The ARDSnet and Lung Protective Ventilation: Where Are We Today

Size: px
Start display at page:

Download "The ARDSnet and Lung Protective Ventilation: Where Are We Today"

Transcription

1 The ARDSnet and Lung Protective Ventilation: Where Are We Today RCSW Bob Kacmarek PhD, RRT Harvard Medical School Massachusetts General Hospital Boston, Massachusetts

2 Conflict of Interest Disclosure Robert M Kacmarek I disclose the following financial relationships with commercial entities that produce healthcare-related products or services relevant to the content I am presenting: Company Relationship Content Area Newport Medical Consultant Mechanical Ventilation Bayer Consultant Aerosol Therapy KCI Consultant Patient Positioning Hamilton Honorarium/Lecturing Mechanical Ventilation Maquet Honorarium/Lecturing Mechanical Ventilation Hollester Research Grant Airway Care Covidien Research Grant Mechanical Ventilation

3 Hickling ICM 1990; 16: ARDS patients Mortality: actual 16%, predicted 40% SIMV, volume targeted P I P < 40 cmh 2 O V T as low as 5 ml/kg PaCO 2 averaged about 60 mmhg PEEP cmh 2 O, F I O 2 < 0.60

4 Mechanical Ventilation Biochemical Injury Biophysical Injury Distal Organs Affected MSOF Slutsky, Tremblay AJRCCM 1998;157:1721

5 ARDSnet NEJM 2000;342:1301 A V T of 6 ml/kg PBW results in a lower mortality than a V T of 12 ml/kg PBW Mortality 31% vs. 39.8% p =

6

7 Mortality vs Day 1 Plateau Pressure NIH Trial of 6 vs 12 ml/kg Tidal Volume

8

9 Gajic CCM 2004;32:1817

10 Main risk factor for ALI large V T (OR 1.3 for ea ml above 6 ml/kg PBW p < Transfusion blood products (OR 3.0, p<0.001) Acidemic ph < 7.35 (OR 2.0 p=0.32) Gajic CCM 2004;32:1817

11 Plateau Pressure NOT V T End inspiratory over distension primary cause of VILI Transpulmonary pressure best indicator of over distension TPP = Pplat - Ppleural The best clinical indicator of TPP is plateau pressure not tidal volume

12 Impact of Plat/V T on Mortality in ARDS P PLAT < 30 cmh 2 O, mortality reduced Lower the P PLAT, better the outcome RR limit based on autopeep, up to 40 or greater? P PLAT > 30 cmh 2 O, V T 4-5 ml/kg P PLAT 25 to 30 cmh 2 O, V T 6 ml/kg P PLAT < 25 cmh 2 O V T 6-8; if patient has a strong ventilatory demand, better to allow a little larger V T then to heavily sedate and force a very low V T! Kacmarek (Editorial) RC 2005;50:

13 Ranieri JAMA 1999;282:54 Impact of a LPVS on pulmonary and systemic inflammatory mediator response in ARDS Cont: V T ml/kg, PEEP cmh 2 0 P flex : V T ml/kg, PEEP cmh 2 0 Outcome: pulmonary and systemic inflammatory mediator response attenuated in the treatment group 28 day Mortality 38% P flex vs. 58% Control, NS

14 ALVEOLI: PaO 2 = mmhg or SpO 2 = 88-95% Control PEEP FiO Higher PEEP PEEP FiO

15 ALVEOLI - Mortality Before Hospital Discharge Unadjusted p=0.56 Adjusted p= Low PEEP High PEEP Low PEEP High PEEP

16 Villar, Kacmarek et al CCM 2006;34:1311 RCT severe ARDS P/F < 200 mmhg : High PEEP, Low V T vs. Low PEEP, Moderate V T Control: V T 9-11 ml/kg PBW, PEEP > 5 cmh 2 O Treatment: PEEP P flex + 2 cmh 2 O, V T 5-8 ml/kg PBW Targets: PCO mmhg, PO mmhg PCO 2 managed by respiratory rate Treatment: decreased oxygenation - increase PEEP; increased oxygenation - decrease F I O 2

17 Villar, Kacmarek et al CCM 2006;34:1311 CONTROL TREATMENT n = 50 n= 53 Mortality 54% Mortality 30% As a result of a randomization problem in one center identified after termination of the study during manuscript revision data from that center had to be eliminated n =45 n = 50 Mortality 53.3% Mortality 32% p = 0.04 (0.017)

18 EXPRESS Mercat JAMA 2008 RCT High vs. Low PEEP, P/F < 300 mmhg regardless of PEEP or F I O 2 All 6 ml/kg PBW Min Alveolar distension PEEP 5 to 9 cm H 2 O Max PEEP V T set than PEEP to Pplat 28 to 30 Stopped early for futility: 382 vs. 385 pts PEEP 6.9 vs cmh 2 O, Pplat 21 vs. 28 cmh 2 O Mortality 28 days 31.2 vs. 27.8% P = NS Ventilator free days vs , p < 0.03 Prone or NO and organ failure free days, p < 0.01

19 LOV Meade JAMA 2008 RCT High (n=457) vs. Low PEEP (n=502), P/F < 250 mmhg regardless of PEEP and F I O 2 All 6 ml/kg PBW Control ARDSnet protocol PA/C, RM, PEEP/F I O 2 table PEEP vs cmh 2 O Pplat 28 vs. 25 cmh 2 O Mortality 36.4 vs. 40.4% p =NS Need for rescuer therapy 7.8 vs. 12.0% p < 0.02

20 Why the Differences in Outcome in Studies Evaluating PEEP in ARDS? Difference in tidal volume between groups! Method of setting PEEP! Alveoli - use of a PEEP/F I O 2 table LOV - use of a PEEP/F I O 2 table EXPRESS PEEP to bring Pplat to 28 to 30 CWP Ranieri -P-V curve Amato - P-V curve Villar - P-V curve Patients enrolled into study ALI vs. ARDS

21 Villar, Kacmarek AJRCCM 2007;176:795 Overall mortality 34.1% (n = 58) 24 hrs PEEP > 10 cmh 2 O, F I O 2 > 0.05 ARDS n=99, P/F mmhg ICU mortality 45.5% (45) ALI n=55, P/F mmhg ICU mortality 20% (11) ARF n=16, P/F mmhg ICU mortality 6.3% (1) p=0.0001

