels during protective ventilation in experimental acute lung injury. Crit Care Med 2009; 37: Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 2008; 359: The authors proposed an innovative PEEP selection method based on esophageal pressure measurement. The assumption was that esophageal pressure equals the pleural pressure. Accordingly, they hypothesized that the best PEEP to be applied was the one sufficient to maintain a positive transpulmonary pressure to avoid repeated alveolar collapse or overdistension. 42 Sarge T, Talmor D. Targeting transpulmonary pressure to prevent ventilator induced lung injury. Minerva Anestesiol 2009; 75:

Lung recruitment maneuvers

Lung recruitment maneuvers White Paper Lung recruitment maneuvers Assessment of lung recruitability and performance of recruitment maneuvers using the P/V Tool Pro Munir A Karjaghli RRT, Clinical Application Specialist, Hamilton

More information

RESPIRATORY PHYSIOLOGY, PHYSICS AND PATHOLOGY IN RELATION TO ANAESTHESIA AND INTENSIVE CARE

RESPIRATORY PHYSIOLOGY, PHYSICS AND PATHOLOGY IN RELATION TO ANAESTHESIA AND INTENSIVE CARE Course n : Course 3 Title: RESPIRATORY PHYSIOLOGY, PHYSICS AND PATHOLOGY IN RELATION TO ANAESTHESIA AND INTENSIVE CARE Sub-category: Intensive Care for Respiratory Distress Topic: Pulmonary Function and

More information

What is an Optimal Paw Strategy?

What is an Optimal Paw Strategy? What is an Optimal Paw Strategy? A Physiological Rationale Anastasia Pellicano Neonatologist Royal Children s Hospital, Melbourne Acute injury sequence Barotrauma Volutrauma Atelectotrauma Biotrauma Oxidative

More information

CEEA 2015, Kosice Luciano Gattinoni, MD, FRCP Università di Milano Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Milan, Italy

CEEA 2015, Kosice Luciano Gattinoni, MD, FRCP Università di Milano Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Milan, Italy ARDS and VILI CEEA 2015, Kosice Luciano Gattinoni, MD, FRCP Università di Milano Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Milan, Italy VILI 3 VILI What is due to the ventilator/ventilation:

More information

Pressure -Volume curves in ARDS. G. Servillo

Pressure -Volume curves in ARDS. G. Servillo Pressure -Volume curves in ARDS G. Servillo Dipartimento di Scienze Chirurgiche, Anestesiologiche- Rianimatorie e dell Emergenza Facoltà di Medicina e Chirurgia Università degli Studi di Napoli Federico

More information

APRV: Moving beyond ARDSnet

APRV: Moving beyond ARDSnet APRV: Moving beyond ARDSnet Matthew Lissauer, MD Associate Professor of Surgery Medical Director, Surgical Critical Care Rutgers, The State University of New Jersey What is APRV? APRV is different from

More information

Mechanical Ventilation of the Patient with ARDS

Mechanical Ventilation of the Patient with ARDS 1 Mechanical Ventilation of the Patient with ARDS Dean Hess, PhD, RRT, FAARC Assistant Professor of Anesthesia Harvard Medical School Assistant Director of Respiratory Care Massachusetts General Hospital

More information

Driving Pressure. What is it, and why should you care?

Driving Pressure. What is it, and why should you care? Driving Pressure What is it, and why should you care? Jonathan Pak MD March 2, 2017 Lancet 1967; 290: 319-323 Traditional Ventilation in ARDS Tidal Volume (V T ) = 10-15 ml/kg PBW PEEP = 5-12 cm H 2 O

More information

What is Lung Protective Ventilation? NBART 2016

What is Lung Protective Ventilation? NBART 2016 What is Lung Protective Ventilation? NBART 2016 Disclosure Full time employee of Draeger Outline 1. Why talk about Lung Protective Ventilation? 2. What is Lung Protective Ventilation? 3. How to apply Lung

More information

INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES

INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES PROVIDE THE DEFINITION FOR BI-VENT EXPLAIN THE BENEFITS OF BI-VENT EXPLAIN SET PARAMETERS IDENTIFY RECRUITMENT IN APRV USING

More information

Mechanical power and opening pressure. Fellowship training program Intensive Care Radboudumc, Nijmegen

Mechanical power and opening pressure. Fellowship training program Intensive Care Radboudumc, Nijmegen Mechanical power and opening pressure Fellowship training program Intensive Care Radboudumc, Nijmegen Mechanical power Energy applied to the lung: Ptp * V (Joule) Power = Energy per minute (J/min) Power

