Oyster Bed Mapping in the Great Bay Estuary,

Size: px
Start display at page:

Download "Oyster Bed Mapping in the Great Bay Estuary,"

Transcription

1 University of New Hampshire University of New Hampshire Scholars' Repository PREP Reports & Publications Institute for the Study of Earth, Oceans, and Space (EOS) Oyster Bed Mapping in the Great Bay Estuary, Raymond E. Grizzle The Jackson Laboratory, Krystin M. Ward The Jackson Laboratory, Follow this and additional works at: Part of the Marine Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Grizzle, Raymond E. and Ward, Krystin M., "Oyster Bed Mapping in the Great Bay Estuary, " (2013). PREP Reports & Publications This Report is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Reports & Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact

2 Oyster Bed Mapping in the Great Bay Estuary, This report is available at University of New Hampshire Scholars' Repository:

3 Oyster Bed Mapping in the Great Bay Estuary, A Final Report to The Piscataqua Region Estuaries Partnership and New Hampshire Department of Environmental Services Submitted by Raymond Grizzle and Krystin Ward University of New Hampshire Jackson Estuarine Laboratory, 85 Adams Point Road Durham, NH June 26, 2013 PREP Project Manager: Phil Trowbridge NHDES Project Manager: Chris Nash This project was funded in part by grants from the Piscataqua Region Estuaries Partnership as authorized by the U.S. Environmental Protection Agency s National Estuary Program, and from the National Oceanic and Atmospheric Administration Fisheries Service.

4 Table of Contents Executive Summary p. 3 List of Tables.. p. 4 List of Figures. p. 4 Introduction. p. 5 Methods.. p. 7 Results and Discussion... p. 8 Synthesis and Recommendations... p. 16 Literature Cited... p. 17 Appendices.. p. 18 2

5 Executive Summary Six major oyster beds (reefs) in New Hampshire are mapped periodically to assess wild oyster populations in the Great Bay Estuary. Data on the spatial extent of the beds are combined with density and other measures to estimate the abundances of live oysters. The first objective of the present project was to determine the spatial extent of these six oyster beds, and to compare the 2012/2013 data with previous mapping efforts. A second objective was twofold: to map the extent of live oyster bottom at selected recent oyster restoration sites, and to map areas where oyster beds have been known to occur historically but not recently. Towed underwater video methods, as used in previous oyster mapping efforts in New Hampshire, were used for this project. All recorded video was classified into three categories: reef (>20% shell cover and live oysters visible); sparse shell (<20% shell cover); and non-reef (no shell or live oysters). Only the reef category was used to construct the polygons that represented oyster beds. The sparse shell category was mainly used to identify potential restoration areas (see below). Two of the natural beds (Nannie Island [2012: 32.4 ac] and Oyster River [2012: 1.6 ac]) had similar total bottom area coverage compared to most previous mapping efforts. Three beds (Adams Point [2012: 15.9 ac], Squamscott River [2012: 7.7 ac] and Woodman Point [2012: 15.4 ac]) had substantially greater area coverage compared to previous surveys. In all three cases, however, the increases were likely due to additional adjacent areas being surveyed. In contrast to the others, the Piscataqua River bed appears to have substantially decreased in bottom area coverage (2012: 7.0 ac) compared to previous surveys. Selected oyster restoration sites were also video surveyed in 2013 to determine bottom area coverage that could be considered reef and therefore considered as part of the overall oyster resource in New Hampshire. Restoration sites in the Lamprey River, Oyster River (3 sites), and at Fox Point in Little Bay were imaged. Due to poor image quality, full bottom area coverage could not be determined for any of the sites. Nonetheless, substantial areas of at least sparse shell bottom, and live oysters in some areas were recorded at all sites. These restoration sites as well as additional sites are scheduled for video surveying and quantitative sampling in The third focus of the project was to survey areas where oyster beds historically occurred. Of the four general areas surveyed, live oyster reefs were found in two areas: Lamprey River (0.9 ac) and mid-great Bay (35.2 ac). In sum, these two areas represent a major addition to the known live oyster bottom in the state. Moreover, these findings strongly suggest that live oyster reefs may be in other areas where oysters have not been known to exist in recent years. Overall, this project has added substantially to our knowledge of where live oysters occur in New Hampshire as well as the total bottom area coverage. A total of 120 acres of bottom area classified as reef was mapped. Additionally, the extent (perhaps 100 ac or more) of bottom area that had sparse shell but apparently few or no live oysters in mid-great Bay bed and in the Nannie Island/Woodman Point area is important because these areas represent excellent oyster restoration opportunities. However, they will need to be mapped in more detail to sufficiently design future projects. 3

6 List of Tables Table 1. Prioritized listing of potential study areas for 2013 oyster mapping. p. 8 Table 2. Summary statistics for six major natural oyster reefs comparing previous and present (2012) areal coverages..... p. 9 List of Figures Figure 1. Major live oyster beds at present and sites of major oyster restoration projects since p. 5 Figure 2. Locations where live oysters were shown on historical maps, and major recent oyster restoration projects. p. 6 Figure 3. Towed underwater video system used in present study.. p. 7 Figure 4. Adams Point oyster reef based on 2012 video imagery.. p. 8 Figure 5. Nannie Island oyster reef based on 2012 video imagery..... p. 10 Figure 6. Oyster River oyster reef based on 2012 video imagery... p. 10 Figure 7. Piscataqua River oyster reef based on 2012 video imagery.... p. 11 Figure 8. Squamscott River oyster reef based on 2012 video imagery p. 11 Figure 9. Woodman Point oyster reef based on 2012 video imagery..... p. 12 Figure 10. Lamprey River oyster reef based on 2013 video imagery. p. 12 Figure 11. Composite map showing potential oyster restoration areas... p. 13 Figure 12. Survey area in SE Great Bay at mouth of Winnicut River.... p. 14 Figure 13. Oyster River natural and restored areas based on 2013 imagery... p. 14 Figure 14. Little Bay/Fox Point 2013 video survey area shiptracks.... p. 15 Figure 15. Piscataqua (South) River oyster reef based on 2013 video imagery... p. 15 Figure 16. Natural and restored reef areas surveyed in 2012/ p. 16 4

7 Introduction The major live oyster beds (or reefs) in New Hampshire are mapped periodically in order to assess wild oyster populations in the Great Bay Estuary. Data on the spatial extent of the beds are combined with density and other measures provided by the New Hampshire Fish and Game Department (NHF&G) to estimate the abundances of live oysters (PREP 2013). NHF&G annually samples six major beds designated as: Adams Point, Nannie Island, Oyster River, Piscataqua River, Squamscott River and Woodman Point (Fig. 1). The first objective of the present project was to determine the spatial extent of these six oyster beds, and to compare the 2012 data with previous mapping efforts. Fig. 1. General locations of major oyster restoration projects since 2000 (red circles) in relation to six major natural oyster beds (yellow polygons). Some historical maps of oyster beds in New Hampshire show oysters in areas where they no longer exist, or at least where they have not been documented recently. The extent of these historical beds were summarized in Odell et al. (2006; see Fig. 2 below). In 2011, a substantial live oyster bed was found at the mouth of the Lamprey River where oysters had been known to occur historically but not recently. Thus, there may be live oysters in other areas where they previously existed but are thought to no longer exist. There is a need to re-visit as many of these areas as possible in order to better characterize the oyster resources in the state, and to design future restoration projects. There 5

8 is also a need to determine the boundaries of some of the oyster restoration projects that have been conducted since Therefore, the second objective of the present project was to map as many of the areas as practical where available information indicated live oysters historically occurred in the Great Bay Estuary, and where major recent restoration projects have been completed (Fig. 2). Fig. 2. Locations where live oysters (green to blue polygons) were shown on historical maps; note color coding to show the number of historical maps where each bed was shown, thus giving an estimate of accuracy), and major recent oyster restoration projects (revised from Odell et al. 2006) (also see Fig. 1). Methods Towed underwater videography was used to map the six major oyster beds in the Great Bay Estuary system that are regularly sampled by NHF&G (Objective 1; see above), and historical beds and major restoration areas (Objective 2; Table 1). Methods used in previous surveys (Grizzle and Brodeur 2004; Grizzle and Ward 2009) and as described in detail in Grizzle et al. (2008) were used in the present project. Briefly, a video system consisting of a SeaViewer model 550 color camera was deployed in towed mode on a sled with imagery continuously recorded onto a digital video recorder along multiple transects across each mapping area and extending beyond the boundaries of where live oysters were observed (Fig. 3). A Garmin 76CSx GPS unit was used with WAAS mode activated and horizontal position data recorded near-continuously along each shiptrack and overlaid onto the video imagery. A minimum of five transects were traversed along the major axis of each mapping area with 5 to 20 m distance between transects. All imagery was reviewed in the laboratory and classified into one of two categories: non-reef (<20% shell cover, no live oysters visible) and reef (>20% shell cover and potentially [based on video imagery] live oysters). 6