22 Criteria for Study Entry ALVEOLI and LOV P/F < 300 mmhg, EXPRESS P/F < 250 mm Hg, no PEEP or F I O 2 criteria (AECC) Ranieri P/F < 200 mmhg, no PEEP F I O 2 or criteria Amato P/F < 200 mmhg P/F of enrolled patients , PEEP 9 cmh 2 O, F I O 2 > 0.5 Villar P/F < 200 mmhg, then standard ventilator setting : V T 10 ml/kg, PEEP > 5 cmh 2 O, F I O 2 > 0.5, 24 hr later on standard ventilator settings P/F still < 200 mmhg

23 Phoenix Anes 2009;110:1098

24 Phoenix Anes 2009;110:1098

25

26 The Unrecruited Lung Higher pressure to ventilate Higher F I O 2 to oxygenate Increased likelihood for infection Decreased surfactant function Increased inflammatory mediator response

27 RM in ARDS Amato NEJM 1998 ;338:347 Peloci AJRCCM 1999;159:872 Lapinski ICM 1999; 25:1297 Foti ICM 2000;26:501 Medoff CCM 2000;28:1210 Richard AJRCCM 2001;163:1609 Lim CCM 2001;29:1255 Crotti AJRCCM 2001;164:131 Brower AJRCCM 2001;163:A767 Richards J ICM 2001;16:193 Patronili Anes 2002;96:788 Grasso Anes 2002;96:795 Villagra AJRCCM 2002;165:165 Tugrul CCM 2003;31:738 Kamal Respir Care 2006 Borges AJRCCM 2006 Toth CCM 2007;35:787

28 Borges, Kacmarek, Amato et al AJRCCM 2006

29 Borges, Kacmarek, Amato et al AJRCCM 2006

30 Borges, Kacmarek, Amato et al AJRCCM 2006

31 Gattinoni NEJM 2006;354: pts with ARDS /ALI in which recruitable lung was evaluated at 5, 15 and 45 cmh 2 O using CT scan Recruitment varied considerably, accounting for 13+11% of the lung weight. On average 24% of the lung could not be recruited. Pts with a higher % of recruitable lung (median > 9%) had higher lung wt (p=0.002), poorer oxygenation p < 0.001), poorer compliance (p = 0.002), higher levels of DS (p = 0.002) and a higher death rate (p = 0.02)

32 Gattinoni et al NEJM 2006;354:1775

33 Gattinoni NEJM 2006;354:1775 RM at PIP 45 cmh 2 O, PEEP 5 cmh 2 O, rate 10/min, I:E 1;1 for 2 min After RM patient randomized to 5 or 15 cmh 2 O PEEP. CT at 45 cmh 2 O during an end-inspiratory pause of 15 to 25 second thereafter at a PEEP of 5 and 15 cm H 2 O during a 15 to 25 sec end-expiratory pause Length of ventilation before study 5+6 days

34 Setting PEEP PEEP/F I O 2 algorithm either stated or unstated Increasing PEEP trial Oxygenation Lung Mechanics Cardiovascular Stability Pressure Volume Curve (P flex ) Decremental PEEP Trial

35 Suarez-Sipmann CCM 2007;35:214

36 Suarez-Sipmann CCM 2007;35:214

37 Tugrul CCM 2003;31:738 P/F (mmhg) Baseline 15 min 6 hr ARDS p ARDS exp PEEP (cmh 2 O) Before RM After RM ARDS p ARDS exp F I O 2 Baseline 15 min 6 hr ARDS p ARDS exp

38 *# P/F 150 * * * * BL PRE RM POST RM PEEP 1 HR 4 HR F I O * 0.375* 0.375* PEEP ±3.0 ±3.0 ±4.7 ±4.7 ±4.7 Kamal Respir Care 2006

39 Relative Contraindications Preexisting pulmonary cysts Preexisting bulbous lung disease Preexisting barotrauma Hemodynamic instability Unilateral/localized lung disease

40 Performance of RM Set F I O 2 at 1.0 Allow time for stabilization Insure appropriate sedation Insure hemodynamic stability

41 18 patients with ARDS RM 40/40 followed by a decremental PEEP trial form 26 cm H 2 O PEEP No change in EVLW CI decreased during RM but no change in HR, CVP, or MAP Toth CCM 2007;35 :787

42 Monitoring during RM Set guidelines for aborting the RM, for example: MAP < 60 mmhg or decreases by > 20 mmhg SpO 2 < 88% Heart rate >130 or < 60/ minute New arrhythmias

43 Performance of RM - PCV Pressure control ventilation, F I O 2 1.0: PEEP cmh 2 O Peak Inspir Press cmh 2 O Inspir Time: 1 to 3 sec Rate: 8 to 20/min Time 1 to 3 min Initial RM PEEP 20 to 25 cmh 2 O, PIP 40 cmh 2 O Set PEEP at 20, ventilate VC, V T 4 to 6 ml/kg PBW, increase rate, avoid auto-peep Measure dynamic compliance Decrease PEEP 2 cm H 2 O

44 Performance of RM - PCV Measure dynamic compliance Repeat until max compliance determined Optimal PEEP max comp PEEP+2 cm H 2 O Repeat recruitment maneuver and set PEEP at the identified settings, adjust ventilation After PEEP and ventilation set and stabilized, decrease F I O 2 until PO 2 in target range If response is poor, repeat RM, PEEP 25, Peak Pressure 45 If response is poor, repeat RM, PEEP 30, Peak Pressure 50

45 Stoker Chest 1997;111:1008

46 Sud ICM 2010;36:585

47 Chatte AJRCCM 1997;155: periods of prone positioning 2 apical atelectasis 1 IV catheter loss 1 IV catheter compression 1 extubation 1 transient supraventricular tachycardia

48 High Frequency Oscillation Arnold et al CCM 2000;22:1530 Derdak AJRCCM 2002;166:801 Shah ICM 2004;30:S84 Bollen Critical Care 2005;9:R430 Samransamruajkit Asian Pac J Allergy Immunol 2005;23:181 Mentzelopoulus ICM 2007;33:S142 All Negative RCT s CMV vs. HFO equivalent No data to indicate rescue use of HFO improves outcome!! If you prefer HFO use it immediately after intubation!