More information

excellence in care Procedure Management of patients with difficult oxygenation. For Review Aug 2015

excellence in care Procedure Management of patients with difficult oxygenation. For Review Aug 2015 Difficult Oxygenation HELI.CLI.12 Purpose This procedure describes the processes and procedures for a lung protective strategy in the mechanical ventilation of patients that are difficult to oxygenate

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation

More information

VENTILATOR-INDUCED lung injury (VILI) has. Mechanical Power and Development of Ventilator-induced Lung Injury CRITICAL CARE MEDICINE ABSTRACT

VENTILATOR-INDUCED lung injury (VILI) has. Mechanical Power and Development of Ventilator-induced Lung Injury CRITICAL CARE MEDICINE ABSTRACT Mechanical Power and Development of Ventilator-induced Lung Injury ABSTRACT Background: The ventilator works mechanically on the lung parenchyma. The authors set out to obtain the proof of concept that

More information

Invasive Ventilation: State of the Art

Invasive Ventilation: State of the Art ARDSnet NEJM 2000;342:1301 9-30-17 Cox Invasive Ventilation: State of the Art Bob Kacmarek PhD, RRT Harvard Medical School Massachusetts General Hospital Boston, Massachusetts A V T of 6 ml/kg PBW results

More information

Why we should care (I)

Why we should care (I) What the $*!# is Lung Protective Ventilation and Why Should I be Using it in the OR? Disclosures KATHERINE PALMIERI, MD, MBA 64 TH ANNUAL POSTGRADUATE SYMPOSIUM UNIVERSITY OF KANSAS MEDICAL CENTER DEPARTMENT

More information

Difficult Oxygenation Distribution: Sydney X Illawarra X Orange X

Difficult Oxygenation Distribution: Sydney X Illawarra X Orange X HELICOPTER OPERATING PROCEDURE HOP No: C/12 Issued: May 2011 Page: 1 of 5 Revision No: Original Difficult Oxygenation Distribution: Sydney X Illawarra X Orange X TRIM No: 09/300 Document No: D10/9973 X

More information

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate Professor. Medical School. UAM Non-anaesthesiated healthy

More information

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate Professor. Medical School. UAM Non-anaesthesiated healthy

More information

Lung recruitment maneuvers in acute respiratory distress syndrome

Lung recruitment maneuvers in acute respiratory distress syndrome Respir Care Clin 9 (2003) 401 418 Lung recruitment maneuvers in acute respiratory distress syndrome Carmen Sı lvia Valente Barbas, MD, PhD a,b, *, Gustavo Faissol Janot de Matos, MD a,b, Valdelis Okamoto,

More information

Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury *

Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury * A teaching hospital of Harvard Medical School Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury * Ray Ritz BA RRT FAARC Beth Israel Deaconess Medical Center Boston MA * n engl j

More information

Underlying Principles of Mechanical Ventilation: An Evidence-Based Approach

Underlying Principles of Mechanical Ventilation: An Evidence-Based Approach Underlying Principles of Mechanical Ventilation: An Evidence-Based Approach Ira M. Cheifetz, MD, FCCM, FAARC Professor of Pediatrics and Anesthesiology Chief Medical Officer, Children s Services Associate

More information

Ventilating the Sick Lung Mike Dougherty RRT-NPS

Ventilating the Sick Lung Mike Dougherty RRT-NPS Ventilating the Sick Lung 2018 Mike Dougherty RRT-NPS Goals and Objectives Discuss some Core Principles of Ventilation relevant to mechanical ventilation moving forward. Compare and Contrast High MAP strategies

More information

Image-Based Measurement of Alveoli Volume Expansion in an Animal Model of a Diseased Lung

Image-Based Measurement of Alveoli Volume Expansion in an Animal Model of a Diseased Lung Image-Based Measurement of Alveoli Volume Expansion in an Animal Model of a Diseased Lung C. E. Hann 1, D. Hewett 1, J. G. Chase 1, T. Rabczuk 1, A. Sundaresan 1, X. Chen 1, W. Wang 1 and G. M. Shaw 2

More information

Online Data Supplement

Online Data Supplement REVERSIBILITY OF LUNG COLLAPSE AND HYPOXEMIA IN EARLY ACUTE RESPIRATORY DISTRESS SYNDROME AUTHORS: BORGES, JOÃO B. MD OKAMOTO, VALDELIS N. MD MATOS, GUSTAVO F. J. MD CARAMEZ, MARIA P. R. MD ARANTES, PAULA

