DragonflyTV: GPS Activity 9

Size: px
Start display at page:

Download "DragonflyTV: GPS Activity 9"

Transcription

1 DragonflyTV: GPS Activity 9 Chain Gang MIT Museum Cambridge, MA Kinetic Sculpture Challenge We re John, Elly, Nick, and Linnea and we re the F.A.T. 4! What s that? We re an engineering squad that s participating in the MIT Museum s 4th Annual Friday- After-Thanksgiving Chain Reaction event. It s a crazy science fun-for-all where teams of inventors create kinetic sculptures of everyday items. Kinetic sculptures are sculptures that move. All the teams hook their chain reactions together for one, big extravaganza. Our question: How can we make a cool chain reaction sculpture? First we went to the MIT Museum to look at the Gestural Engineering exhibit, which features the work of Arthur Ganson. His sculptures are a cross between machines and really intricate works of art. We thought they might inspire us! Then we took some time to brainstorm what we wanted to do. We came up with three basic parts: falling dominos, a soda and mint eruption, and the firing of a straw rocket. Next we drew a diagram and used it as our blueprint to start building. 44

2 Icebreaker Discover the basics of friction with this not-so-slippery activity. DragonflyTV Skill: Predicting Guide your kids as they 1) Predict which objects will have the most amount of friction on the ramp and which will have the least. 2) Choose one object to place on the ramp. Record the choice in a notebook in a data table. ) Place the object near the top end of the shelf and slowly incline the shelf until the object just about begins to slide down the track. Hold the ramp in that position while a partner measures a "rise" and "run" (in centimeters) for the ramp. 4) Calculate the ratio of rise to run and record it in the table. The larger the ratio, the greater amount of static friction there is between this object and the ramp. You ll need: 0-45 minutes objects that slide, not roll, on a ramp, such as: a paperback book; coins; a ceramic mug; a rubber eraser; a poker chip; a six-sided die. a shelf or plank to act as a ramp surface, approximately 4 feet long a metric ruler or meter stick a calculator optional: a large protractor DFTV Science Helper Rise Run 5) Repeat for different objects. Which objects, on this particular ramp surface, have the least amount of static friction? Which combinations have the most? There are two types of friction that one can deal with. One is called static friction, the other is called kinetic friction. When a block is resting on a ramp, static friction must be overcome in order to set the block in motion on the ramp. This activity examines static friction only. For more simple activities like this one, surf to /superdoit/index.html 45

3 Investigation Swing That Pendulum 60+ minutes Guide your kids as they Explore mass 1) Make a prediction of how a heavy pendulum mass will swing compared to a middleweight and lightweight one. Record their predictions in their notebooks. 2) Cut a length of string approximately 5 centimeters. Tie washers to the end of the string. ) Tape the other end of the string to the edge of a table (not the top), so that the washers can swing freely in pendulum fashion. Measure the length of string from the tape to the middle of the washers. Record this measurement in centimeters. 4) With a stopwatch ready, pull the washers a set distance away from vertical, and release them to start them swinging. Start the watch at the top of the next swing, rather than trying to coordinate the start of the watch with the release of the pendulum. Stop the watch after 10 completed swings. Record the time. 5) Grasp the washers, pull the pendulum back to the same starting point as before, release, and start timing again after the first swing. Stop the watch after 10 swings, and record the time again. Do at least 10 repetitions. 6) Repeat steps 5, with 6 washers tied to the end of the string (to create a heavier pendulum). Confirm that the length of the pendulum, once taped to the table, is the same as before. If not, make the necessary adjustments to keep the lengths the same. 7) Repeat with 9 washers tied to the end of the string. You ll need, for each group: a spool of string, one per group scissors 9 washers, 1 inch diameter a metric ruler masking tape a stopwatch 46