49 Derdak AJRCCM 2002;166:801 Summary of Ventilator Strategies CV(PCV) HFO VT ml/kg ABW RR per min or Hz Max 35 5(3-8) PEEP cmh2o mpaw cmh2o CV+5 (max45) Delta P cmh2o CW vibration % Inspir time 33-66% 33% HFO used cuff leak to improve ventilation HFO to CV when mpaw < 24cm H2O, FIO2 < 0.5

50 Primary Outcome: Status at 30 Days HFOV CV P value CI N Alive no 27 (36%) 23 (31%) P= to 22% mechanical ventilation Alive on 20 (26%) 12 (16%) P= to 24% mechanical ventilation Dead 28 (37%) 38 (52%) P= to 2%

51 Bollen Crit Care 2005;9:R430 RCT HFO vs. CMV 61 patients stopped early for enrollment problems No significant difference for any outcome variablies Mortality HFO 33% vs. CMV 23% VT 8-9 ml/kg PBW and plateau pressure above 30 in many patients

52 Sud BMJ 2010;340:2327

53 The ARDSnet and Lung Protective Ventilation: Where Are We Today P PLAT < 30 cmh 2 O, mortality reduced Lower the P PLAT, better the outcome RR limit based on autopeep, up to 40 or greater? P PLAT > 30 cmh 2 O, V T 4-5 ml/kg P PLAT 25 to 30 cmh 2 O, V T 6 ml/kg P PLAT < 25 cmh 2 O V T 6-8 ml/kg Recruit the lung before setting final PEEP PEEP ALI 8 to 15; ARDS 12 to 20 cm H 2 O Prone positioning P/F < 100 mmhg HFO Still questionable benefit???

54 Thank You

Invasive Ventilation: State of the Art

Invasive Ventilation: State of the Art ARDSnet NEJM 2000;342:1301 9-30-17 Cox Invasive Ventilation: State of the Art Bob Kacmarek PhD, RRT Harvard Medical School Massachusetts General Hospital Boston, Massachusetts A V T of 6 ml/kg PBW results

More information

Mechanical Ventilation 2016

Mechanical Ventilation 2016 Conflict of Interest Disclosure Robert M Kacmarek Lung Protective Ventilation: New Information RT s Neec to Know 5-6-17 FOCUS Bob Kacmarek PhD, RRT Harvard Medical School Massachusetts General Hospital

More information

flow (L/min) PSV. pressure (cm H 2 O) trigger. volume (ml)

flow (L/min) PSV. pressure (cm H 2 O) trigger. volume (ml) Invasive Mechanical Ventilation 6-9-08 Estonia Robert M Kacmarek PhD, RRT Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Pressure vs Volume Ventilation Pressure Volume Tidal

More information

Mechanical Ventilation of the Patient with ARDS

Mechanical Ventilation of the Patient with ARDS 1 Mechanical Ventilation of the Patient with ARDS Dean Hess, PhD, RRT, FAARC Assistant Professor of Anesthesia Harvard Medical School Assistant Director of Respiratory Care Massachusetts General Hospital

More information

Driving Pressure. What is it, and why should you care?

Driving Pressure. What is it, and why should you care? Driving Pressure What is it, and why should you care? Jonathan Pak MD March 2, 2017 Lancet 1967; 290: 319-323 Traditional Ventilation in ARDS Tidal Volume (V T ) = 10-15 ml/kg PBW PEEP = 5-12 cm H 2 O

More information

High Frequency Ventilation. Neil MacIntyre MD Duke University Medical Center Durham NC USA

High Frequency Ventilation. Neil MacIntyre MD Duke University Medical Center Durham NC USA High Frequency Ventilation Neil MacIntyre MD Duke University Medical Center Durham NC USA High frequency ventilation Concept of ventilator induced lung injury and lung protective ventilatory strategies

More information

Why we should care (I)

Why we should care (I) What the $*!# is Lung Protective Ventilation and Why Should I be Using it in the OR? Disclosures KATHERINE PALMIERI, MD, MBA 64 TH ANNUAL POSTGRADUATE SYMPOSIUM UNIVERSITY OF KANSAS MEDICAL CENTER DEPARTMENT

More information

ONLINE DATA SUPPLEMENT. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg

ONLINE DATA SUPPLEMENT. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg APPENDIX 1 Appendix 1. Complete respiratory protocol. First 24 hours: All patients with ARDS criteria were ventilated during 24 hours with low V T (6-8 ml/kg predicted body weight (PBW)) (NEJM 2000; 342

More information

Conflict of Interest Disclosure Robert M Kacmarek

Conflict of Interest Disclosure Robert M Kacmarek The Impact of Asynchrony on Patient Outcomes Bob Kacmarek PhD, RRT Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 6-1-15 CSRT Conflict of Interest Disclosure Robert M Kacmarek

More information

What is Lung Protective Ventilation? NBART 2016

What is Lung Protective Ventilation? NBART 2016 What is Lung Protective Ventilation? NBART 2016 Disclosure Full time employee of Draeger Outline 1. Why talk about Lung Protective Ventilation? 2. What is Lung Protective Ventilation? 3. How to apply Lung

More information

Lung recruitment maneuvers

Lung recruitment maneuvers White Paper Lung recruitment maneuvers Assessment of lung recruitability and performance of recruitment maneuvers using the P/V Tool Pro Munir A Karjaghli RRT, Clinical Application Specialist, Hamilton

More information

VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL

VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL Dr Nick Taylor Visiting Emergency Specialist Teaching Hospital Karapitiya Senior Specialist and Director ED Training Clinical Lecturer, Australian National

More information

Sumit Ray Senior Consultant & Vice-Chair Critical Care & Emergency Medicine Sir Ganga Ram Hospital

Sumit Ray Senior Consultant & Vice-Chair Critical Care & Emergency Medicine Sir Ganga Ram Hospital Sumit Ray Senior Consultant & Vice-Chair Critical Care & Emergency Medicine Sir Ganga Ram Hospital ARDS pathophysiology B Taylor Thompson et al. NEJM 2017;377:562-72. Outcome Australian Epidemiologic

More information

Accumulation of EEV Barotrauma Affect hemodynamic Hypoxemia Hypercapnia Increase WOB Unable to trigger MV

Accumulation of EEV Barotrauma Affect hemodynamic Hypoxemia Hypercapnia Increase WOB Unable to trigger MV Complicated cases during mechanical ventilation Pongdhep Theerawit M.D. Pulmonary and Critical Care Division Ramathibodi Hospital Case I Presentation Male COPD 50 YO, respiratory failure, on mechanical

More information

Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury *

Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury * A teaching hospital of Harvard Medical School Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury * Ray Ritz BA RRT FAARC Beth Israel Deaconess Medical Center Boston MA * n engl j

More information

HFOV in the PICU and NICU setting

HFOV in the PICU and NICU setting in the PICU and NICU setting Courtesy from G. Niemann Peter C. Rimensberger, MD Associate Professor Pediatric and Neonatal Intensive Care University Hospital of Geneva Allowable V t depends on pathology