More information

Physiological Basis of Mechanical Ventilation

Physiological Basis of Mechanical Ventilation Physiological Basis of Mechanical Ventilation Wally Carlo, M.D. University of Alabama at Birmingham Department of Pediatrics Division of Neonatology wcarlo@peds.uab.edu Fine Tuning Mechanical Ventilation

More information

The ARDSnet and Lung Protective Ventilation: Where Are We Today

The ARDSnet and Lung Protective Ventilation: Where Are We Today The ARDSnet and Lung Protective Ventilation: Where Are We Today 4-16-12 RCSW Bob Kacmarek PhD, RRT Harvard Medical School Massachusetts General Hospital Boston, Massachusetts Conflict of Interest Disclosure

More information

SAFE MECHANICAL VENTILATION: WHAT YOU NEED TO KNOW AND DO.

SAFE MECHANICAL VENTILATION: WHAT YOU NEED TO KNOW AND DO. SAFE MECHANICAL VENTILATION: WHAT YOU NEED TO KNOW AND DO. Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine holets.steven@mayo.edu OBJECTIVES: Describe the physiology

More information

ONLINE DATA SUPPLEMENT. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg

ONLINE DATA SUPPLEMENT. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg APPENDIX 1 Appendix 1. Complete respiratory protocol. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg predicted body weight (PBW)) (NEJM 2000; 342

More information

Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome

Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome Pietro Caironi 1,2, Massimo Cressoni 1, Davide Chiumello 2, Marco Ranieri 3, Michael Quintel 4, Sebastiano G. Russo 4,

More information

Transpulmonary pressure: importance and limits

Transpulmonary pressure: importance and limits Review Article Page 1 of 10 Transpulmonary pressure: importance and limits Domenico Luca Grieco 1,2,3, Lu Chen 1,2, Laurent Brochard 1,2 1 Interdepartmental Division of Critical Care Medicine, University

More information

Principles of mechanical ventilation. Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands

Principles of mechanical ventilation. Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands Principles of mechanical ventilation Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands Disclosure Research grant Chiesi Pharmaceuticals Research grant CareFusion GA: 27 weeks,

More information

An Extension to the First Order Model of Pulmonary Mechanics to Capture a Pressure dependent Elastance in the Human Lung

An Extension to the First Order Model of Pulmonary Mechanics to Capture a Pressure dependent Elastance in the Human Lung Preprints of the 19th World Congress The International Federation of Automatic Control An Extension to the First Order Model of Pulmonary Mechanics to Capture a Pressure dependent Elastance in the Human

More information

mechanical ventilation Arjun Srinivasan

mechanical ventilation Arjun Srinivasan Respiratory mechanics in mechanical ventilation Arjun Srinivasan Introduction Mechanics during ventilation PV curves Application in health & disease Difficulties & pitfalls The future. Monitoring Mechanics

More information

Initiation and Management of Airway Pressure Release Ventilation (APRV)

Initiation and Management of Airway Pressure Release Ventilation (APRV) Initiation and Management of Airway Pressure Release Ventilation (APRV) Eric Kriner RRT Pulmonary Critical Care Clinical Specialist Pulmonary Services Department Medstar Washington Hospital Center Disclosures

More information

6 th Accredited Advanced Mechanical Ventilation Course for Anesthesiologists. Course Test Results for the accreditation of the acquired knowledge

6 th Accredited Advanced Mechanical Ventilation Course for Anesthesiologists. Course Test Results for the accreditation of the acquired knowledge 6 th Accredited Advanced Mechanical Ventilation Course for Anesthesiologists Course Test Results for the accreditation of the acquired knowledge Q. Concerning the mechanics of the newborn s respiratory

More information

SUPPLEMENTARY APPENDIX. Ary Serpa Neto MD MSc, Fabienne D Simonis MD, Carmen SV Barbas MD PhD, Michelle Biehl MD, Rogier M Determann MD PhD, Jonathan

SUPPLEMENTARY APPENDIX. Ary Serpa Neto MD MSc, Fabienne D Simonis MD, Carmen SV Barbas MD PhD, Michelle Biehl MD, Rogier M Determann MD PhD, Jonathan 1 LUNG PROTECTIVE VENTILATION WITH LOW TIDAL VOLUMES AND THE OCCURRENCE OF PULMONARY COMPLICATIONS IN PATIENTS WITHOUT ARDS: a systematic review and individual patient data metaanalysis SUPPLEMENTARY APPENDIX