9 Fig. 3. Towed underwater video system showing major components (see text for details). It was not possible to determine how many historical reef areas (Fig. 2) and recent major restoration areas (Fig. 1) could be mapped within time and budget constraints. Thus, a prioritized listing of the areas that were proposed for surveying was developed (Table 1). Table 1. Prioritized listing (most important first) of potential study areas for 2013 oyster mapping. Site Category Potential Size Comments (acres) Lamprey River New & Restored > 2 Restored area constructed in 2011 Mid-Great Bay New > 50 Shown on some historical maps W Great Bay New? Reportedly harvested in 1960s and 1970s SE Great Bay New? Shown on some historical maps Oyster River (3 sites) Restored > 2 Three restoration projects ( ) Little Bay/Fox Pt. Restored 1 Restored in 2009 Salmon Falls River New & Restored? Restoration project in 2000; natural reef never mapped Cocheco River New? Oysters found in early 2000s, not mapped 7

10 Results and Discussion Objective 1: Map six major natural reefs (2012 mapping). The six major oyster reefs mapped in the present study had been mapped several times in past years to determine the areal coverage of shell bottom. For the present study, the aim was to provide data that could as directly as possible be compared to previous surveys. It was decided that those bottom areas that had >20% shell cover (and some live oysters visible in the video) would be classified as reef (see above), thus being comparable to previous efforts where shell bottom was determined; Table 2 summarizes bottom area coverage of reef for the present study (highlighted in yellow) with prior efforts for the six major natural beds mapped (see Appendix A for metadata). Because of differences in methods used for the different studies, including what qualified as shell bottom, it is not possible to accurately infer changes in bottom area over time. Some reasonable conclusions, however, can be drawn on an individual reef basis. The Adams Point reef area appears to have increased substantially compared to the 2001 survey (Table 2). Most of the increase, however, is likely due to a new area being surveyed in 2012 southeast of the main portion of the reef (Fig. 4). Previous video surveys (e.g. Grizzle et al. 2008b) had not imaged this area due to water depth or other reasons. A portion of this new area had dense cover by live oysters, and had the overall appearance Fig. 4. Polygon for Adams Point reef based on video imagery recorded on October 8, Circle indicates bottom area probably not mapped in previous recent surveys (see Appendix A for metadata). of a healthy reef. Based mainly on the contiguous nature of the new area with previously mapped portions of the reef, it seems likely that this area had just been overlooked in previous surveys. 8

11 Table 2. Summary statistics for six major natural oyster reefs regularly sampled by NHF&G comparing previous (beginning in 1997) and present (2012) areal coverages of shell bottom (see text for details). Reef Data Collection Acres Hectares Source(s) Comments (year) Adams Point Langan (1997) NHF&G (2002) Grizzle et al. (2008b) (this report) New area surveyed eastward of previous mapping efforts. Nannie Island Langan (1997) NHF&G (2002) Grizzle et al. (2008b) Medium and high density (this report) Oyster River Langan (1997) NHF&G (2002) Grizzle et al. (2008b) (this report) Piscataqua River Langan (1997) Grizzle and Brodeur (2004); Grizzle et al. (2008a) (this report) Squamscott River Langan (1997) High density Grizzle and Brodeur (2004); Grizzle et al. (2008a) High density (this report) New areas surveyed compared to previous mapping efforts. Woodman Point Langan (1997) NHF&G (2002) Grizzle et al. (2008b) Medium and high density (this report) New area surveyed westward of previous mapping efforts. 9

12 The Nannie Island reef area mapped in 2012 was similar to that for 1997, but substantially less than that reported by NHF&G for 2001 (Table 2). As noted above, all previous mapping efforts differed in methods used and/or how reef or shell bottom area was defined. Thus, direct comparisons are not possible. Our previous studies on this reef using sonar methods and towed video (as in 2012) did not quantify bottom area coverage, but comparisons of Fig. 5. Polygon for Nannie Island reef based on video imagery recorded on November 19, 2012 (see Appendix A for metadata). the resulting polygons (see Figs. 13 and 15 in Grizzle et al. 2008b) indicate similar overall shape and size to that for 2012 (Fig. 5). Thus, although live oyster densities have varied substantially in recent years, we suggest that the total areal coverage by live oysters on the Nannie Island reef probably has not changed substantially in the recent past. The reported Oyster River reef area coverage has only varied minimally since 1997 (Table 1). The shape of the reef, however, apparently has varied in the recent past. Previous video surveys had indicated live oyster bottom in the same overall area but no obvious non-reef area in the middle portion, as was found in the present survey (Fig. 6). Thus, it seems reasonable to conclude that Fig. 6. Natural reef in Oyster River and two restoration areas based on video the Oyster River reef may imagery recorded on November 15, 2012 (see Appendix A for metadata). have decreased somewhat in size since the last survey in (See Objective 2 section below for discussion of restoration areas.) 10

13 All previous surveys of the Piscataqua River reef reported much higher bottom area coverage compared to the present (2012) survey (Table 1). The general area mapped in the present survey was similar to that in previous surveys, and similar video methods were used (Grizzle and Brodeur 2004; Grizzle et al. 2008a). Also, the overall shape of the reef area was similar in 2012 in those areas where live oysters and >20% shell cover occurred (Fig. 7). Thus, it seems reasonable to conclude that the Piscataqua River reef has decreased substantially in areal coverage since the most recent previous survey was conducted (2003). The Squamscott River reef and the Woodman Point reef appear to have increased dramatically in size compared to previous surveys (Table 2). However, in both cases additional areas were imaged in 2012 compared to previous video surveys, thus making direct comparisons difficult. The additional areas surveyed in the Squamscott River were mainly in an uncharted channel east of the main navigational channel where Fig. 7. Polygon for Piscataqua River reef based on video imagery recorded on November 6, 2012 (see Appendix A for metadata). Fig. 8. Polygon for Squamscott River reef based on video imagery recorded on October 10, 2012 (see Appendix A for metadata). previous surveys had occurred (Fig. 8). When considering only those areas imaged in previous video mapping efforts, the overall shape and size of the polygons differ somewhat. For example, the area of the Squamscott reef south of the railroad trestle is larger than reported previously, but the northern area is smaller (compare Fig. 8 herein with Fig. 3 in Grizzle et al. 2008a). In contrast, those areas of the Woodman Point reef video mapped previously are similar in shape and size to the 2012 survey. The additional areas surveyed for the Woodman Point reef were west of the extension of a rocky outcrop from the land north of the reef southward into the Great Bay (Fig. 9). Previous surveys (Grizzle et al. 2008b) had stopped at this point. During the present survey, the mapping was continued west of the outcrop and a substantial areal coverage of live reef was discovered. Areal coverage of this portion of the overall reef alone was approximately six 11

14 acres. If this new area is subtracted from the total areal coverage given in Table 2, then the 2012 data are similar to previous recent surveys. Therefore, for both the Squamscott River and Woodman Point reefs we suggest that their bottom area coverage has probably remained relatively stable in recent years, and the additional reported coverage (Table 2) is a result of a more comprehensive survey in 2012 compared to previous efforts. Fig. 9. Polygon for Woodman Point reef based on video imagery recorded on October 10, 2012 (see Appendix A for metadata). Objective 2: Map historical natural reefs and selected restoration sites (2013 mapping). Bottom areas where oyster reefs historically occurred and selected recent oyster restoration sites were mapped to provide a more comprehensive assessment of New Hampshire s oyster resources as well as to identify areas for future restoration efforts (Objective 2; Table 1). Six of the eight target areas listed in Table 1 were mapped. As noted above, there was no way to accurately determine how much mapping could be accomplished within time and budgetary constraint. Although it is anticipated that the remaining areas listed in Table 2 will be surveyed later in 2013, we conclude that the results presented herein represent full completion of the present project. Each of the six target areas mapped in 2013 is discussed separately below in the order listed in Table 1. The Lamprey River survey area included a new natural reef that was thought to no longer exist, and two separate restoration areas (Fig. 10). Qualitative sampling on the natural reef indicated a substantial amount of vertical structure as well as some large (>100 mm shell height) individuals and multiple year classes on some clusters. The reef surface was also very hard and appeared to be quite thick, indicating many years of shell accretion. This is likely the historical reef known to have been in existence for decades. The restoration areas shown in Figure general areas of restoration projects natural reef Fig. 10. Polygons for natural Lamprey River reef and two restoration areas based on video imagery recorded on June 19, 2013 (see Appendix B for metadata). 10 were constructed in 2011 by deposition of a base layer of dead mollusc (mostly surf clams) followed by scattered live oyster spat-on-shell produced by remote setting. Most of the reef areas shown represent some combination of surf clam shell and live oysters from the spat-on-shell put out as part of the restoration process and naturally recruited oysters. 12