More information

Potential Conflicts of Interest Received research grants from Hamilton, Covidien, Drager, General lel Electric, Newport, and Cardinal Medical Received

Potential Conflicts of Interest Received research grants from Hamilton, Covidien, Drager, General lel Electric, Newport, and Cardinal Medical Received How Does a Mechanical Ventilator t 6-22-10 Spain Work? Bob Kacmarek PhD, RRT Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Potential Conflicts of Interest Received research

More information

SUPPLEMENTARY APPENDIX. Ary Serpa Neto MD MSc, Fabienne D Simonis MD, Carmen SV Barbas MD PhD, Michelle Biehl MD, Rogier M Determann MD PhD, Jonathan

SUPPLEMENTARY APPENDIX. Ary Serpa Neto MD MSc, Fabienne D Simonis MD, Carmen SV Barbas MD PhD, Michelle Biehl MD, Rogier M Determann MD PhD, Jonathan 1 LUNG PROTECTIVE VENTILATION WITH LOW TIDAL VOLUMES AND THE OCCURRENCE OF PULMONARY COMPLICATIONS IN PATIENTS WITHOUT ARDS: a systematic review and individual patient data metaanalysis SUPPLEMENTARY APPENDIX

More information

INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES

INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES INTRODUCTION TO BI-VENT (APRV) INTRODUCTION TO BI-VENT (APRV) PROGRAM OBJECTIVES PROVIDE THE DEFINITION FOR BI-VENT EXPLAIN THE BENEFITS OF BI-VENT EXPLAIN SET PARAMETERS IDENTIFY RECRUITMENT IN APRV USING

More information

3100A Competency Exam

3100A Competency Exam NAME DATE (Circle the appropriate answer) 3100A Competency Exam 1. Of the following, which best describes the mechanics of ventilation used by the 3100A? a. Active inspiration with passive exhalation b.

More information

What is an Optimal Paw Strategy?

What is an Optimal Paw Strategy? What is an Optimal Paw Strategy? A Physiological Rationale Anastasia Pellicano Neonatologist Royal Children s Hospital, Melbourne Acute injury sequence Barotrauma Volutrauma Atelectotrauma Biotrauma Oxidative

More information

Ventilating the Sick Lung Mike Dougherty RRT-NPS

Ventilating the Sick Lung Mike Dougherty RRT-NPS Ventilating the Sick Lung 2018 Mike Dougherty RRT-NPS Goals and Objectives Discuss some Core Principles of Ventilation relevant to mechanical ventilation moving forward. Compare and Contrast High MAP strategies

More information

Mechanical Ventilation. Mechanical Ventilation is a Drug!!! is a drug. MV: Indications for use. MV as a Drug: Outline. MV: Indications for use

Mechanical Ventilation. Mechanical Ventilation is a Drug!!! is a drug. MV: Indications for use. MV as a Drug: Outline. MV: Indications for use Mechanical Ventilation is a Drug!!! Mechanical Ventilation is a drug I am an employee of Philips Healthcare Hospital Respiratory Care Group and they help me pay for my kids education Jim Laging, RRT, RCP

More information

Basics of Mechanical Ventilation. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity

Basics of Mechanical Ventilation. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Basics of Mechanical Ventilation Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Overview of topics 1. Goals 2. Settings 3. Modes 4. Advantages and disadvantages

More information

Underlying Principles of Mechanical Ventilation: An Evidence-Based Approach

Underlying Principles of Mechanical Ventilation: An Evidence-Based Approach Underlying Principles of Mechanical Ventilation: An Evidence-Based Approach Ira M. Cheifetz, MD, FCCM, FAARC Professor of Pediatrics and Anesthesiology Chief Medical Officer, Children s Services Associate

More information

Principles of mechanical ventilation. Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands

Principles of mechanical ventilation. Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands Principles of mechanical ventilation Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands Disclosure Research grant Chiesi Pharmaceuticals Research grant CareFusion GA: 27 weeks,

More information

Pressure -Volume curves in ARDS. G. Servillo

Pressure -Volume curves in ARDS. G. Servillo Pressure -Volume curves in ARDS G. Servillo Dipartimento di Scienze Chirurgiche, Anestesiologiche- Rianimatorie e dell Emergenza Facoltà di Medicina e Chirurgia Università degli Studi di Napoli Federico

More information

Mechanical Ventilation. Flow-Triggering. Flow-Triggering. Advanced Concepts. Advanced Concepts in Mechanical Ventilation

Mechanical Ventilation. Flow-Triggering. Flow-Triggering. Advanced Concepts. Advanced Concepts in Mechanical Ventilation Mechanical Ventilation Advanced Concepts in Mechanical Ventilation Flow-Triggering Trigger = the variable that causes the vent to begin the inspiratory phase Common triggers 1-2- 3- Effort required to

More information

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia and Critical Care Service Puerta de Hierro University Hospital Associate Professor.

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia and Critical Care Service Puerta de Hierro University Hospital Associate Professor. Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia and Critical Care Service Puerta de Hierro University Hospital Associate Professor. Medical School. UAM CV and Conflict of interest Chairman

More information

Initiation and Management of Airway Pressure Release Ventilation (APRV)

Initiation and Management of Airway Pressure Release Ventilation (APRV) Initiation and Management of Airway Pressure Release Ventilation (APRV) Eric Kriner RRT Pulmonary Critical Care Clinical Specialist Pulmonary Services Department Medstar Washington Hospital Center Disclosures

More information

Selecting the Ventilator and the Mode. Chapter 6

Selecting the Ventilator and the Mode. Chapter 6 Selecting the Ventilator and the Mode Chapter 6 Criteria for Ventilator Selection Why does the patient need ventilatory support? Does the ventilation problem require a special mode? What therapeutic goals

More information

carefusion.com CareFusion Yorba Linda, CA CareFusion

carefusion.com CareFusion Yorba Linda, CA CareFusion CareFusion 22745 Savi Ranch Parkway Yorba Linda, CA 92887 800.231.2466 toll-free 714.283.2228 tel 714.283.8493 fax CareFusion Germany 234 GmbH Leibnizstrasse 7 97204 Hoechberg Germany +49 931 4972-0 tel