More information

TESTCHEST RESPIRATORY FLIGHT SIMULATOR SIMULATION CENTER MAINZ

TESTCHEST RESPIRATORY FLIGHT SIMULATOR SIMULATION CENTER MAINZ TESTCHEST RESPIRATORY FLIGHT SIMULATOR SIMULATION CENTER MAINZ RESPIRATORY FLIGHT SIMULATOR TestChest the innovation of lung simulation provides a breakthrough in respiratory training. 2 Organis is the

More information

Model Based Approach to Estimate dfrc in the ICU Using Measured Lung Dynamics

Model Based Approach to Estimate dfrc in the ICU Using Measured Lung Dynamics Model Based Approach to Estimate dfrc in the ICU Using Measured Lung Dynamics A.N. Mishra*, Y.S. Chiew*, J.G. Chase*, G.M. Shaw** *University of Canterbury, Christchurch, 8041, New Zealand (e-mail: ankit.mishra@pg.canterbury.ac.nz,

More information

Accumulation of EEV Barotrauma Affect hemodynamic Hypoxemia Hypercapnia Increase WOB Unable to trigger MV

Accumulation of EEV Barotrauma Affect hemodynamic Hypoxemia Hypercapnia Increase WOB Unable to trigger MV Complicated cases during mechanical ventilation Pongdhep Theerawit M.D. Pulmonary and Critical Care Division Ramathibodi Hospital Case I Presentation Male COPD 50 YO, respiratory failure, on mechanical

More information

Advanced Ventilator Modes. Shekhar T. Venkataraman M.D. Professor Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine

Advanced Ventilator Modes. Shekhar T. Venkataraman M.D. Professor Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine Advanced Ventilator Modes Shekhar T. Venkataraman M.D. Shekhar T. Venkataraman M.D. Professor Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine Advanced modes Pressure-Regulated

More information

http://www.priory.com/cmol/hfov.htm INTRODUCTION The vast majority of patients who are admitted to an Intensive Care Unit (ICU) will need artificial ventilation (Jones et al 1998). The usual means through

More information

VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL

VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL Dr Nick Taylor Visiting Emergency Specialist Teaching Hospital Karapitiya Senior Specialist and Director ED Training Clinical Lecturer, Australian National

More information

Journal of Intensive Care Medicine

Journal of Intensive Care Medicine Journal of Intensive Care Medicine http://jic.sagepub.com/ The Effect of the Pressure Volume Curve for Positive End-Expiratory Pressure Titration on Clinical Outcomes in Acute Respiratory Distress Syndrome:

More information

OPEN LUNG APPROACH CONCEPT OF MECHANICAL VENTILATION

OPEN LUNG APPROACH CONCEPT OF MECHANICAL VENTILATION OPEN LUNG APPROACH CONCEPT OF MECHANICAL VENTILATION L. Rudo Mathivha Intensive Care Unit Chris Hani Baragwanath Aacademic Hospital & the University of the Witwatersrand OUTLINE Introduction Goals & Indications

More information

4/18/12 MECHANISM OF RESPIRATION. Every Breath You Take. Fun Facts

4/18/12 MECHANISM OF RESPIRATION. Every Breath You Take. Fun Facts Objectives MECHANISM OF RESPIRATION Dr Badri Paudel Explain how the intrapulmonary and intrapleural pressures vary during ventilation and relate these pressure changes to Boyle s law. Define the terms

More information

Basics of Mechanical Ventilation. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity

Basics of Mechanical Ventilation. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Basics of Mechanical Ventilation Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Overview of topics 1. Goals 2. Settings 3. Modes 4. Advantages and disadvantages

More information

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Link full download: http://testbankair.com/download/test-bank-for-pilbeams-mechanicalventilation-physiological-and-clinical-applications-6th-edition-by-cairo/

More information

This full text version, available on TeesRep, is the post print (final version prior to publication) of:

This full text version, available on TeesRep, is the post print (final version prior to publication) of: This full text version, available on TeesRep, is the post print (final version prior to publication) of: Denai, M. A., Mahfouf, M. and Mills, G. H. (2008) 'Modeling and simulation of Electrical Impedance

More information

Prof. Javier García Fernández MD, Ph.D, MBA.