15 The natural oyster reef shown on some historical maps (Fig. 2; also see Odell et al. 2006) in the channel area of middle and western Great Bay was found to be extensive, with reef (>20% shell and live oysters visible) area covering 35.2 acres (Fig. 11; Appendix B). The general area also included a substantial amount of sparse shell bottom, mostly consisting of dead oyster shell. The extent of live oyster reef in this area was surprising. Moreover, the extent of sparse shell bottom extending away from the main reef at both ends (east and west) likely indicated the historical spatial extent of this reef. This spatial arrangement of features a central area of dense live oysters with adjacent areas of sparse mostly dead shell suggests excellent conditions for future oyster restoration projects. Additionally, the same general situation exists in the nearby Nannie Island/Woodman Point reef area. Therefore, a map showing these conditions as well as the most recent available (from 2012) map of eelgrass was produced to illustrate the extent of potential oyster restoration sites for central Great Bay (Fig. 11). Although more detailed mapping of each of the six potential oyster restoration areas would be needed to adequately design each project, we estimate that >100 acres of bottom area likely represents excellent oyster restoration opportunities. Fig. 11. Composite map showing potential oyster restoration areas (orange polygons) in Great Bay based on 2012 classified video shiptracks and recent (201x) mapping of eelgrass on bathymetric chart base map (water depth in feet). 13

16 The general area of a historical natural oyster bed in southeastern Great Bay at the mouth of the Winnicut River (see Fig. 2 above) was surveyed by navigating a zigzag pattern out of the River and probing the bottom with a PVC pipe to determine bottom type (Fig. 12). The entire area consisted of muddy substrate, very soft in many places. Shell material was only encountered in a few areas near mid-channel just south of Pierce Point, and included shell material beneath several centimeters of bottom sediment. No hard bottom was encountered. Pierce Point Fig. 12. Shiptracks recorded on June 19, 2013 showing area in southeastern Great Bay where oyster reef occurred historically. This overall combination of conditions suggests that the reef may have been buried during a storm or other event involving substantial sediment transport. We have observed a similar situation in the Bellamy River at an oyster restoration site. Thus, we conclude that most likely this reef no longer exists. In addition to the natural reef in the Oyster River, two oyster restoration sites were mapped in The first area was adjacent to the natural reef, and the second was near the mouth of the Oyster River (Fig. 13; also see Fig. 6 above). Both were constructed by deposition of a base layer of dead natural reef restoration site Fig. 13. Polygons showing extent of shell bottom" at two oyster restoration sites in the Oyster River based on video imagery recorded on June 19, 2013 (See Appendix B for metadata). mollusc (mostly surf clams) followed by scattered oyster spat-on-shell produced by remote setting. The video imagery indicated some combination of surf clam shell and live oysters in both areas. The video imagery confirmed the presence of abundant mollusc shell base material as well as live oysters in both areas. The base shell in most areas had a thin coating of silt, and some appears to have been substantially buried. Macroalgae had colonized the shell in many areas, and crabs and other invertebrates were visible in the imagery. These areas are scheduled for quantitative sampling and additional characterization by video and other methods in

17 The final restoration site mapped in 2013 was at Little Bay/Fox Point, which was constructed in 2010 (Fig. 14). This area was chosen for restoration because most of the site was on natural rocky bottom, and adjacent to a natural oyster reef that had not been previously mapped or sampled. Unfortunately, the video imagery recorded in 2013 was of poor quality in most areas. The entire area covered by the shiptracks shown in Figure 14 was rocky bottom with substantial macroalgal patches, and live oysters were observed in many areas. This area is scheduled for more video imaging and quantitative sampling in Fig. 14. Polygon for oyster restoration site in Little Bay at Fox Point based on video imagery recorded on June 19, 2013 (see Appendix B for metadata). In addition to the target survey areas listed in Table 1, a new natural reef was discovered in 2012 while using towed video to survey a potential restoration site in the Piscataqua River. This reef is south of the known Piscataqua River reef regularly sampled by NHF&G, but it is within the overall area of the upper Piscataqua River that historically had natural beds (Fig. 2). This new reef covered a bottom area of 3.9 acres, and represents a significant addition to the known natural oyster beds in New Hampshire (Fig. 15). A 1.5-acre area adjacent to and east of the Fig. 15. Polygon for natural Piscataqua (South) River reef based on video imagery recorded on November 6, 2012 (see Appendix B for metadata). natural bed is scheduled for construction/restoration in summer The restoration area will represent an addition onto the natural reef, likely in an area that historically was live oyster reef. The restoration area is scheduled for quantitative sampling and video mapping in 2013 and

18 The present study substantially expands the total bottom area coverage and overall distribution of known oyster bottom in New Hampshire. Figure 16 is an overview map showing both natural and restored oyster beds defined as >20% shell cover and some live oysters observed in the video imagery mapped in the present study. In sum, these areas total 120 acres. The major additions compared to previous surveys were two new beds, one in mid-great Bay (35.2 ac) and one at the mouth of the Lamprey River (0.9 ac), that were known to occur historically but had not been surveyed in recent decades. Synthesis and Recommendations These findings have management implications that need to be addressed in order to sufficiently characterize New Hampshire s oyster resources. For example, how should the new beds be considered in light of current management goals for increasing oyster abundances? These findings also suggest that more surveys should be done in other areas where oyster beds had occurred historically. Fig. 16. Natural and restored oyster reefs mapped in the present project (red polygons). A final important finding was the extent (perhaps 100 ac or more) of bottom area that had sparse shell but apparently few or no live oysters in several areas adjacent to the new mid-great Bay bed and the Nannie Island/Woodman Point area. These areas may represent excellent oyster restoration opportunities, but they will need to be mapped in more detail to sufficiently design future projects. 16

19 Literature Cited Grizzle, R. and M. Brodeur Oyster (Crassostrea virginica) reef mapping in the Great Bay Estuary University of New Hampshire, Durham, NH. Retrieved May 20, 2008, from Grizzle, R.E. and K.M. Ward Video-based mapping of oyster bottom in the upper Piscataqua River, Sturgeon Creek, and Spruce Creek. University of New Hampshire, Durham, NH. A Final Report to The Piscataqua Region Estuaries Partnership. Grizzle, R.E., M. Brodeur, H. Abeels, and J.K. Greene. 2008a. Bottom habitat mapping using towed underwater videography: subtidal oyster reefs as an example application. Journal of Coastal Research 24: Grizzle, R., S. Dijkstra and B. Smith. 2008b Development of a general protocol for characterizing subtidal oyster reefs using remote sensing techniques (Project Number R/MED 2). Final Report to New Hampshire Sea Grant, University of New Hampshire, Durham, NH. 27 pp. New Hampshire Fish and Game (NHF&G) Shellfish population and bed dimension assessment for the Great Bay Estuary. A final report to the N.H. Estuaries Project. Piscataqua Region Estuaries Partnership (PREP) State of our estuaries, University of New Hampshire, Durham, NH. 48 pp. 17

20 Appendix A Metadata for six monitored (NHF&G) oyster beds mapped in 2012 Adams Point Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Adams Point, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on seven known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Adams Point Oyster Bed polygon is 15.9 acres. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Adams Point Oyster Bed_2012 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 18

21 Nannie Island Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Nannie Island, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on seven known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Nannie Island Oyster Bed polygon is 32.4 acres. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Nannie Island Oyster Bed_2012 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 19

22 Oyster River Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Oyster River, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on seven known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Oyster River Oyster Bed polygon is approximately 1.4 acres. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Oyster River Oyster Bed_2012 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 20

23 Piscataqua River Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Piscataqua River, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on seven known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Piscataqua River Oyster Bed polygon is 7.7 acres. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Piscataqua River Oyster Bed_2012 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 21

24 Squamscott River Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Squamscott River, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on seven known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Squamscott River Oyster Bed polygon is 7.7 acres. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Squamscott River Oyster Bed_2012 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 22

25 Woodman Point Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Woodman Point, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on seven known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Woodman Point Oyster Bed polygon is 15.4 acres. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Woodman Point Oyster Bed_2012 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 23

26 Appendix B Metadata for new and restored oyster beds mapped in Mid-Great Bay Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on seven known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Mid-Great Bay Oyster Bed polygon is 35.16acres. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Great Bay Oyster Bed_2012 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 24

27 Lamprey River Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Lamprey River, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory walked the perimeter of this oyster reef marking waypoints with a handheld Garmin 76Cx GPS unit. The reef was sampled by hand using oyster tongs to confirm that live oysters are present. Work was completed in Underwater video was used in 2013 to determine oyster density. We used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on eight known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description This natural oyster reef at the mouth of the Lamprey River was surveyed using a handheld Garmin 76Cx GPS unit at low tide. Oyster tongs were also used to sample oyster density. The Lamprey River Oyster Bed polygon is 0.9 acre. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Lamprey River Oyster Bed_2012 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 25

28 Oyster River Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Oyster River, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on eight known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Oyster River Oyster Bed polygon is approximately 1.6 acres. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Oyster River Oyster Bed_2013 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 26