More information

RESPIRATORY PHYSIOLOGY, PHYSICS AND PATHOLOGY IN RELATION TO ANAESTHESIA AND INTENSIVE CARE

RESPIRATORY PHYSIOLOGY, PHYSICS AND PATHOLOGY IN RELATION TO ANAESTHESIA AND INTENSIVE CARE Course n : Course 3 Title: RESPIRATORY PHYSIOLOGY, PHYSICS AND PATHOLOGY IN RELATION TO ANAESTHESIA AND INTENSIVE CARE Sub-category: Intensive Care for Respiratory Distress Topic: Pulmonary Function and

More information

Neonatal tidal volume targeted ventilation

Neonatal tidal volume targeted ventilation Neonatal tidal volume targeted ventilation Colin Morley Retired Professor of Neonatal Medicine, Royal Women s Hospital, Melbourne, Australia. Honorary Visiting Fellow, Dept Obstetrics and Gynaecology,

More information

Alveolar Recruiment for ARDS Trial

Alveolar Recruiment for ARDS Trial Alveolar Recruiment for ARDS Trial Alexandre Biasi Cavalcanti HCor Research Institute For the ART Investigators Trial Organization Coordination: HCor Research Institute (Sao Paulo, Brazil). Support: Brazilian

More information

APRV: Moving beyond ARDSnet

APRV: Moving beyond ARDSnet APRV: Moving beyond ARDSnet Matthew Lissauer, MD Associate Professor of Surgery Medical Director, Surgical Critical Care Rutgers, The State University of New Jersey What is APRV? APRV is different from

More information

C CONFERENCIAS MAGISTRALES Vol. 34. Supl. 1 Abril-Junio 211 pp S293-S31 Perioperative ventilator management: Why it makes a difference Daniel R. Brown, PhD, MD, FCCM Chair, Division of Critical Care Medicine.

More information

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate Professor. Medical School. UAM Non-anaesthesiated healthy

More information

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate

Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate Javier García Fernández. MD. Ph.D. MBA. Chairman of Anaesthesia, Critical Care and Pain Service Puerta de Hierro University Hospital Associate Professor. Medical School. UAM Non-anaesthesiated healthy

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Talmor D, Sarge T, Malhotra A, et al. Mechanical ventilation

More information

Prof. Javier García Fernández MD, Ph.D, MBA.

Prof. Javier García Fernández MD, Ph.D, MBA. Prof. Javier García Fernández MD, Ph.D, MBA. Chairman of Anesthesia & Perioperative Medicine Department Puerta de Hierro Universitary Hospital Prof. of Anaesthesia and Perioperative Medicine. Autonoma

More information

How does HFOV work? John F Mills MBBS, FRACP, M Med Sc, PhD Neonatologist Royal Children s Hospital. Synopsis

How does HFOV work? John F Mills MBBS, FRACP, M Med Sc, PhD Neonatologist Royal Children s Hospital. Synopsis How does HFOV work? John F Mills MBBS, FRACP, M Med Sc, PhD Neonatologist Royal Children s Hospital Synopsis Definition of an oscillator Historical perspective Differences between HFOV and CMV Determinants

More information

A Multi-centre RCT of An Open Lung Strategy including Permissive Hypercapnia, Alveolar Recruitment and Low Airway Pressure in

A Multi-centre RCT of An Open Lung Strategy including Permissive Hypercapnia, Alveolar Recruitment and Low Airway Pressure in The PHARLAP Study A Multi-centre RCT of An Open Lung Strategy including Permissive Hypercapnia, Alveolar Recruitment and Low Airway Pressure in The PHARLAP Study Investigators for the ANZICS Clinical Trials

More information

OPEN LUNG APPROACH CONCEPT OF MECHANICAL VENTILATION

OPEN LUNG APPROACH CONCEPT OF MECHANICAL VENTILATION OPEN LUNG APPROACH CONCEPT OF MECHANICAL VENTILATION L. Rudo Mathivha Intensive Care Unit Chris Hani Baragwanath Aacademic Hospital & the University of the Witwatersrand OUTLINE Introduction Goals & Indications

More information

excellence in care Procedure Management of patients with difficult oxygenation. For Review Aug 2015

excellence in care Procedure Management of patients with difficult oxygenation. For Review Aug 2015 Difficult Oxygenation HELI.CLI.12 Purpose This procedure describes the processes and procedures for a lung protective strategy in the mechanical ventilation of patients that are difficult to oxygenate

More information

Advanced Ventilator Modes. Shekhar T. Venkataraman M.D. Professor Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine

Advanced Ventilator Modes. Shekhar T. Venkataraman M.D. Professor Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine Advanced Ventilator Modes Shekhar T. Venkataraman M.D. Shekhar T. Venkataraman M.D. Professor Critical Care Medicine and Pediatrics University of Pittsburgh School of Medicine Advanced modes Pressure-Regulated

More information

Using Common Ventilator Graphics to Provide Optimal Ventilation

Using Common Ventilator Graphics to Provide Optimal Ventilation Using Common Ventilator Graphics to Provide Optimal Ventilation David Vines, MHS, RRT, FAARC Associate Professor Chair / Program Director Department of Respiratory Care RUSH UNIVERSITY MEDICAL CENTER Disclosure

More information

NSQIP showed that the University of Utah was a high outlier in for patients receiving >48 cumulative hours of mechanical ventilation.

NSQIP showed that the University of Utah was a high outlier in for patients receiving >48 cumulative hours of mechanical ventilation. A multidisciplinary quality improvement approach to ventilator management results in decreased ventilator times and a reduction in ventilator associated pneumonia Gillian eton MD, teven Johnson MBA, Gabriele

More information

Mechanical power and opening pressure. Fellowship training program Intensive Care Radboudumc, Nijmegen

Mechanical power and opening pressure. Fellowship training program Intensive Care Radboudumc, Nijmegen Mechanical power and opening pressure Fellowship training program Intensive Care Radboudumc, Nijmegen Mechanical power Energy applied to the lung: Ptp * V (Joule) Power = Energy per minute (J/min) Power

More information

Difficult Oxygenation Distribution: Sydney X Illawarra X Orange X

Difficult Oxygenation Distribution: Sydney X Illawarra X Orange X HELICOPTER OPERATING PROCEDURE HOP No: C/12 Issued: May 2011 Page: 1 of 5 Revision No: Original Difficult Oxygenation Distribution: Sydney X Illawarra X Orange X TRIM No: 09/300 Document No: D10/9973 X

More information

Disclosures. The Pediatric Challenge. Topics for Discussion. Traditional Anesthesia Machine. Tidal Volume = mls/kg 2/13/14