Prof. Javier García Fernández MD, Ph.D, MBA. Prof. Javier García Fernández MD, Ph.D, MBA. Chairman of Anesthesia & Perioperative Medicine Department Puerta de Hierro Universitary Hospital Prof. of Anaesthesia and Perioperative Medicine. Autonoma

More information

Sumit Ray Senior Consultant & Vice-Chair Critical Care & Emergency Medicine Sir Ganga Ram Hospital

Sumit Ray Senior Consultant & Vice-Chair Critical Care & Emergency Medicine Sir Ganga Ram Hospital Sumit Ray Senior Consultant & Vice-Chair Critical Care & Emergency Medicine Sir Ganga Ram Hospital ARDS pathophysiology B Taylor Thompson et al. NEJM 2017;377:562-72. Outcome Australian Epidemiologic

More information

Are Esophageal Pressure Measurements Important in Clinical Decision-Making in Mechanically Ventilated Patients?

Are Esophageal Pressure Measurements Important in Clinical Decision-Making in Mechanically Ventilated Patients? Are Esophageal Pressure Measurements Important in Clinical Decision-Making in Mechanically Ventilated Patients? Daniel S Talmor MD MPH and Henry E Fessler MD Introduction Pro: Esophageal Pressure Measurements

More information

Limits of normality of quantitative thoracic CT analysis

Limits of normality of quantitative thoracic CT analysis RESEARCH Open Access Limits of normality of quantitative thoracic CT analysis Massimo Cressoni 1*, Elisabetta Gallazzi 1, Chiara Chiurazzi 1, Antonella Marino 1, Matteo Brioni 1, Federica Menga 1, Irene

More information

Alveolar Recruiment for ARDS Trial

Alveolar Recruiment for ARDS Trial Alveolar Recruiment for ARDS Trial Alexandre Biasi Cavalcanti HCor Research Institute For the ART Investigators Trial Organization Coordination: HCor Research Institute (Sao Paulo, Brazil). Support: Brazilian

More information

PROBLEM SET 9. SOLUTIONS April 23, 2004

PROBLEM SET 9. SOLUTIONS April 23, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

High Frequency Ventilation. Neil MacIntyre MD Duke University Medical Center Durham NC USA

High Frequency Ventilation. Neil MacIntyre MD Duke University Medical Center Durham NC USA High Frequency Ventilation Neil MacIntyre MD Duke University Medical Center Durham NC USA High frequency ventilation Concept of ventilator induced lung injury and lung protective ventilatory strategies

More information

Oleic Acid vs Saline Solution Lung Lavage-Induced Acute Lung Injury*

Oleic Acid vs Saline Solution Lung Lavage-Induced Acute Lung Injury* CHEST Oleic Acid vs Saline Solution Lung Lavage-Induced Acute Lung Injury* Effects on Lung Morphology, Pressure-Volume Relationships, and Response to Positive End- Expiratory Pressure Original Research

More information

A comparison of methods to identify open-lung PEEP

A comparison of methods to identify open-lung PEEP Intensive Care Med (2009) 35:740 747 DOI 10.1007/s00134-009-1412-9 EXPERIMENTAL Maria Paula Caramez Robert M. Kacmarek Mohamed Helmy Eriko Miyoshi Atul Malhotra Marcelo B. P. Amato R. Scott Harris A comparison

More information

Review Clinical review: Bedside assessment of alveolar recruitment Jean-Christophe Richard 1, Salvatore M Maggiore 2 and Alain Mercat 3

Review Clinical review: Bedside assessment of alveolar recruitment Jean-Christophe Richard 1, Salvatore M Maggiore 2 and Alain Mercat 3 Review Clinical review: Bedside assessment of alveolar recruitment Jean-Christophe Richard 1, Salvatore M Maggiore 2 and Alain Mercat 3 1 Medical Intensive Care Unit, Rouen University Hospital, Rouen,

More information

Presentation Overview. Monitoring Strategies for the Mechanically Ventilated Patient. Early Monitoring Strategies. Early Attempts To Monitor WOB

Presentation Overview. Monitoring Strategies for the Mechanically Ventilated Patient. Early Monitoring Strategies. Early Attempts To Monitor WOB Monitoring Strategies for the Mechanically entilated Patient Presentation Overview A look back into the future What works and what may work What s all the hype about the WOB? Are ventilator graphics really

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

A Minimal Model of Lung Mechanics and Model based Markers for Optimizing Ventilator Treatment in ARDS Patients