4 Explore length 1) Make a prediction of how a long pendulum will swing compared to a middle-length and short-length one. Record their predictions in their notebooks. 2) Use the pendulum from the previous experiment, with washers on the end. Data from the -washer experiment can be used in this phase of the experiment. ) Tape the pendulum string to the edge of a table (not the top), but tape it in a way that effectively shortens the pendulum from approximately 25 centimeters to about 20 centimeters. Measure and record this new length. 4) With a stopwatch ready, pull the washers a set distance away from vertical, and release them to start them swinging. Start the watch at the top of the next swing, rather than trying to coordinate the start of the watch with the release of the pendulum. Stop the watch after 10 completed swings. Record the time. Repeat for a total of 10 trials. 5) Re-tape the pendulum string, shortening it to 15 cm. Conduct the swing measurements as before. DFTV Science Helper Invite your kids to make a prediction about which feature of a pendulum its mass, or its length, or both has any effect on its rate of swinging (i.e., its period). The experimentation is most manageable with groups of or less. 47

5 DFTV Kids Synthesize Data and Analysis For each set of 10 trials, calculate an average length of time for the 10 swings to occur. Example data tables: Mass Investigations Number of washers 6 9 String length 24.0 cm 2.8 cm 24.1 cm Average time for 10 swings 9.8 seconds 9.6 seconds 9.9 seconds Number of washers Length Investigations String length 24.0 cm 19.7 cm 14.9 cm Average time for 10 swings 9.8 seconds 8.9 seconds 7.6 seconds 48

6 DFTV Adult Tip This presentation of the pendulum investigation purposefully omits the standard use of the conventional terms "period" and "frequency," and does not present the standard mathematical equation of a pendulum. These adjustments keep the activity accessible to younger students. You may introduce the mathematics and vocabulary if you are working with older students. Keep Exploring! A third feature of a swinging pendulum you can explore is how far back from vertical you pull it to set it swinging. Explore whether this variable has a significant effect on the swing time of the pendulum. 49

Harmonic Motion: Pendulums

Harmonic Motion: Pendulums Harmonic Motion: Pendulums In this lab you will set up a pendulum using rulers, string, and small weights and measure how different variables affect the period of the pendulum. You will also use the concept

More information

8 th grade. Name Date Block

8 th grade. Name Date Block Name Date Block The Plot & the Pendulum Lab A pendulum is any mass that swings back and forth on a rope, string, or chain. Pendulums can be found in old clocks and other machinery. A playground swing is

More information

Harmonic Motion: Pendulums Student Version

Harmonic Motion: Pendulums Student Version Harmonic Motion: Pendulums Student Version In this lab you will set up a pendulum using rulers, string, and small weights and measure how different variables affect the period of the pendulum. You will

More information

Station 1: The NFL and Newton s First Law

Station 1: The NFL and Newton s First Law Station 1: The NFL and Newton s First Law 1. Access this link on the ipad/itouch or scan the QR Code (using the i-nigma APP) below. You will need headphones. http://goo.gl/ufmrt 2. Watch the video clip

More information

STATION 1: HOT WHEELIN PHYSICS 1. Define Newton s First Law. 2. Describe the motion of the untaped washer when the car hits the pencils.

STATION 1: HOT WHEELIN PHYSICS 1. Define Newton s First Law. 2. Describe the motion of the untaped washer when the car hits the pencils. Name Date Period STATION 1: HOT WHEELIN PHYSICS 1. Define Newton s First Law. 2. Describe the motion of the untaped washer when the car hits the pencils. 3. Describe the motion of the taped washer when

More information

Newton s Triple Play Explore

Newton s Triple Play Explore 5E Lesson: Explore Newton s Triple Play Explore Stations (80 minutes) Students will explore how forces affect the motion of objects in the following stations. Station : Baseball Forces Baseball Space to

More information

Prelab for the Ballistic Pendulum

Prelab for the Ballistic Pendulum Ballistic Pendulum 1 Prelab for the Ballistic Pendulum 1. Write the general horizontal and vertical motion Kinematics equations for a horizontally launched projectile. 2. Write the relevant Conservation

More information

Educational Innovations

Educational Innovations Educational Innovations WHW-100/115 Wacky Hall Walker Constructing the Wacky Hall Walker 1. Attach a paper clip to the rubber band as shown. Insert the band through the hole in one orange cap and pull

More information

Wonder. Research. Test and Discover. When you blow up a balloon and let go, why does it fly all over the place? How can you control its speed?

Wonder. Research. Test and Discover. When you blow up a balloon and let go, why does it fly all over the place? How can you control its speed? AIRP myt hbu LAN ste rs: E O explos N A ive exh CON ibition com VEY ponent OR : BEL T the Wonder When you blow up a balloon and let go, why does it fly all over the place? How can you control its speed?