29 Oyster River Restored Area Tags United States, North East, New Hampshire, Great Bay, Oyster River, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on eight known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Oyster River Restored Oyster Bed polygon is 0.14 acre. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Oyster River Restored_2013 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 27

30 Piscataqua (South) River Oyster Bed Tags United States, North East, New Hampshire, Great Bay, Piscataqua River, Oyster Reef, Crassostrea virginica, Eastern Oyster, Oyster, Underwater Video, Seaviewer, Density Summary Dr. Ray Grizzle and staff, at UNH's Jackson Estuarine Laboratory used underwater video to determine the boundaries of areas with at least 20% coverage by oyster shell and some live oysters on seven known oyster beds in the Great Bay Estuary, New Hampshire. The underwater video was classified and an ArcGIS polygon shapefile was created for each oyster bed. The project was funded by the Piscataqua Region Estuaries Partnership (PREP) and work was completed in Description At each site surveyed, a SeaViewer model 550 color video camera was deployed in towed mode on a sled with video imagery continuously recorded onto a digital video recorder. Garmin 76CSx and 541s GPS units were used with WAAS mode activated, with horizontal position data (advertised positional accuracy: 3 m) recorded near-continuously along each shiptrack. The imagery was viewed in real-time to locate areas with significant amounts of oyster shell and live oysters. When oysters were encountered, the extent of the oyster bottom in that area was delineated by navigating multiple parallel transects. All imagery was later reviewed in the laboratory and classified into the category of: high density oysters (>20% cover by shell and some live oysters visible). This provided near-continuous classification of the seafloor along each shiptrack. The Piscataqua River (South) Oyster Bed polygon is 3.9 acres. Credits Citation Information: Dr. Ray Grizzle and Krystin Ward, University of New Hampshire. Address: 85 Adams Point Road, Durham, NH ray.grizzle@unh.edu. kward@unh.edu Publication Date: Title: Piscataqua (South) River Oyster Bed_2012 Primary Organization: Piscataqua Region Estuaries Partnership (PREP) Contact: Phil Trowbridge Phone: Ptrowbridge@des.state.nh.us Access and use limitations There are no access and use limitations for this item. 28

31 Appendix C Shiptracks for towed video mapping of oyster beds in Appendices A and B For all figures below: black outlined open circles= non-reef (no shell or live oysters) or no visibility; red circles= reef (>20% shell cover, live oysters); yellow circles= sparse shell (<20% shell cover); green=eelgrass Adams Point Middle and Western Great Bay 29

32 Lamprey River general areas of restoration projects natural reef area Little Bay/Fox Point 30

33 Nannie Island and Woodman Point Oyster River 31

34 Piscataqua River and Piscataqua (South) River Squamscott River general area of restoration projects 32

Video-Based Mapping of Oyster Bottom in the Upper Piscataqua River, Sturgeon Creek, and Spruce Creek

Video-Based Mapping of Oyster Bottom in the Upper Piscataqua River, Sturgeon Creek, and Spruce Creek University of New Hampshire University of New Hampshire Scholars' Repository PREP Reports & Publications Institute for the Study of Earth, Oceans, and Space (EOS) 1-21-2009 Video-Based Mapping of Oyster

More information

How many adult oysters are in the Great Bay Estuary and how has it changed over time?

How many adult oysters are in the Great Bay Estuary and how has it changed over time? Indicator: in the Great Bay Estuary Question How many adult oysters are in the Great Bay Estuary and how has it changed over time? Short Answer The number of adult oysters decreased from over 25 million

More information

2017 Oyster Conservationist Report

2017 Oyster Conservationist Report 2017 Oyster Conservationist Report 2017 New Hampshire Oyster Conservationist Program FINAL REPORT December 31, 2017 Amanda Moeser 1, Alix Laferriere 1, Raymond Grizzle 2, and Krystin Ward 2 1 The Nature

More information

How often does dissolved oxygen (DO) in the estuary fall below 5 mg/l?

How often does dissolved oxygen (DO) in the estuary fall below 5 mg/l? Indicator: Dissolved oxygen in the Great Bay Estuary Question How often does dissolved oxygen (DO) in the estuary fall below 5 mg/l? Short Answer Datasondes, an automated water quality sensor or probe,

More information

Nearshore Habitat Mapping in Puget Sound Using Side Scan Sonar and Underwater Video

Nearshore Habitat Mapping in Puget Sound Using Side Scan Sonar and Underwater Video Nearshore Habitat Mapping in Puget Sound Using Side Scan Sonar and Underwater Video Dana Woodruff, Paul Farley, Amy Borde, John Southard, Ron Thom Battelle Marine Sciences Laboratory Jim Norris Marine

More information

2005 Shellfish Indicator Report

2005 Shellfish Indicator Report University of New Hampshire University of New Hampshire Scholars' Repository PREP Publications Institute for the Study of Earth, Oceans, and Space (EOS) 9-2005 2005 Shellfish Indicator Report Phil Trowbridge

More information

Eelgrass and Macroalgae Presence/Absence Preliminary Surveys BHP Proposed Grays Harbor Potash Export Facility A Task 400

Eelgrass and Macroalgae Presence/Absence Preliminary Surveys BHP Proposed Grays Harbor Potash Export Facility A Task 400 Memorandum 40600-HS-MEM-55036 Revision 0 Date: 26 July 2018 Subject: Eelgrass and Macroalgae Presence/Absence Preliminary Surveys BHP Proposed Grays Harbor Potash Export Facility A17.0202.00 Task 400 INTRODUCTION

More information

Executive Summary. Page Annual Program Report on NH Oyster Restoration 12/23/14

Executive Summary. Page Annual Program Report on NH Oyster Restoration 12/23/14 Expanding Oyster Reefs and Populations in Great Bay Estuary, NH 2014 Annual Program Report Ray Konisky 1, Ray Grizzle 2, Krystin Ward 2, Robert Eckert 2 and Kara McKeton 1 1 The Nature Conservancy, New

More information

Rising Tide Oyster Company 2.0 Acre Bellamy Site Marine Aquaculture License Application

Rising Tide Oyster Company 2.0 Acre Bellamy Site Marine Aquaculture License Application Rising Tide Oyster Company 2.0 Acre Bellamy Site Marine Aquaculture License Application Joshua and Jessica Carloni 264 Swain Road Barrington, N.H. 03825 Summary This is an amendment to our existing license

More information

SARASOTA BAY ESTUARY PROGRAM OYSTER HABITAT MONITORING RESULTS: YEAR 1. Jay R. Leverone

SARASOTA BAY ESTUARY PROGRAM OYSTER HABITAT MONITORING RESULTS: YEAR 1. Jay R. Leverone SARASOTA BAY ESTUARY PROGRAM OYSTER HABITAT MONITORING RESULTS: YEAR 1 by Jay R. Leverone Mote Marine Laboratory 1600 Ken Thompson Parkway Sarasota, Fl 34236 to Gary Raulerson Sarasota Bay Estuary Program

More information

Evaluation of the Klein HydroChart 3500 Interferometric Bathymetry Sonar for NOAA Sea Floor Mapping

Evaluation of the Klein HydroChart 3500 Interferometric Bathymetry Sonar for NOAA Sea Floor Mapping Evaluation of the Klein HydroChart 3500 Interferometric Bathymetry Sonar for NOAA Sea Floor Mapping Yuhui Ai, Straud Armstrong and Dean Fleury L-3 Communications Klein Associates, Inc. 11 Klein Dr. Salem,

More information

Shellfish Spotlight: 2008

Shellfish Spotlight: 2008 Scholars' Repository PREP Reports & Publications Institute for the Study of Earth, Oceans, and Space (EOS) 2008 Shellfish Spotlight: 2008 Jeannie Brochi U.S. Environmental Protection Agency Raymond E.