A Minimal Model of Lung Mechanics and Model based Markers for Optimizing Ventilator Treatment in ARDS Patients A Minimal Model of Lung Mechanics and Model based Markers for Optimizing Ventilator Treatment in ARDS Patients Ashwath Sundaresan 1, Toshinori Yuta 2, Christopher E. Hann 3 J. Geoffrey Chase 4, Geoffrey

More information

Mechanical Ventilation. Which of the following is true regarding ventilation? Basics of Ventilation

Mechanical Ventilation. Which of the following is true regarding ventilation? Basics of Ventilation Mechanical Ventilation Jeffrey L. Wilt, MD, FACP, FCCP Associate Professor of Medicine Michigan State University Associate Program Director MSU-Grand Rapids Internal Medicine Residency Which of the following

More information

VENTILATORS PURPOSE OBJECTIVES

VENTILATORS PURPOSE OBJECTIVES VENTILATORS PURPOSE To familiarize and acquaint the transfer Paramedic with the skills and knowledge necessary to adequately maintain a ventilator in the interfacility transfer environment. COGNITIVE OBJECTIVES

More information

Description: Percentage of cases with median tidal volumes less than or equal to 8 ml/kg.

Description: Percentage of cases with median tidal volumes less than or equal to 8 ml/kg. Measure Abbreviation: PUL 02 Description: Percentage of cases with median tidal volumes less than or equal to 8 ml/kg. NQS Domain: Patient Safety Measure Type: Process Scope: Calculated on a per case basis.

More information

Volume Diffusion Respiration (VDR)

Volume Diffusion Respiration (VDR) Volume Diffusion Respiration (VDR) A therapy with many uses Jeffrey Pietz, MD April 15, 2016 VDR ventilation has been used to treat patients with: ARDS Meconium Aspiration Burn and Inhalation Injury RDS

More information

Variable positive end-expiratory pressure can maintain oxygenation in experimental acute respiratory distress syndrome induced by oleic acid in dogs

Variable positive end-expiratory pressure can maintain oxygenation in experimental acute respiratory distress syndrome induced by oleic acid in dogs ISSN 0100-879X Volume 42 (8) 692-775 August 2009 www.bjournal.com.br CLINICAL INVESTIGATION Braz J Med Biol Res, August 2009, Volume 42(8) 731-737 Variable positive end-expiratory pressure can maintain

More information

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES GENERAL PROVISIONS: EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES Individuals providing Inter-facility transport with Mechanical Ventilator must have successfully completed

More information

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS VENTILATION AND PERFUSION IN HEALTH AND DISEASE Dr.HARIPRASAD VS Ventilation Total ventilation - total rate of air flow in and out of the lung during normal tidal breathing. Alveolar ventilation -represents

More information

WHAT IS SAFE VENTILATION? Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine

WHAT IS SAFE VENTILATION? Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine WHAT IS SAFE VENTILATION? Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine holets.steven@mayo.edu DISCLOSURES Past and present Advisory Boards: Resmed Philips/Respironics

More information

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia and Critical Care Service Puerta de Hierro University Hospital Associate Professor.

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia and Critical Care Service Puerta de Hierro University Hospital Associate Professor. Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia and Critical Care Service Puerta de Hierro University Hospital Associate Professor. Medical School. UAM CV and Conflict of interest Chairman

More information

Neonatal Assisted Ventilation. Haresh Modi, M.D. Aspirus Wausau Hospital, Wausau, WI.

Neonatal Assisted Ventilation. Haresh Modi, M.D. Aspirus Wausau Hospital, Wausau, WI. Neonatal Assisted Ventilation Haresh Modi, M.D. Aspirus Wausau Hospital, Wausau, WI. History of Assisted Ventilation Negative pressure : Spirophore developed in 1876 with manual device to create negative

More information

Mechanical Ventilation and Optimisation through Analytical Lung Model

Mechanical Ventilation and Optimisation through Analytical Lung Model Mechanical Ventilation and Optimisation through Analytical Lung Model Ankit Mishra A thesis presented for the degree of Masters of Engineering in Mechanical Engineering at the University of Canterbury,

More information

Monitoring of lung function in acute respiratory distress syndrome

Monitoring of lung function in acute respiratory distress syndrome Review Article Page 1 of 8 Monitoring of lung function in acute respiratory distress syndrome Anders Larsson 1, Claude Guerin 2 1 Hedenstierna laboratory, Department of Surgical Sciences, Uppsala University,

More information

Clinical Management Strategies for Airway Pressure Release Ventilation: A Survey of Clinical Practice