More information

The Science of Golf. Test Lab Toolkit The Swing: Driving. Grades Education

The Science of Golf. Test Lab Toolkit The Swing: Driving. Grades Education The Science of Golf Test Lab Toolkit The Swing: Grades 9-12 Partners in Education Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 Investigate: Centripetal Force

More information

Harmonic Motion: The Pendulum Lab Basic Teacher Version

Harmonic Motion: The Pendulum Lab Basic Teacher Version Harmonic Motion: The Pendulum Lab Basic Teacher Version In this lab you will set up a pendulum using rulers, string, and small weights and measure how different variables affect the period of the pendulum.

More information

Name Date Block Newton s First Law of Motion Activities

Name Date Block Newton s First Law of Motion Activities 1. Activity One: Magic Trick Center an index card over the top of a glass, & place the coin in the middle of the index card (on top might be a good place). Flick the card from the side. Try it several

More information

Rocket Activity Foam Rocket

Rocket Activity Foam Rocket Rocket Activity Foam Rocket Objective Students will learn about rocket stability and trajectory with rubber bandrpowered foam rockets. Description Students will construct rockets made from pipe insulating

More information

Activity Overview. Granny on the Ramp: Exploring Forces and Motion MO-BILITY. Activity 4B MS. Activity Objectives: Activity Description:

Activity Overview. Granny on the Ramp: Exploring Forces and Motion MO-BILITY. Activity 4B MS. Activity Objectives: Activity Description: Granny on the Ramp: Exploring Forces and Motion Activity 4B MS Activity Objectives: Using ramps, spring scales and a Pom-Pom Granny model, students will be able to: Part 1: Make observations of physics

More information

How Do You Swing? You should be working with new lab partners starting with this lab.

How Do You Swing? You should be working with new lab partners starting with this lab. You should be working with new lab partners starting with this lab. Exploration: Swinging your arms and legs back and forth Discuss and try out the following questions within your lab group. After you

More information

A) Draw the levers in your notes and use the drawings to record your results.

A) Draw the levers in your notes and use the drawings to record your results. Simple Machines Station One 1 st Class Levers This station should have 2 levers set up. One where the fulcrum is @.5m and one where it is @.65m. Don t change them in any way! You should also have Newton

More information

Energy of a Rolling Ball

Energy of a Rolling Ball Skills Practice Lab DATASHEET A Energy of a Rolling Ball Raised objects have gravitational potential energy (PE). Moving objects have kinetic energy (KE). In this lab, you will find out how these two kinds

More information

Discovery Lab. Exploring Work and Energy. Work and Energy. Pulling masses HOLT PHYSICS. Procedure MATERIALS SAFETY OBJECTIVES

Discovery Lab. Exploring Work and Energy. Work and Energy. Pulling masses HOLT PHYSICS. Procedure MATERIALS SAFETY OBJECTIVES Work and Energy HOLT PHYSICS Discovery Lab Exploring Work and Energy SAFETY Set up the apparatus, and attach all masses securely. Perform this experiment in a clear area. Swinging or dropped masses can

More information

The Science of Golf. Test Lab Toolkit The Swing: Putting. Grades Education

The Science of Golf. Test Lab Toolkit The Swing: Putting. Grades Education The Science of Golf Test Lab Toolkit The Swing: Grades 9-12 Partners in Education Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 Investigate: Gravity on the Green

More information

Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect

Recognise that some mechanisms, including levers, pulleys and gears, allow a smaller force to have a greater effect MODULE 7 FEEL THE FORCE Key vocabulary: lever, pivot, push, pull, mechanism, machine, force, fulcrum LESSON 8: HOW CAN WE USE LEVERS TO HELP US? LESSON SUMMARY: This lesson introduces mechanisms devices

More information

Honors Physiology The Respiratory System

Honors Physiology The Respiratory System Honors Physiology Name: The Respiratory System Objective: To create a model of our respiratory system, understanding the relationship between structure and function. Warm Up Questions: 1. What is the function

More information

An exploration of how the height of a rebound is related to the height a ball is dropped from. An exploration of the elasticity of rubber balls.