Disclosures. The Pediatric Challenge. Topics for Discussion. Traditional Anesthesia Machine. Tidal Volume = mls/kg 2/13/14 2/13/14 Disclosures Optimal Ventilation of the Pediatric Patient in the OR Consulting Draeger Medical Jeffrey M. Feldman, MD, MSE Division Chief, General Anesthesia Dept. of Anesthesiology and Critical

More information

Volume vs Pressure during Neonatal Ventilation

Volume vs Pressure during Neonatal Ventilation Volume vs Pressure during Neonatal Ventilation David Tingay 1. Neonatal Research, Murdoch Children s Research Institute, Melbourne 2. Neonatology, Royal Children s Hospital 3. Dept of Paediatrics, University

More information

The Basics of Ventilator Management. Overview. How we breath 3/23/2019

The Basics of Ventilator Management. Overview. How we breath 3/23/2019 The Basics of Ventilator Management What are we really trying to do here Peter Lutz, MD Pulmonary and Critical Care Medicine Pulmonary Associates, Mobile, Al Overview Approach to the physiology of the

More information

Neonatal Assisted Ventilation. Haresh Modi, M.D. Aspirus Wausau Hospital, Wausau, WI.

Neonatal Assisted Ventilation. Haresh Modi, M.D. Aspirus Wausau Hospital, Wausau, WI. Neonatal Assisted Ventilation Haresh Modi, M.D. Aspirus Wausau Hospital, Wausau, WI. History of Assisted Ventilation Negative pressure : Spirophore developed in 1876 with manual device to create negative

More information

mechanical ventilation Arjun Srinivasan

mechanical ventilation Arjun Srinivasan Respiratory mechanics in mechanical ventilation Arjun Srinivasan Introduction Mechanics during ventilation PV curves Application in health & disease Difficulties & pitfalls The future. Monitoring Mechanics

More information

Pressure Controlled Modes of Mechanical Ventilation

Pressure Controlled Modes of Mechanical Ventilation Pressure Controlled Modes of Mechanical Ventilation Christopher Junker Department of Anesthesiology & Critical Care Medicine George Washington University Saturday, August 20, 2011 Assist Control Hypoxemic

More information

What can we learn from high-frequency ventilation?

What can we learn from high-frequency ventilation? What can we learn from high-frequency ventilation? Dipartimento di Medicina Perioperatoria, Terapia Intensiva ed Emergenza Azienda Sanitaria Universitaria Integrata di Trieste Università degli Studi di

More information

Indications for Mechanical Ventilation. Mechanical Ventilation. Indications for Mechanical Ventilation. Modes. Modes: Volume cycled

Indications for Mechanical Ventilation. Mechanical Ventilation. Indications for Mechanical Ventilation. Modes. Modes: Volume cycled Mechanical Ventilation Eric A. Libré, MD VCU School of Medicine Inova Fairfax Hospital and VHC Indications for Mechanical Ventilation Inadequate ventilatory effort Rising pco2 with resp acidosis (7.25)

More information

Mechanical Ventilation. Which of the following is true regarding ventilation? Basics of Ventilation

Mechanical Ventilation. Which of the following is true regarding ventilation? Basics of Ventilation Mechanical Ventilation Jeffrey L. Wilt, MD, FACP, FCCP Associate Professor of Medicine Michigan State University Associate Program Director MSU-Grand Rapids Internal Medicine Residency Which of the following

More information

SAFE MECHANICAL VENTILATION: WHAT YOU NEED TO KNOW AND DO.

SAFE MECHANICAL VENTILATION: WHAT YOU NEED TO KNOW AND DO. SAFE MECHANICAL VENTILATION: WHAT YOU NEED TO KNOW AND DO. Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine holets.steven@mayo.edu OBJECTIVES: Describe the physiology

More information

NOTE: If not used, provider must document reason(s) for deferring mechanical ventilation in a patient with an advanced airway

NOTE: If not used, provider must document reason(s) for deferring mechanical ventilation in a patient with an advanced airway APPENDIX: TITLE: Mechanical Ventilator Use REVISED: November 1, 2017 I. Introduction: Mechanical Ventilation is the use of an automated device to deliver positive pressure ventilation to a patient. Proper

More information

6 th Accredited Advanced Mechanical Ventilation Course for Anesthesiologists. Course Test Results for the accreditation of the acquired knowledge

6 th Accredited Advanced Mechanical Ventilation Course for Anesthesiologists. Course Test Results for the accreditation of the acquired knowledge 6 th Accredited Advanced Mechanical Ventilation Course for Anesthesiologists Course Test Results for the accreditation of the acquired knowledge Q. Concerning the mechanics of the newborn s respiratory

More information

WHAT IS SAFE VENTILATION? Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine

WHAT IS SAFE VENTILATION? Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine WHAT IS SAFE VENTILATION? Steven Holets RRT Assistant Professor of Anesthesiology Mayo Clinic College of Medicine holets.steven@mayo.edu DISCLOSURES Past and present Advisory Boards: Resmed Philips/Respironics

More information

Physiological Basis of Mechanical Ventilation

Physiological Basis of Mechanical Ventilation Physiological Basis of Mechanical Ventilation Wally Carlo, M.D. University of Alabama at Birmingham Department of Pediatrics Division of Neonatology wcarlo@peds.uab.edu Fine Tuning Mechanical Ventilation

More information

Acute Respiratory Distress Syndrome. Marty Black MD Concord Pulmonary Medicine 5/4/2018

Acute Respiratory Distress Syndrome. Marty Black MD Concord Pulmonary Medicine 5/4/2018 Acute Respiratory Distress Syndrome Marty Black MD Concord Pulmonary Medicine 5/4/2018 Financial: none Disclosures Objectives: Identify clinical features of ARDS Identify physiology and therapeutic benefit

More information

Managing Patient-Ventilator Interaction in Pediatrics

Managing Patient-Ventilator Interaction in Pediatrics Managing Patient-Ventilator Interaction in Pediatrics Robert L. Chatburn, MHHS, RRT-NPS, FAARC Clinical Research Manager - Section of Respiratory Therapy Professor of Medicine Case Western Reserve University

More information

CEEA 2015, Kosice Luciano Gattinoni, MD, FRCP Università di Milano Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Milan, Italy

CEEA 2015, Kosice Luciano Gattinoni, MD, FRCP Università di Milano Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Milan, Italy ARDS and VILI CEEA 2015, Kosice Luciano Gattinoni, MD, FRCP Università di Milano Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico Milan, Italy VILI 3 VILI What is due to the ventilator/ventilation:

More information

UNDERSTANDING NEONATAL WAVEFORM GRAPHICS. Brandon Kuehne, MBA, RRT-NPS, RPFT Director- Neonatal Respiratory Services

UNDERSTANDING NEONATAL WAVEFORM GRAPHICS. Brandon Kuehne, MBA, RRT-NPS, RPFT Director- Neonatal Respiratory Services UNDERSTANDING NEONATAL WAVEFORM GRAPHICS Brandon Kuehne, MBA, RRT-NPS, RPFT Director- Neonatal Respiratory Services Disclosures Purpose: To enhance bedside staff s knowledge of ventilation and oxygenation

More information

Mechanical ven3la3on. Neonatal Mechanical Ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on 8/25/11. What we need to do"

Mechanical ven3la3on. Neonatal Mechanical Ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on 8/25/11. What we need to do 8/25/11 Mechanical ven3la3on Neonatal Mechanical Ven3la3on Support oxygen delivery, CO2 elimination" Prevent added injury, decrease ongoing injury" Enhance normal development" Mark C Mammel, MD University

More information

Volume Diffusion Respiration (VDR)

Volume Diffusion Respiration (VDR) Volume Diffusion Respiration (VDR) A therapy with many uses Jeffrey Pietz, MD April 15, 2016 VDR ventilation has been used to treat patients with: ARDS Meconium Aspiration Burn and Inhalation Injury RDS

More information

PERFORMANCE EVALUATION #34 NAME: 7200 Ventilator Set Up DATE: INSTRUCTOR:

PERFORMANCE EVALUATION #34 NAME: 7200 Ventilator Set Up DATE: INSTRUCTOR: PERFORMANCE EVALUATION #34 NAME: 7200 Ventilator Set Up DATE: 1. **Identify and name the filters on the 7200ae. 2. **Explain how each filter is sterilized. 3. **Trace the gas flow through the ventilator

More information

Mechanical Ventilation

Mechanical Ventilation Mechanical Ventilation Understanding Modes Rob Chatburn, RRT-NPS, FAARC Research Manager Respiratory Therapy Cleveland Clinic Associate Professor Case Western Reserve University 1 Overview Characteristics

More information

INTELLiVENT -ASV. The world s first Ventilation Autopilot

INTELLiVENT -ASV. The world s first Ventilation Autopilot INTELLiVENT -ASV The world s first Ventilation Autopilot Intelligent Ventilation since 1983 We live for ventilation technology We live for ventilation technology that helps caregivers improve the lives

More information

Flight Medical presents the F60

Flight Medical presents the F60 Flight Medical presents the F60 Reliable Ventilation Across the Spectrum of Care Adult & Pediatric Pressure/Volume Control Basic/Advanced Modes Invasive/NIV High Pressure/Low Flow O2 Up to 12 hours batteries

More information

Respiratory Failure & Mechanical Ventilation. Denver Health Medical Center Department of Surgery and the University Of Colorado Denver

Respiratory Failure & Mechanical Ventilation. Denver Health Medical Center Department of Surgery and the University Of Colorado Denver Respiratory Failure & Mechanical Ventilation Denver Health Medical Center Department of Surgery and the University Of Colorado Denver + + Failure of the Respiratory Pump 1. Lack of patent airway 2. Bronchospasm

More information

What s new and exciting for Pediatric Mechanical ventilation?

What s new and exciting for Pediatric Mechanical ventilation? PMVF-ASMIC 2017 What s new and exciting for Pediatric Mechanical ventilation? Rujipat Samransamruajkit MD Professor of Pediatrics Chief of PICU KCMH, Faculty of Medicine Chulalongkorn U BKK, Thailand Introduction

More information

Objectives. Respiratory Failure : Challenging Cases in Mechanical Ventilation. EM Knows Respiratory Failure!

Objectives. Respiratory Failure : Challenging Cases in Mechanical Ventilation. EM Knows Respiratory Failure! Respiratory Failure : Challenging Cases in Mechanical Ventilation Peter DeBlieux, MD, FAAEM, FACEP LSUHSC University Hospital Pulmonary and Critical Care Medicine Emergency Medicine pdebli@lsuhsc.edu Objectives

More information

Automatic Transport Ventilator

Automatic Transport Ventilator Automatic Transport Ventilator David M. Landsberg, MD, FACP, FCCP, EMT-P Luke J. Gasowski, RRT, NPS, ACCS, CCP-C, FP-C Christopher J. Fullagar, MD, FACEP, EMT-P Stan Goettel, MS, EMT-P Author credits /

More information

Bunnell LifePulse HFV Quick Reference Guide # Bunnell Incorporated

Bunnell LifePulse HFV Quick Reference Guide # Bunnell Incorporated Bunnell Incorporated n www.bunl.com n 800-800-4358 (HFJV) n info@bunl.com 436 Lawndale Drive n Salt Lake City, Utah 84115 n intl 801-467-0800 n f 801-467-0867 Bunnell LifePulse HFV Quick Reference Guide

More information

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Link full download: http://testbankair.com/download/test-bank-for-pilbeams-mechanicalventilation-physiological-and-clinical-applications-6th-edition-by-cairo/

More information

New Frontiers in Anesthesia Ventilation. Brent Dunworth, MSN, CRNA. Anesthesia Ventilation. New Frontiers in. The amount of gas delivered can be

New Frontiers in Anesthesia Ventilation. Brent Dunworth, MSN, CRNA. Anesthesia Ventilation. New Frontiers in. The amount of gas delivered can be New Frontiers in Anesthesia Ventilation Senior Director, Nurse Anesthesia Department of Anesthesiology University of Pittsburgh Medical Center Content Outline 1 2 Anesthesia Evolution Anesthesia Evolution

More information

VT PLUS HF performance verification of Bunnell Life-Pulse HFJV (High Frequency Jet Ventilator)

VT PLUS HF performance verification of Bunnell Life-Pulse HFJV (High Frequency Jet Ventilator) VT PLUS HF performance verification of Bunnell Life-Pulse HFJV (High Frequency Jet Ventilator) VT PLUS HF provides a special mode for evaluating the performance of high frequency ventilators while connected

More information

RESPIRATORY CARE POLICY AND PROCEDURE MANUAL. a) Persistent hypoxemia despite improved ventilatory pattern and elevated Fl02