Clinical Management Strategies for Airway Pressure Release Ventilation: A Survey of Clinical Practice Clinical Management Strategies for Airway Pressure Release Ventilation: A Survey of Clinical Practice Andrew G Miller RRT-ACCS RRT-NPS, Michael A Gentile RRT FAARC, John D Davies MA RRT FAARC, and Neil

More information

PART EIGHT HIGH FREQUENCY PERCUSSIVE OSCILLATION (HFPOV )

PART EIGHT HIGH FREQUENCY PERCUSSIVE OSCILLATION (HFPOV ) PART EIGHT HIGH FREQUENCY PERCUSSIVE OSCILLATION (HFPOV ) Note: For maximal comparative understanding, FIRST read PART SEVEN which defines the concept of High Frequency Oscillatory Ventilation (HFOV).

More information

Organis TestChest. Flight Simulator for Intensive Care Clinicians

Organis TestChest. Flight Simulator for Intensive Care Clinicians Organis TestChest Flight Simulator for Intensive Care Clinicians Organis TestChest Critical Care challenges Training on ventilation modes with simulation is crucial for patient safety The equipment and

More information

Recruitment and Derecruitment during Acute Respiratory Failure A Clinical Study

Recruitment and Derecruitment during Acute Respiratory Failure A Clinical Study Recruitment and Derecruitment during Acute Respiratory Failure A Clinical Study STEFANIA CROTTI, DANIELE MASCHERONI, PIETRO CAIRONI, PAOLO PELOSI, GIULIO RONZONI, MICHELE MONDINO, JOHN J. MARINI, and LUCIANO

More information

Respiratory Failure & Mechanical Ventilation. Denver Health Medical Center Department of Surgery and the University Of Colorado Denver

Respiratory Failure & Mechanical Ventilation. Denver Health Medical Center Department of Surgery and the University Of Colorado Denver Respiratory Failure & Mechanical Ventilation Denver Health Medical Center Department of Surgery and the University Of Colorado Denver + + Failure of the Respiratory Pump 1. Lack of patent airway 2. Bronchospasm

More information

4. For external respiration to occur effectively, you need three parameters. They are:

4. For external respiration to occur effectively, you need three parameters. They are: Self Assessment Module D Name: ANSWER KEY 1. Hypoxia should be assumed whenever the PaO 2 is below 45 mm Hg. 2. Name some clinical conditions that will result in hyperventilation (respiratory alkalosis).

More information

ONLINE SUPPLEMENT 6. EIT definitions and nomenclature

ONLINE SUPPLEMENT 6. EIT definitions and nomenclature Chest electrical tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT development study group Inéz Frerichs, Marcelo B. P.

More information

What can we learn from high-frequency ventilation?

What can we learn from high-frequency ventilation? What can we learn from high-frequency ventilation? Dipartimento di Medicina Perioperatoria, Terapia Intensiva ed Emergenza Azienda Sanitaria Universitaria Integrata di Trieste Università degli Studi di

More information

Abstract. n engl j med 359;20 november 13,

Abstract. n engl j med 359;20  november 13, The new england journal of medicine established in 1812 november 13, 2008 vol. 359 no. 20 Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury Daniel Talmor, M.D., M.P.H., Todd Sarge,

More information

Chapter 3: Invasive mechanical ventilation Stephen Lo

Chapter 3: Invasive mechanical ventilation Stephen Lo Chapter 3: Invasive mechanical ventilation Stephen Lo Introduction Conventional mechanical ventilation is the delivery of positive pressure to the airway to allow removal of CO2 and delivery of O2. In

More information

Nitrogen washout/washin, helium dilution and computed tomography in the assessment of End Expiratory Lung Volume

Nitrogen washout/washin, helium dilution and computed tomography in the assessment of End Expiratory Lung Volume Critical Care This Provisional PDF corresponds to the article as it appeared upon acceptance. Copyedited and fully formatted PDF and full text (HTML) versions will be made available soon. Nitrogen washout/washin,

More information

Functional residual capacity in beagle dogs with and without acute respiratory distress syndrome

Functional residual capacity in beagle dogs with and without acute respiratory distress syndrome Original Article Functional residual capacity in beagle dogs with and without acute respiratory distress syndrome Qi Liu 1, Yong-Hua Gao 1, Dong-Ming Hua 2, Wen Li 3, Zhe Cheng 1, Hui Zheng 4, Rong-Chang