An exploration of how the height of a rebound is related to the height a ball is dropped from. An exploration of the elasticity of rubber balls. BOUNCE! (1 Hour) Addresses NGSS Level of Difficulty: 2 Grade Range: 3-5 OVERVIEW In this activity, students drop rubber balls in order to observe and measure the effects of elasticity. They use graphs

More information

PUFF! Rocket Activity. Students will learn about rocket stability as they. Students will construct small indoor paper

PUFF! Rocket Activity. Students will learn about rocket stability as they. Students will construct small indoor paper Rocket Activity 3...2...1...PUFF! Students will learn about rocket stability as they Unifying Concepts and Processes Science as Inquiry inquiry Physical Science Science and Technology Students will construct

More information

LESSON 5: THE BOUNCING BALL

LESSON 5: THE BOUNCING BALL 352 - LINEAR B EHAVIOR LESSON 5: THE BOUNCING BALL y Notes to the Instructor Time: This lesson should take one class session. Materials: Two meter sticks or one tape measure per group, masking tape, balls

More information

Here is a summary of what you will learn in this section:

Here is a summary of what you will learn in this section: Mechanical Advantage Here is a summary of what you will learn in this section: A m achine is a mechanical system that reduces the force required to accomplish work. Machines m ake work easier by increasing

More information

The Science of Golf. Test Lab Toolkit The Swing: Putting. Grades 6-8

The Science of Golf. Test Lab Toolkit The Swing: Putting. Grades 6-8 The Science of Golf Test Lab Toolkit The Swing: Grades 6-8 Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 Investigate: Center of Gravity 03 Investigate: Speed and

More information

THE BALLISTIC PENDULUM

THE BALLISTIC PENDULUM 1. Object THE BALLISTIC PENDULUM To apply the ideas of conservation of momentum and conservation of energy, when appropriate, to the ballistic pendulum experiment. To experimentally measure the velocity

More information

SC.5.P.13.2 Investigate and describe that the greater the force applied to it, the greater the change in motion of a given object.

SC.5.P.13.2 Investigate and describe that the greater the force applied to it, the greater the change in motion of a given object. SC.5.P.13.2 Investigate and describe that the greater the force applied to it, the greater the change in motion of a given object. Materials per group: 2 flexible rulers (plastic), 1 small ball of the

More information

Although many factors contribute to car accidents, speeding is the

Although many factors contribute to car accidents, speeding is the 74 Measuring Speed l a b o r at o ry Although many factors contribute to car accidents, speeding is the most common kind of risky driving. Unsafe speed is involved in about 20% of fatal car accidents in

More information

Motion Commotion. KindergarTen-second. Matter and Energy TEKS. Vocabulary

Motion Commotion. KindergarTen-second. Matter and Energy TEKS. Vocabulary Motion Commotion KindergarTen-second Matter and Energy TEKS Kindergarten: K.6B, K.6C, K.6D First Grade: 1.6B, 1.6C, 1.6D Second Grade: 2.6B, 2.6C, 2.6D Vocabulary above, attract, back and forth, behind,

More information

Experimental Procedure

Experimental Procedure 1 of 15 9/13/2018, 12:47 PM https://www.sciencebuddies.org/science-fair-projects/project-ideas/sports_p060/sports-science/physics-of-baseball-hit-charts (http://www.sciencebuddies.org/science-fairprojects/project-ideas/sports_p060/sports-science/physics-of-baseball-hit-charts)

More information

Activity 3: Pulleys. Background

Activity 3: Pulleys. Background Activity 3: Pulleys Background Pulleys are simple machines that consist of a grooved wheel that turns around a fixed point, similar to the fulcrum of a lever. A rope, cord, or chain runs along the groove

More information

Engineering Project Boat Building Challenge

Engineering Project Boat Building Challenge Engineering Project Boat Building Challenge Most boats and ships have the same basic shape and design. They are longer than they are wide, and typically they taper to a point in front. The pointed front

More information

Table of Contents. Student Inquiry Activities Introduction...4. Unit 5 Life Science: Human Body. Locating Simple Science Materials...