More information

PROGRESS REPORT NEW HAMPSHIRE S MARINE FISHERIES INVESTIGATIONS MONITORING OF THE RAINBOW SMELT RESOURCE AND WINTER ICE FISHERY

PROGRESS REPORT NEW HAMPSHIRE S MARINE FISHERIES INVESTIGATIONS MONITORING OF THE RAINBOW SMELT RESOURCE AND WINTER ICE FISHERY PROGRESS REPORT State: NEW HAMPSHIRE Grant: F-61-R-21/F16AF0163 Grant Title: NEW HAMPSHIRE S MARINE FISHERIES INVESTIGATIONS Project 2: MARINE RECREATIONAL FISHERIES MONITORING Job 1: MONITORING OF THE

More information

STUDY PERFORMANCE REPORT

STUDY PERFORMANCE REPORT STUDY PERFORMANCE REPORT State: Michigan Project No.: F-80-R-4 Study No.: 702 Title: Effects of sediment traps on Michigan river channels Period Covered: October 1, 2002 to September 30, 2003 Study Objectives:

More information

Nicholas Brown. 31 Bennett Rd Wolfeboro NH Application submitted

Nicholas Brown. 31 Bennett Rd Wolfeboro NH Application submitted Nicholas Brown 31 Bennett Rd Wolfeboro NH 03894 603-856-5454 Nick4634@gmail.com Application submitted 8-12-2017 Description of proposed project A. General Methodology The site located approximately 600

More information

Shellfish Habitat Restoration Project in Cocagne Bay and Shediac Bay Final Report

Shellfish Habitat Restoration Project in Cocagne Bay and Shediac Bay Final Report Shellfish Habitat Restoration Project in Cocagne Bay and Shediac Bay Prepared for: The Department of Fisheries and Oceans Small Craft Harbour By: Shediac Bay Watershed Association Inc. Dominique Audet,

More information

Project Webpage:

Project Webpage: Project Webpage: http://nature.ly/marinesatlanticbightera Coastal Data and Full Metadata: http://easterndivision.s3.amazonaws.com/marine/sab MA/SABMACoastalEcosystems.zip Coastal Chapter: http://easterndivision.s3.amazonaws.com/marine/sab

More information

Survey Technique for Underwater Digital Photography with Integrated GPS Location Data

Survey Technique for Underwater Digital Photography with Integrated GPS Location Data Survey Technique for Underwater Digital Photography with Integrated GPS Location Data Tim Siwiec: United States Environmental Protection Agency Abstract This survey technique is an inexpensive method of

More information

Focus Benthic habitats found at Gray s Reef National Marine Sanctuary

Focus Benthic habitats found at Gray s Reef National Marine Sanctuary NOAA Gray s Reef National Marine Sanctuary Acoustic Fish Tagging Project Activity: Discover Gray s Reef Habitats Grades 6-8 Developed by C.J. Carroll and Cathy Sakas 9/3/2009 Focus Benthic habitats found

More information

Fine-Scale Survey of Right and Humpback Whale Prey Abundance and Distribution

Fine-Scale Survey of Right and Humpback Whale Prey Abundance and Distribution DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Fine-Scale Survey of Right and Humpback Whale Prey Abundance and Distribution Joseph D. Warren School of Marine and Atmospheric

More information

On the Horizon: Better Bottom Detection for Areas of Sub-Aquatic Vegetation

On the Horizon: Better Bottom Detection for Areas of Sub-Aquatic Vegetation University of New Hampshire University of New Hampshire Scholars' Repository Center for Coastal and Ocean Mapping Center for Coastal and Ocean Mapping 4-2011 On the Horizon: Better Bottom Detection for

More information

Comparison of Acoustic and Aerial Photographic Methods for Quantifying the Distribution of Submersed Aquatic Vegetation in Sagamore Creek, NH

Comparison of Acoustic and Aerial Photographic Methods for Quantifying the Distribution of Submersed Aquatic Vegetation in Sagamore Creek, NH Comparison of Acoustic and Aerial Photographic Methods for Quantifying the Distribution of Submersed Aquatic Vegetation in Sagamore Creek, NH by Bruce Sabol, Elizabeth Lord, Kevin Reine, and Deborah Shafer

More information

An Overview of Methods for Estimating Absolute Abundance of Red Snapper in the Gulf of Mexico

An Overview of Methods for Estimating Absolute Abundance of Red Snapper in the Gulf of Mexico An Overview of Methods for Estimating Absolute Abundance of Red Snapper in the Gulf of Mexico JM Drymon 1, Greg Stunz 2 1. Mississippi State University, Coastal Research and Extension Center 2. Harte Research

More information

Environmental. Effects of Dredging

Environmental. Effects of Dredging Envi~onmental Effects of Dredging Technical Notes THE VALUE OF GRAVEL DISPOSAL MOUNDS IN RIVER SIDE CHANNELS FOR FRESHWATER MUSSELS PURPOSE: This note provides information on the value of gravel disposal

More information

Hydraulic Modeling Analysis

Hydraulic Modeling Analysis Final Report Photograph: http://www.newington-dover.com Newington to Dover, New Hampshire Prepared for: Vanasse Hangen Brustlin, Inc. 6 Bedford Farms Drive, Suite 607 Bedford, New Hampshire 03110-6532

More information

NATIVE OYSTER RESTORATION AT ELKHORN SLOUGH, CALIFORNIA Summary of Elkhorn Slough National Estuarine Research Reserve and Elkhorn Slough Foundation

NATIVE OYSTER RESTORATION AT ELKHORN SLOUGH, CALIFORNIA Summary of Elkhorn Slough National Estuarine Research Reserve and Elkhorn Slough Foundation NATIVE OYSTER RESTORATION AT ELKHORN SLOUGH, CALIFORNIA Summary of Elkhorn Slough National Estuarine Research Reserve and Elkhorn Slough Foundation partnership project Pain%ng by Cory and Catska Ench,

More information

OYSTER (Crassostrea virginica) RECRUITMENT STUDIES IN THE GREAT BAY ESTUARY, NEW HAMPSHIRE ROBERT L. ECKERT. BS, Northland College, 2004 THESIS

OYSTER (Crassostrea virginica) RECRUITMENT STUDIES IN THE GREAT BAY ESTUARY, NEW HAMPSHIRE ROBERT L. ECKERT. BS, Northland College, 2004 THESIS OYSTER (Crassostrea virginica) RECRUITMENT STUDIES IN THE GREAT BAY ESTUARY, NEW HAMPSHIRE BY ROBERT L. ECKERT BS, Northland College, 2004 THESIS Submitted to the University of New Hampshire in Partial

More information

Refined Designated Uses for the Chesapeake Bay and Tidal Tributaries

Refined Designated Uses for the Chesapeake Bay and Tidal Tributaries A-1 appendixa Refined Designated Uses for the Chesapeake Bay and Tidal Tributaries BACKGROUND Federal water quality standards regulations establish that states must specify appropriate water uses to be

More information

Technical and Financial Proposal

Technical and Financial Proposal Technical and Financial Proposal Marine Survey of Montego Bay Marine Park Assessment of Reef Health for Management Recommendations Dayne Buddo Ph.D. Marine Ecologist April 24, 2014. Marine Survey Montego

More information

Eelgrass Survey Reporting Form 2222 Channel Road Newport Beach, CA Eelgrass (Zostera marina) Survey

Eelgrass Survey Reporting Form 2222 Channel Road Newport Beach, CA Eelgrass (Zostera marina) Survey Eelgrass Survey Reporting Form 2222 Channel Road Newport Beach, CA 92660 Eelgrass (Zostera marina) Survey Survey Date: July 19th, 2013 Report Date: July 26 th, 2013 Prepared by: Coastal Resources Management,

More information

2016 ANNUAL FISH TRAWL SURVEY REPORT

2016 ANNUAL FISH TRAWL SURVEY REPORT 216 ANNUAL FISH TRAWL SURVEY REPORT The University of Rhode Island Graduate School of Oceanography The Graduate School of Oceanography (GSO) Fish trawl survey began weekly sampling two stations in Narragansett

More information

Great Bay National Estuarine Research Reserve Field Notes Summer 2010 Welcome

Great Bay National Estuarine Research Reserve Field Notes Summer 2010 Welcome Great Bay National Estuarine Research Reserve Field Notes Summer 2010 Welcome Welcome to the spring edition of Field Notes, a newsletter just for our Great Bay Community Land Stewards. Spring certainly

More information

STATE OF MAINE DEPARTMENT OF MARINE RESOURCES

STATE OF MAINE DEPARTMENT OF MARINE RESOURCES STATE OF MAINE DEPARTMENT OF MARINE RESOURCES IN THE MATTER OF THE APPLICATION OF GREAT ) EASTERN MUSSEL FARMS FOR AN AQUACULTURE ) FINDINGS OF FACT, LEASE LOCATED OFF OF HADLEY POINT IN THE ) CONCLUSIONS

More information

Vieques Underwater Demonstration Project

Vieques Underwater Demonstration Project Vieques Underwater Demonstration Project NOAA Office of Response and Restoration National Ocean Service 2006-2007 2007 University of New Hampshire Joint Hydrographic Center 2006 Science Application International

More information

Biology and Ecological Impacts of the European Green Crab, Carcinus maenas, on the Pacific Coast of Canada

Biology and Ecological Impacts of the European Green Crab, Carcinus maenas, on the Pacific Coast of Canada Biology and Ecological Impacts of the European Green Crab, Carcinus maenas, on the Pacific Coast of Canada G.E. Gillespie and T.W. Therriault Fisheries and Oceans Canada Pacific Biological Station Green

More information

Development of a Geo-spatial Analysis Methodology for Assessing the Adequacy of Hydrographic Surveying and Nautical Charts

Development of a Geo-spatial Analysis Methodology for Assessing the Adequacy of Hydrographic Surveying and Nautical Charts University of New Hampshire University of New Hampshire Scholars' Repository Center for Coastal and Ocean Mapping Center for Coastal and Ocean Mapping 5-2012 Development of a Geo-spatial Analysis Methodology