More information

Mechanical Ventilation. Mechanical Ventilation is a Drug!!! is a drug. MV: Indications for use. MV as a Drug: Outline. MV: Indications for use

Mechanical Ventilation. Mechanical Ventilation is a Drug!!! is a drug. MV: Indications for use. MV as a Drug: Outline. MV: Indications for use Mechanical Ventilation is a Drug!!! Mechanical Ventilation is a drug I am an employee of Philips Healthcare Hospital Respiratory Care Group and they help me pay for my kids education Jim Laging, RRT, RCP

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Original Research. Michel Badet MD, Frédérique Bayle MD, Jean-Christophe Richard MD PhD, and Claude Guérin MD PhD

Original Research. Michel Badet MD, Frédérique Bayle MD, Jean-Christophe Richard MD PhD, and Claude Guérin MD PhD Original Research Comparison of Optimal Positive End-Expiratory Pressure and Recruitment Maneuvers During Lung-Protective Mechanical Ventilation in Patients With Acute Lung Injury/ Acute Respiratory Distress

More information

Flight Medical presents the F60

Flight Medical presents the F60 Flight Medical presents the F60 Reliable Ventilation Across the Spectrum of Care Adult & Pediatric Pressure/Volume Control Basic/Advanced Modes Invasive/NIV High Pressure/Low Flow O2 Up to 12 hours batteries

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

Neonatal tidal volume targeted ventilation

Neonatal tidal volume targeted ventilation Neonatal tidal volume targeted ventilation Colin Morley Retired Professor of Neonatal Medicine, Royal Women s Hospital, Melbourne, Australia. Honorary Visiting Fellow, Dept Obstetrics and Gynaecology,

More information

Volume vs Pressure during Neonatal Ventilation

Volume vs Pressure during Neonatal Ventilation Volume vs Pressure during Neonatal Ventilation David Tingay 1. Neonatal Research, Murdoch Children s Research Institute, Melbourne 2. Neonatology, Royal Children s Hospital 3. Dept of Paediatrics, University

More information

Clinical Management Strategies for Airway Pressure Release Ventilation: A Survey of Clinical Practice

Clinical Management Strategies for Airway Pressure Release Ventilation: A Survey of Clinical Practice Clinical Management Strategies for Airway Pressure Release Ventilation: A Survey of Clinical Practice Andrew G Miller RRT-ACCS RRT-NPS, Michael A Gentile RRT FAARC, John D Davies MA RRT FAARC, and Neil

More information

ROUTINE PREOXYGENATION

ROUTINE PREOXYGENATION EDITORIAL ROUTINE PREOXYGENATION It is a fact of great clinical importance that the body oxygen stores are so small, and if replenishment ceases, they are normally insufficient to sustain life for more

More information

HAMILTON-G5. The modular high-end ventilation solution

HAMILTON-G5. The modular high-end ventilation solution HAMILTON-G5 The modular high-end ventilation solution We live for ventilation technology We live for ventilation technology. Technology that helps caregivers improve the lives of their critically ill patients.

More information

Mechanical Ventilation

Mechanical Ventilation Mechanical Ventilation Chapter 4 Mechanical Ventilation Equipment When providing mechanical ventilation for pediatric casualties, it is important to select the appropriately sized bag-valve mask or endotracheal

More information

Supplemental Digital Content. Tidal recruitment assessed by Electrical Impedance Tomography and

Supplemental Digital Content. Tidal recruitment assessed by Electrical Impedance Tomography and Supplemental Digital Content Tidal recruitment assessed by Electrical Impedance Tomography and Computed Tomography in a porcine model of lung injury. Thomas Muders, Henning Luepschen, Jörg Zinserling,

More information

Electrical Impedance Tomography (EIT) Literature List

Electrical Impedance Tomography (EIT) Literature List Literature List Electrical Impedance Tomography Status September 2012 Electrical Impedance Tomography (EIT) Literature List INDEX Writer Subject Publication Page Adler A Muders T Frerichs I, Weiler N Whiter

More information

Two Methods of Setting Positive End-expiratory Pressure in Acute Lung Injury: An Experimental Computed Tomography Volumetric Study

Two Methods of Setting Positive End-expiratory Pressure in Acute Lung Injury: An Experimental Computed Tomography Volumetric Study J Korean Med Sci 2007; 22: 476-83 ISSN 1011-8934 Copyright The Korean Academy of Medical Sciences Two Methods of Setting Positive End-expiratory Pressure in Acute Lung Injury: An Experimental Computed

More information