Table of Contents. Student Inquiry Activities Introduction...4. Unit 5 Life Science: Human Body. Locating Simple Science Materials... Introduction...4 Table of Contents Student Inquiry Activities...47 Locating Simple Science Materials...5 Standards Correlation....7 Thinking About Inquiry Investigations...9 Inquiry Assessment Rubric...12

More information

clubs STEM BALLOON ROCKETS Focus: Physics AIM Equipment: Instructions: Discuss: Useful Links:

clubs STEM BALLOON ROCKETS Focus: Physics AIM Equipment: Instructions: Discuss: Useful Links: BALLOON ROCKETS Focus: Physics A balloon provides a simple example of how a rocket engine works. The air trapped inside the balloon pushes out the open end, causing the balloon to move forward. The force

More information

Bungee Bonanza. Level 1

Bungee Bonanza. Level 1 Bungee Bonanza The problem Level 1 You have recently been employed by the company Bungee Bonanza. A key part of your role is to adjust the height of the bungee jumping platform based on the mass of each

More information

Unit 2 Review: Projectile Motion

Unit 2 Review: Projectile Motion Name: Unit 2 Review: Projectile Motion Date: 1. A projectile is fired from a gun near the surface of Earth. The initial velocity of the projectile has a vertical component of 98 meters per second and a

More information

Activity Sheet 1 What determines the amount of friction between two surfaces?

Activity Sheet 1 What determines the amount of friction between two surfaces? Student Name: Activity Sheet 1 What determines the amount of friction between two surfaces? I. Forces Try pushing a block around on a table. What direction do you have to push in to make it move? If you

More information

Perilous Plunge. Activity Guide PITSCO. Ideas Solutions V0708

Perilous Plunge. Activity Guide PITSCO. Ideas Solutions V0708 Perilous Plunge PITSCO & Ideas Solutions S T E M Activity Guide 59779 V0708 Perilous Plunge Activity Guide Introduction... 3 Science Activity Give em the Hooke!... 4 Exploring Hooke s Law.... 5 Technology

More information

Bikes and Energy. Pre- Lab: The Bike Speedometer. A Bit of History

Bikes and Energy. Pre- Lab: The Bike Speedometer. A Bit of History Bikes and Energy Pre- Lab: The Bike Speedometer A Bit of History In this lab you ll use a bike speedometer to take most of your measurements. The Pre- Lab focuses on the basics of how a bike speedometer

More information

ANSWER KEY Station #1: Clothespin Lab

ANSWER KEY Station #1: Clothespin Lab ANSWER KEY Station #1: Clothespin Lab 1. Using the string, tie the ends of the clothespin so that the clothespin is open. 2. Place the cookie sheet, upside-down, on the floor. 3. Place the tied clothespin

More information

The Science of Golf. Test Lab Toolkit The Swing: Driving. Facilitator Guide Grades 9-12

The Science of Golf. Test Lab Toolkit The Swing: Driving. Facilitator Guide Grades 9-12 The Science of Golf Test Lab Toolkit The Swing: Facilitator Guide Grades 9-12 Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 How to Use the Toolkit 03 Investigate:

More information

Extension Activities:

Extension Activities: Thank you for inviting COSI on Wheels into your school! To enhance your students experience, we encourage you to continue to explore the basics of energy in your classroom or home. Extension Activities:

More information

The Science of Golf. Test Lab Toolkit The Club: Energy & Force. Facilitator Guide Grades 6-8

The Science of Golf. Test Lab Toolkit The Club: Energy & Force. Facilitator Guide Grades 6-8 The Science of Golf Test Lab Toolkit The Club: Facilitator Guide Grades 6-8 Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 How to Use the Toolkit 03 Investigate:

More information

Observing Waves, Their Properties, and Relationships

Observing Waves, Their Properties, and Relationships Observing Waves, Their Properties, and Relationships Part I: Setting Up the Activity 1. Refer to the material list for materials needed. 2. To successfully conduct this activity, you will need an area

More information

LAB : Using A Spark Timer

LAB : Using A Spark Timer LAB : Using A Spark Timer Read through the whole lab and answer prelab questions prior to lab day. Name: F1 Introduction A spark timer is used to make accurate time and distance measurements for moving

More information

POTENTIAL ENERGY BOUNCE BALL LAB

POTENTIAL ENERGY BOUNCE BALL LAB Energy cannot be created or destroyed. Stored energy is called potential energy, and the energy of motion is called kinetic energy. Potential energy changes as the height of an object changes due to gravity;