More information

Rainbow Smelt. Appendix A: Fish. Osmerus mordax. New Hampshire Wildlife Action Plan Appendix A Fish-125

Rainbow Smelt. Appendix A: Fish. Osmerus mordax. New Hampshire Wildlife Action Plan Appendix A Fish-125 Rainbow Smelt Osmerus mordax Federal Listing State Listing Global Rank State Rank Regional Status SC S3 Photo by John Lyons Justification (Reason for Concern in NH) Rainbow smelt were once harvested by

More information

LOXAHATCHEE RIVER WATER QUALITY AND BIOLOGICAL MONITORING TASK 2: FINAL REPORT ASSESSMENT OF LOXAHATCHEE RIVER OYSTER MAPPING & RECRUITMENT

LOXAHATCHEE RIVER WATER QUALITY AND BIOLOGICAL MONITORING TASK 2: FINAL REPORT ASSESSMENT OF LOXAHATCHEE RIVER OYSTER MAPPING & RECRUITMENT LOXAHATCHEE RIVER WATER QUALITY AND BIOLOGICAL MONITORING TASK 2: FINAL REPORT ASSESSMENT OF 2007-2008 LOXAHATCHEE RIVER OYSTER MAPPING & RECRUITMENT In Partial Fulfillment of Agreement No. 4600001281

More information

EPA R6 Dive Team Operations Report. San Jacinto Waste Pits Channelview, TX December 9-10, 2015

EPA R6 Dive Team Operations Report. San Jacinto Waste Pits Channelview, TX December 9-10, 2015 EPA R6 Dive Team Operations Report San Jacinto Waste Pits Channelview, TX December 9-10, 2015 BACKGROUND The San Jacinto River Waste Pit Site history has been documented in several documents prepared for,

More information

Use of Conservation Moorings as a Component of Eelgrass Restoration in two Massachusetts Harbors

Use of Conservation Moorings as a Component of Eelgrass Restoration in two Massachusetts Harbors Use of Conservation Moorings as a Component of Eelgrass Restoration in two Massachusetts Harbors Massachusetts Bays Program Division of Marine Fisheries Jay Baker, Tay Evans, Mass Bays Program MarineFisheries

More information

Three Rivers Cockle Abundance Survey Report April 2016

Three Rivers Cockle Abundance Survey Report April 2016 Three Rivers Cockle Abundance Survey Report April 16 May 16 Crown Copyright WG 2884 ISBN digital 978-1-4734-669-6 1. Introduction The annual Three Rivers Estuaries cockle abundance survey was conducted

More information

New Hampshire Marine Aquaculture License Application

New Hampshire Marine Aquaculture License Application New Hampshire Marine Aquaculture License Application Submitted by: Christopher Gallagher 1 Hoyts Lane Newburyport, MA 01950 Cell: 978-518-2876 Email: tikg@comcast.net June 13, 2018 Site name: Little Bay

More information

HB 2209 / Section 5 - OR Shellfish Task Force (2015)

HB 2209 / Section 5 - OR Shellfish Task Force (2015) HB 2209 / Section 5 - OR Shellfish Task Force (2015) Identified the need for restoration and enhancement of shellfish populations as a component of the OR Shellfish Initiative (2) The task force shall

More information

Stillwater Status Report: Lough Muck, County Donegal

Stillwater Status Report: Lough Muck, County Donegal LOUGHS AGENCY OF THE FOYLE CARLINGFORD AND IRISH LIGHTS COMMISSION Stillwater Status Report: Lough Muck, County Donegal Stillwater Fish Stock Survey Loughs Agency of the Foyle Carlingford and Irish Lights

More information

Summary of Research within Lamlash Bay No-Take Zone - Science report for COAST July

Summary of Research within Lamlash Bay No-Take Zone - Science report for COAST July Summary of Research within Lamlash Bay No-Take Zone - Science report for COAST July 2013 - *Picture of a spider crab (Macropodia spp) inside a plumose anemone. Taken within Lamlash Bay No-Take Zone by

More information

EVALUATING THE EFFECTS OF BIVALVE SHELLFISH AQUACULTURE AND ITS ECOLOGICAL ROLE IN THE ESTUARINE ENVIRONMENT IN THE UNITED STATES

EVALUATING THE EFFECTS OF BIVALVE SHELLFISH AQUACULTURE AND ITS ECOLOGICAL ROLE IN THE ESTUARINE ENVIRONMENT IN THE UNITED STATES EVALUATING THE EFFECTS OF BIVALVE SHELLFISH AQUACULTURE AND ITS ECOLOGICAL ROLE IN THE ESTUARINE ENVIRONMENT IN THE UNITED STATES Brett Dumbauld USDA Agricultural Research Service, Hatfield Marine Science

More information

SEA GRANT PROGRESS REPORT

SEA GRANT PROGRESS REPORT SEA GRANT PROGRESS REPORT Project Title: The relationship between seasonal migrations of berried female lobster Homarus americanus, egg development and larval survival. Principal Investigator: Winsor H.

More information

Eelgrass Survey PARADISE CAY BELVEDERE, MARIN COUNTY CALIFORNIA. Prepared For:

Eelgrass Survey PARADISE CAY BELVEDERE, MARIN COUNTY CALIFORNIA. Prepared For: Eelgrass Survey PARADISE CAY BELVEDERE, MARIN COUNTY CALIFORNIA Prepared For: Radford (Skid) Hall, Ph.D. Land Planning and Permitting Consultant 500 Airport Blvd., Suite 350 Burlingame, CA 94010 (650)

More information

BASELINE SURVEY, VISUAL - SITE SPECIFIC

BASELINE SURVEY, VISUAL - SITE SPECIFIC BASELINE SURVEY, VISUAL - SITE SPECIFIC Introduction As stated in SEPA s policy and in the Fish Farm Manual (1998), scientific data are required by SEPA in order to assess the existing condition on the

More information

NEED FOR SUPPLEMENTAL BATHYMETRIC SURVEY DATA COLLECTION

NEED FOR SUPPLEMENTAL BATHYMETRIC SURVEY DATA COLLECTION 305 West Grand Avenue, Suite 300 Montvale, New Jersey 07645 Phone 201.930.9890 Fax 201.930.9805 www.anchorqea.com M EMORANDUM To: Caroline Kwan and Nica Klaber U.S. Environmental Protection Agency Region

More information

Kasaan to Goose Creek Road Project Project Description U.S. Army Corps of Engineers Permit The following table presents the mile point of the culverte

Kasaan to Goose Creek Road Project Project Description U.S. Army Corps of Engineers Permit The following table presents the mile point of the culverte Kasaan to Goose Creek Road Project Project Description U.S. Army Corps of Engineers Permit The following table presents the mile point of the culverted open water crossings, name of water crossing if known,

More information

Domain (island) wide estimates of mutton snapper (Lutjanus analis) abundance for three US Caribbean Islands based on habitat-derived densities

Domain (island) wide estimates of mutton snapper (Lutjanus analis) abundance for three US Caribbean Islands based on habitat-derived densities Domain (island) wide estimates of mutton snapper (Lutjanus analis) abundance for three US Caribbean Islands based on habitat-derived densities SEDAR REPORT # SEDAR14-AW2 Prepared May 2007 by Christopher

More information

Eurasian water-milfoil (Myriophyllum spicatum) SCUBA Dive Monitoring Survey Sand Bar Lake WBIC: Bayfield County, Wisconsin

Eurasian water-milfoil (Myriophyllum spicatum) SCUBA Dive Monitoring Survey Sand Bar Lake WBIC: Bayfield County, Wisconsin Eurasian water-milfoil (Myriophyllum spicatum) SCUBA Dive Monitoring Survey Sand Bar Lake WBIC: 2494900 Bayfield County, Wisconsin 6ft EWM Towers with Rooted Branch Preparing to Fall Off (Berg 2016) EWM

More information

Alewife Brook, Cape Elizabeth, River Herring Monitoring Summary 2015

Alewife Brook, Cape Elizabeth, River Herring Monitoring Summary 2015 University of Southern Maine USM Digital Commons Publications Casco Bay Estuary Partnership (CBEP) 2-3-2016 Alewife Brook, Cape Elizabeth, River Herring Monitoring Summary 2015 Matt Craig University of

More information

ATTACHMENT F. Minnesota Department of Natural Resources. Marsh Lake Ecosystem Restoration Project

ATTACHMENT F. Minnesota Department of Natural Resources. Marsh Lake Ecosystem Restoration Project ATTACHMENT F Minnesota Department of Natural Resources Marsh Lake Ecosystem Restoration Project Mussel Rescue and Translocation Plan for Pomme de Terre River Restoration (Prepared June, 2016) Attachment

More information

Large-scale Trap Surveys for European Green Crab, Carcinus maenas, in British Columbia

Large-scale Trap Surveys for European Green Crab, Carcinus maenas, in British Columbia Large-scale Trap Surveys for European Green Crab, Carcinus maenas, in British Columbia Graham E. Gillespie and Antan C. Phillips Fisheries and Oceans Canada Pacific Biological Station Nanaimo, BC, Canada

More information

Loughs Agency. Foyle, Carlingford and Irish Lights Commission. Pre-Fishery Stock Assessment Lough Foyle Native Oyster Fishery.