RESPIRATORY CARE POLICY AND PROCEDURE MANUAL. a) Persistent hypoxemia despite improved ventilatory pattern and elevated Fl02 The University of Mississippi AND PROCEDURE MANUAL Effective Date: June 30, 1990 Revised Date: December 2009 MANUAL CODE Page 1 of 5 PREPARED BY: Respiratory Care Policy and Procedure Review Committee

More information

Key words: intrahospital transport; manual ventilation; patient-triggered ventilation; respiratory failure

Key words: intrahospital transport; manual ventilation; patient-triggered ventilation; respiratory failure Intrahospital Transport of Critically Ill Patients Using Ventilator With Patient- Triggering Function* Toshiaki Nakamura, MD; Yuji Fujino, MD; Akinori Uchiyama, MD; Takashi Mashimo, MD; and Masaji Nishimura,

More information

Presentation Overview. Monitoring Strategies for the Mechanically Ventilated Patient. Early Monitoring Strategies. Early Attempts To Monitor WOB

Presentation Overview. Monitoring Strategies for the Mechanically Ventilated Patient. Early Monitoring Strategies. Early Attempts To Monitor WOB Monitoring Strategies for the Mechanically entilated Patient Presentation Overview A look back into the future What works and what may work What s all the hype about the WOB? Are ventilator graphics really

More information

VENTILATORS PURPOSE OBJECTIVES

VENTILATORS PURPOSE OBJECTIVES VENTILATORS PURPOSE To familiarize and acquaint the transfer Paramedic with the skills and knowledge necessary to adequately maintain a ventilator in the interfacility transfer environment. COGNITIVE OBJECTIVES

More information

Introduction to Conventional Ventilation

Introduction to Conventional Ventilation Introduction to Conventional Ventilation Dr Julian Eason Consultant Neonatologist Derriford Hospital Mechanics Inspiration diaphragm lowers and thorax expands Negative intrathoracic/intrapleural pressure

More information

QUICK GUIDE: VOLUME GUARANTEE VENTILATION Prematurely Born Infants < Weeks Gestation

QUICK GUIDE: VOLUME GUARANTEE VENTILATION Prematurely Born Infants < Weeks Gestation Initial Set-up QUICK GUIDE: VOLUME GUARANTEE VENTILATION Prematurely Born Infants < 32 +0 Weeks Gestation Mode: SIPPV + VG Tidal volume: 4-5 ml/kg Pmax (PIP limit): 25 cmh 2 O PEEP: 5 cmh 2 O & Insp. time

More information

Mechanical Ventilation

Mechanical Ventilation Mechanical Ventilation Chapter 4 Mechanical Ventilation Equipment When providing mechanical ventilation for pediatric casualties, it is important to select the appropriately sized bag-valve mask or endotracheal

More information

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES

EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES GENERAL PROVISIONS: EMS INTER-FACILITY TRANSPORT WITH MECHANICAL VENTILATOR COURSE OBJECTIVES Individuals providing Inter-facility transport with Mechanical Ventilator must have successfully completed

More information

NAVA Neurally Adjusted Ventilatory Assist In Neonates

NAVA Neurally Adjusted Ventilatory Assist In Neonates NAVA Neurally Adjusted Ventilatory Assist In Neonates Howard Stein, M.D. Director Neonatology Toledo Children s Hospital Toledo, Ohio Disclaimers Dr Stein: Is on the speaker s bureau for Maquet Is discussing

More information

4/2/2017. Sophisticated Modes of Mechanical Ventilation - When and How to Use Them. Case Study 1. Case Study 1. ph 7.17 PCO 2 55 PO 2 62 HCO 3

4/2/2017. Sophisticated Modes of Mechanical Ventilation - When and How to Use Them. Case Study 1. Case Study 1. ph 7.17 PCO 2 55 PO 2 62 HCO 3 Sophisticated Modes of Mechanical entilation - When and How to Use Them Dr. Leanna R. Miller DNP, RN, CCRN-CMC, PCCN-CSC, CEN, CNRN, CMSRN, NP LRM Consulting Nashville, TN Case Study 1 A 55 year-old man

More information

Physiological based management of hypoxaemic respiratory failure

Physiological based management of hypoxaemic respiratory failure Physiological based management of hypoxaemic respiratory failure David Tingay 1. Neonatal Research, Murdoch Children s Research Institute, Melbourne 2. Neonatology, Royal Children s Hospital 3. Dept of

More information

Chapter 3: Invasive mechanical ventilation Stephen Lo

Chapter 3: Invasive mechanical ventilation Stephen Lo Chapter 3: Invasive mechanical ventilation Stephen Lo Introduction Conventional mechanical ventilation is the delivery of positive pressure to the airway to allow removal of CO2 and delivery of O2. In

More information

Simulation 10: 27 Year-Old Male Trauma Patient

Simulation 10: 27 Year-Old Male Trauma Patient Simulation 10: 27 Year-Old Male Trauma Patient Flow Chart Opening Scenario Section 1 Type: IG Handed off 27 YO male with blunt chest trauma/pulmonary contusions on PC A/C ventilation; PIP = 30 cm H2O,

More information

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE Instant download and all chapters Test Bank Respiratory Care Anatomy and Physiology Foundations for Clinical Practice 3rd Edition Will Beachey https://testbanklab.com/download/test-bank-respiratory-care-anatomy-physiologyfoundations-clinical-practice-3rd-edition-will-beachey/

More information

C - The Effects of Mechanical Ventilation on the Development of Acute Respiratory Distress Syndrome LIBRARIES ARCHIVES.

C - The Effects of Mechanical Ventilation on the Development of Acute Respiratory Distress Syndrome LIBRARIES ARCHIVES. The Effects of Mechanical Ventilation on the Development of Acute Respiratory Distress Syndrome by Xiaoming Jia Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment

More information

http://www.priory.com/cmol/hfov.htm INTRODUCTION The vast majority of patients who are admitted to an Intensive Care Unit (ICU) will need artificial ventilation (Jones et al 1998). The usual means through

More information

Invasive mechanical ventilation:

Invasive mechanical ventilation: Invasive mechanical ventilation definition mechanical ventilation: using an apparatus to facilitate transport of oxygen and CO2 between the atmosphere and the alveoli for the purpose of enhancing pulmonary

More information

Guide to Understand Mechanical Ventilation Waveforms

Guide to Understand Mechanical Ventilation Waveforms Do No Harm Ventilate Gently Guide to Understand Mechanical Ventilation Waveforms Middle East Critical Care Assembly 1/30/2015 Mazen Kherallah, MD, FCCP http://www.mecriticalcare.net Email: info@mecriticalcare.net

More information