Loughs Agency. Foyle, Carlingford and Irish Lights Commission. Pre-Fishery Stock Assessment Lough Foyle Native Oyster Fishery. Loughs Agency Foyle, Carlingford and Irish Lights Commission Pre-Fishery Stock Assessment Lough Foyle Native Oyster Fishery Summary Report Autumn 216 1 Aquaculture & Shellfisheries Report Reference LA/Y/216

More information

Florida Seagrass Integrated Mapping and Monitoring Program

Florida Seagrass Integrated Mapping and Monitoring Program Florida Seagrass Integrated Mapping and Monitoring Program - 2004 The following document is composed of excerpts taken from the 2011 publication, Seagrass Integrated Mapping and Monitoring for the State

More information

Agriculture Zone Winter Replicate Count 2007/08

Agriculture Zone Winter Replicate Count 2007/08 PEACE REGION TECHNICAL REPORT Agriculture Zone Winter Replicate Count 2007/08 by: Conrad Thiessen Wildlife Biologist Ministry of Environment 400 10003 110 th Avenue Fort St. John BC V1J 6M7 November 2008

More information

Estuarine Resource- Inventory Survey, Cocagne Bay Area, New Brunswick

Estuarine Resource- Inventory Survey, Cocagne Bay Area, New Brunswick 1. Environment Canada Environnement Canada Fisheries and Service des peches Marine Service et des sciences de lamer - M A Canada. Fisheries and Marine r Service. Maritimes Region. (--" Resource Development

More information

COASTAL RESOURCE ASSESSMENTS AT QUONSET-DAVISVILLE, RHODE ISLAND: LOBSTERS AND MARINE HABITAT

COASTAL RESOURCE ASSESSMENTS AT QUONSET-DAVISVILLE, RHODE ISLAND: LOBSTERS AND MARINE HABITAT COASTAL RESOURCE ASSESSMENTS AT QUONSET-DAVISVILLE, RHODE ISLAND: LOBSTERS AND MARINE HABITAT Tom Shinskey, Jeff Reidenauer, Bernward Hay, The Louis Berger Group, Inc. Jeffrey Grybowski, Office of the

More information

Lesson 10: Oyster Reefs and Their Inhabitants

Lesson 10: Oyster Reefs and Their Inhabitants Lesson 10: Oyster Reefs and Their Inhabitants Focus Question: What animals use oyster reefs for habitats? Objective: observe properties of animals found within a bag of oysters; Infer about the quality

More information

N.C. OYSTER STOCK STATUS. Manage by fishery management plans Assess overfishing and overfished status Stock Assessment

N.C. OYSTER STOCK STATUS. Manage by fishery management plans Assess overfishing and overfished status Stock Assessment istorical andings N.C. OYSTER STOC STATS Manage by fishery management plans Assess overfishing and overfished status Stock Assessment OYSTER STOC ASSESSMENT Classic stock assessments methods not available

More information

STUDY PERFORMANCE REPORT

STUDY PERFORMANCE REPORT STUDY PERFORMANCE REPORT State: Michigan Project No.: F-81-R-3 Study No.: 491 Title: Evaluation of lake sturgeon Acipenser fulvescens populations in the St. Clair River and Lake St. Clair Period Covered:

More information

Significant Ecological Marine Area Assessment Sheet

Significant Ecological Marine Area Assessment Sheet Significant Ecological arine Area Assessment Sheet Name: ouhora arbour arine Values Summary: The entrance subtidal channel, tidal flats, seagrass mangrove and saltmarsh habitats of ouhora arbour have given

More information

New Millennium Dive Expeditions

New Millennium Dive Expeditions New Millennium Dive Expeditions 15030 N Timberline Drive Reno, NV 89511 (775)850-2510 * nmde@att.net www.nmde.org Project Report July 12, 2013: Phase 1 of 2 (Phase 2: August 26 th 30 th, 2013) Supporting

More information

The SONGS artificial reef mitigation project is linked to the adverse effects of the SONGS single pass seawater cooling system on the San Onofre kelp

The SONGS artificial reef mitigation project is linked to the adverse effects of the SONGS single pass seawater cooling system on the San Onofre kelp 1 Welcome to the annual public workshop to review the status and findings of the reef mitigation project for the San Onofre Nuclear Generating Station Compensating for losses to the San Onofre kelp forest

More information

2010 Wildlife Management Unit 501 moose and deer

2010 Wildlife Management Unit 501 moose and deer 2010 Wildlife Management Unit 501 moose and deer Section Authors: Barb Maile and Velma Hudson Suggested Citation: Maile, B., and V. Hudson. 2010. Wildlife Management Unit 501 moose and deer. Pages 73 77.

More information

Two types of physical and biological standards are used to judge the performance of the Wheeler North Reef 1) Absolute standards are measured against

Two types of physical and biological standards are used to judge the performance of the Wheeler North Reef 1) Absolute standards are measured against 1 Two types of physical and biological standards are used to judge the performance of the Wheeler North Reef 1) Absolute standards are measured against fixed value at Wheeler North Reef only 2) Relative

More information

Susitna-Watana Hydroelectric Project Document ARLIS Uniform Cover Page

Susitna-Watana Hydroelectric Project Document ARLIS Uniform Cover Page Alaska Resources Library & Information Services Document ARLIS Uniform Cover Page Title: Wildlife harvest analysis study, Study plan Section 10.20 : Final study plan SuWa 200 Author(s) Personal: Author(s)

More information

Delineation of the Asian Clam (Corbicula fluminea) Population at Sand Harbor State Park, Nevada

Delineation of the Asian Clam (Corbicula fluminea) Population at Sand Harbor State Park, Nevada Delineation of the Asian Clam (Corbicula fluminea) Population at Sand Harbor State Park, Nevada Report to the Nevada Division of State Lands and the Tahoe Regional Planning Agency Final Draft Brant Allen,

More information

Seagrass surveys must be conducted between the dates of April 1 st and October 31 st with the following exceptions:

Seagrass surveys must be conducted between the dates of April 1 st and October 31 st with the following exceptions: Florida Fish and Wildlife Conservation Commission (FWC) Recommended Survey Protocols for Estuarine and Marine Submerged Aquatic Vegetation (SAV) related to Permitting Applications 12/14/2011 DRAFT 1) Survey

More information

Green Sturgeon Feeding Observations in Humboldt Bay, California

Green Sturgeon Feeding Observations in Humboldt Bay, California Green Sturgeon Feeding Observations in Humboldt Bay, California Matt Goldsworthy 1, Bill Pinnix, Miles Barker 1, Liz Perkins 1, Aaron David, Jeffrey Jahn 1 Introduction Understanding the distribution,

More information

Essential Fish Habitat OCNMS Advisory Council July 13, 2013

Essential Fish Habitat OCNMS Advisory Council July 13, 2013 Essential Fish Habitat OCNMS Advisory Council July 13, 2013 John Stadler Habitat Conservation Division NMFS Northwest Region Essential Fish Habitat (EFH) What is it, where did it come from, and what does

More information

OYSTER REEF RESTORATION; RESTORING ECOLOGICAL FUNCTION

OYSTER REEF RESTORATION; RESTORING ECOLOGICAL FUNCTION OYSTER REEF RESTORATION; RESTORING ECOLOGICAL FUNCTION Paul Jensen, David Buzan, and Ka-Leung Lee; Atkins Mark Dumesnil and Julie Sullivan; The Nature Conservancy Presentation Overview The Nature Conservancy

More information

Freshwater Mussel Tagging, Release, and Monitoring Date Prepared: 11/20/2017

Freshwater Mussel Tagging, Release, and Monitoring Date Prepared: 11/20/2017 PARTNERSHIP FOR THE DELAWARE ESTUARY Science Group Freshwater Mussel Tagging, Release, and Monitoring Date Prepared: 11/20/2017 Prepared By: Kurt Cheng Suggested Citation: Cheng, K. 2017. Freshwater Mussel

More information

JIMAR PFRP ANNUAL REPORT FOR FY 2006

JIMAR PFRP ANNUAL REPORT FOR FY 2006 JIMAR PFRP ANNUAL REPORT FOR FY 2006 P.I./Sponsor Name: Michael P. Seki and Jeffrey J. Polovina Project Proposal Title: Oceanographic Characterization of the American Samoa Longline Fishing Grounds for

More information

Friends of Semiahmoo Bay Society Eelgrass Transplant Pilot Project May 6, 2007, Blackie Spit, Surrey, BC.

Friends of Semiahmoo Bay Society Eelgrass Transplant Pilot Project May 6, 2007, Blackie Spit, Surrey, BC. Friends of Semiahmoo Bay Society Eelgrass Transplant Pilot Project May 6, 2007, Blackie Spit, Surrey, BC. Prepared for: Friends of Semiahmoo Bay Society Prepared by: Ramona C. de Graaf, BSc., MSc., Emerald

More information

THE POLARIMETRIC CHARACTERISTICS OF BOTTOM TOPOGRAPHY RELATED FEATURES ON SAR IMAGES

THE POLARIMETRIC CHARACTERISTICS OF BOTTOM TOPOGRAPHY RELATED FEATURES ON SAR IMAGES THE POLARIMETRIC CHARACTERISTICS OF BOTTOM TOPOGRAPHY RELATED FEATURES ON SAR IMAGES Taerim Kim Professor, Ocean System Eng. Dept. Kunsan University Miryong Dong San 68, Kunsan, Jeonbuk, Korea, trkim@kunsan.ac.kr

More information

Quantitative Freshwater Mussel Survey Date Prepared: 11/20/2017

Quantitative Freshwater Mussel Survey Date Prepared: 11/20/2017 PARTNERSHIP FOR THE DELAWARE ESTUARY Science Group Quantitative Freshwater Mussel Survey Date Prepared: 11/20/2017 Prepared By: Kurt Cheng Suggested Citation: Cheng, K. 2017. Quantitative Freshwater Mussel

More information

REBOUND. on the. It was the winter of 2000/2001, and it seemed like the snow

REBOUND. on the. It was the winter of 2000/2001, and it seemed like the snow JILLIAN COOPER / istockphoto.com 12 January / February 2018 on the While concerns remain, American marten are making a comeback in New Hampshire REBOUND by Jillian Kilborn It was the winter of 2000/2001,

More information

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide.

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide. The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg and Roger Flood School of Marine and Atmospheric Sciences, Stony Brook University Since the last report was issued on January 31

More information

Utilizing Vessel Based Mobile LiDAR & Bathymetry Survey Techniques for Survey of Four Southern California Breakwaters

Utilizing Vessel Based Mobile LiDAR & Bathymetry Survey Techniques for Survey of Four Southern California Breakwaters Utilizing Vessel Based Mobile LiDAR & Bathymetry Survey Techniques for Survey of Four Southern California Breakwaters Western Dredging Association: Pacific Chapter September 2012 Insert: Pipe Location

More information

Zostera marina and Zostera japonica

Zostera marina and Zostera japonica Zostera marina and Zostera japonica Sensitive Habitat Inventory: a comparison of seagrass distribution and abundance 1995, 2002, and 2004 Blackie Spit 2004, Crescent Beach, Surrey, British Columbia Prepared

More information

STUDY PERFORMANCE REPORT

STUDY PERFORMANCE REPORT STUDY PERFORMANCE REPORT State: Michigan Project No.: F-53-R-14 Study No.: 486 Title: Assessment of lake trout populations in Michigan s waters of Lake Michigan. Period Covered: April 1, 1997 to March

More information

Time Will Tell: Long-term Observations of the Response of Rocky-Habitat Fishes to Marine Reserves in Puget Sound

Time Will Tell: Long-term Observations of the Response of Rocky-Habitat Fishes to Marine Reserves in Puget Sound Time Will Tell: Long-term Observations of the Response of Rocky-Habitat Fishes to Marine Reserves in Puget Sound Wayne A. Palsson, Robert E. Pacunski, and Tony R. Parra Washington Department of Fish and

More information

CLARIFICATION PAPER DREDGED MATERIAL VOLUME ESTIMATES

CLARIFICATION PAPER DREDGED MATERIAL VOLUME ESTIMATES CLARIFICATION PAPER DREDGED MATERIAL VOLUME ESTIMATES Prepared by Hiram Arden (Corps of Engineers), David Fox (Corps of Engineers) and Ted Benson (DNR) for the PSDDA agencies. INTRODUCTION In a PSDDA sediment

More information

Distribution of the Atlantic Bottlenose Dolphin (Tursiops truncatus) in the Chesapeake Bay Drainage in Virginia

Distribution of the Atlantic Bottlenose Dolphin (Tursiops truncatus) in the Chesapeake Bay Drainage in Virginia Banisteria, Number 11, 1998 33 1998 by the Virginia Natural History Society Distribution of the Atlantic Bottlenose Dolphin (Tursiops truncatus) in the Chesapeake Bay Drainage in Virginia Thomas F. Wilcox

More information

Operations Guide for the Recovery of Derelict Crab Pots from Shallow Soft Sediment Estuaries: Lessons Learned from a Mid-Atlantic Coastal Bay

Operations Guide for the Recovery of Derelict Crab Pots from Shallow Soft Sediment Estuaries: Lessons Learned from a Mid-Atlantic Coastal Bay Operations Guide for the Recovery of Derelict Crab Pots from Shallow Soft Sediment Estuaries: Lessons Learned from a Mid-Atlantic Coastal Bay This project was funded by the NOAA Restoration Center, Office

More information

Chagrin River TMDL Appendices. Appendix F

Chagrin River TMDL Appendices. Appendix F Appendix F The following are excerpts from the Eastern Brook Trout Joint Venture s Conservation Strategy (Working Draft v.6), Conserving the Eastern Brook Trout: Strategies for Action Found at: http://www.easternbrooktrout.org/constrategy.html

More information

Stillwater Status Report: Lough Muck, County Tyrone

Stillwater Status Report: Lough Muck, County Tyrone LOUGHS AGENCY OF THE FOYLE CARLINGFORD AND IRISH LIGHTS COMMISSION Stillwater Status Report: Lough Muck, County Tyrone Stillwater Fish Stock Survey Loughs Agency of the Foyle Carlingford and Irish Lights

More information

Regional Management of Sustainable Fisheries for Giant Clams (Tridacnidae) and CITES Capacity Building Workshop

Regional Management of Sustainable Fisheries for Giant Clams (Tridacnidae) and CITES Capacity Building Workshop Regional Management of Sustainable Fisheries for Giant Clams (Tridacnidae) and CITES Capacity Building Workshop Nadi, Fiji Islands 4 to 7 August 2009 French Polynesia case study of giant clam management

More information

Reply of Guyana Annex R2

Reply of Guyana Annex R2 Summary of Findings: Analysis of Recent Shoreline Revisions to the This report assesses recent shoreline changes made to the 2005 edition of Dutch nautical chart NL 2218. This new edition is credited jointly

More information

Performance of Upham Beach T-Groin Project and Its Impact to the Downdrift Beach

Performance of Upham Beach T-Groin Project and Its Impact to the Downdrift Beach Performance of Upham Beach T-Groin Project and Its Impact to the Downdrift Beach Progress Report for the Period of October 2008 to April 2009 Submitted by Ping Wang, Ph.D., and Tiffany M. Roberts Department

More information

Ref. No. [UMCES CBL]

Ref. No. [UMCES CBL] Ref. No. [UMCES CBL] 00-0165 Potential impact of Site 104 dredging and sediment placement operations on fish eggs and larvae in the upper Chesapeake Bay January 5, 2000 E. W. North and E. D. Houde University

More information

Assessing Ecosystem Impacts from Road Stream Crossings through Community Involvement

Assessing Ecosystem Impacts from Road Stream Crossings through Community Involvement Assessing Ecosystem Impacts from Road Stream Crossings through Community Involvement Background Why is the NH Fish and Game Department interested in culverts? Block fish migration Reduce opportunities

More information

ASMFC Stock Assessment Overview: Red Drum

ASMFC Stock Assessment Overview: Red Drum Introduction This document presents a summary of the 217 stock assessments for red drum. These assessments were initially conducted through the Southeast Data, Assessment and Review (SEDAR) process using

More information

New Hampshire ASMFC River Herring Sustainable Fishing Plan New Hampshire Fish and Game Department March, Executive Summary

New Hampshire ASMFC River Herring Sustainable Fishing Plan New Hampshire Fish and Game Department March, Executive Summary New Hampshire ASMFC River Herring Sustainable Fishing Plan New Hampshire Fish and Game Department March, 2015 Introduction Executive Summary The Atlantic States Marine Fisheries Commission s (ASMFC) Amendment

More information

Downstream Migrant Trapping in Russian River Mainstem, Tributaries, and Estuary

Downstream Migrant Trapping in Russian River Mainstem, Tributaries, and Estuary Downstream Migrant Trapping in Russian River Mainstem, Tributaries, and Estuary Introduction In September 2008, the National Marine Fisheries Service issued the Russian River Biological Opinion, which

More information

INTERNATIONAL HYDROGRAPHIC SURVEY STANDARDS

INTERNATIONAL HYDROGRAPHIC SURVEY STANDARDS INTERNATIONAL HYDROGRAPHIC SURVEY STANDARDS by Gerald B. MILLS 1 I. Background The International Hydrographic Organization (IHO) traces its origin to the establishment of the International Hydrographic

More information