More information

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation

INSTRUMENT INSTRUMENTAL ERROR (of full scale) INSTRUMENTAL RESOLUTION. Tutorial simulation. Tutorial simulation Lab 1 Standing Waves on a String Learning Goals: To distinguish between traveling and standing waves To recognize how the wavelength of a standing wave is measured To recognize the necessary conditions

More information

Potential and Kinetic Energy: The Roller Coaster Lab Student Version

Potential and Kinetic Energy: The Roller Coaster Lab Student Version Potential and Kinetic Energy: The Roller Coaster Lab Student Version Key Concepts: Energy is the ability of a system or object to perform work. It exists in various forms. Potential Energy is the energy

More information

Materials. Focus. Where have you seen pulleys used? List several examples of pulleys and describe for what purpose they are used.

Materials. Focus. Where have you seen pulleys used? List several examples of pulleys and describe for what purpose they are used. Materials base stand rod T connector extension rod pulley cord 2 single pulleys 2 double pulleys spring scale mass hanger 10 mass pieces (10 g each) calculator meter stick or meter measuring tape permanent

More information

Lab: Relative Velocity (Speed)

Lab: Relative Velocity (Speed) WWW.ARBORSCI.COM Lab: Velocity () By Dr. Joel Bryan OBJECTIVES: Determine average velocity (speed). Predict the relative velocities (speeds) of the two objects traveling in the same and in the opposite

More information

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should:

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should: This unit deals with the speed of objects. Speed is a basic concept used to quantify an object s movement, which can be measured by positional changes over time. It is important to express an object s

More information

Name: Section: Force and Motion Practice Test

Name: Section: Force and Motion Practice Test Name: Section: Force and Motion Practice Test Directions: For each of the questions or incomplete statements below, choose the best of the answer choices given and write your answer on the line. 1. Which

More information

Objective: To launch a soda bottle rocket, achieve maximum time of flight, and safely land a payload (tennis ball).

Objective: To launch a soda bottle rocket, achieve maximum time of flight, and safely land a payload (tennis ball). Bottle Rocket Project 2016-17 Objective: To launch a soda bottle rocket, achieve maximum time of flight, and safely land a payload (tennis ball). Materials: 2 liter plastic soda bottle (carbonated beverage

More information

Fun Physics Workshop

Fun Physics Workshop Name: University of Cape Town Department of Physics Fun Physics Workshop Equipment checklist. Each group should get the following: 2 tins, saucer, beaker, straws, 2 balloons, tube, wooden balance, 2 weights,

More information

Bottle Rocket Launcher P4-2000

Bottle Rocket Launcher P4-2000 WWW.ARBORSCI.COM Bottle Rocket Launcher P4-2000 BACKGROUND: The Bottle Rocket Launcher allows for the exploration of launching rockets using commonly available materials such as plastic soda bottles and

More information

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch

- a set of known masses, - four weight hangers, - tape - a fulcrum upon which the meter stick can be mounted and pivoted - string - stopwatch 1. In the laboratory, you are asked to determine the mass of a meter stick without using a scale of any kind. In addition to the meter stick, you may use any or all of the following equipment: - a set

More information

Simple Machines. Dr. John B. Beaver and Dr. Barbara R. Sandall

Simple Machines. Dr. John B. Beaver and Dr. Barbara R. Sandall By Dr. John B. Beaver and Dr. Barbara R. Sandall COPYRIGHT 2002 Mark Twain Media, Inc. ISBN 978-58037-864-2 Printing No. 1558-EB Mark Twain Media, Inc., Publishers Distributed by Carson-Dellosa Publishing

More information

The old windmill nearby once used to lift water out of the mine and they are wondering if it can be of any help to them.

The old windmill nearby once used to lift water out of the mine and they are wondering if it can be of any help to them. Teacher s Notes Windmill Technology Using mechanisms gearing up and down Designing and making Combining materials Ratchets Safety and control systems Science Forces and motion Renewable energy Measuring

More information

Air: Weight and Pressure

Air: Weight and Pressure Purpose To test whether air has weight, exerts pressure, and applies force. Process Skills Observe, measure, collect data, interpret data, identify and control variables, form a hypothesis, predict, draw

More information

POMS Science Summer Challenge

POMS Science Summer Challenge POMS Science Summer Challenge The true essence of science is the relentless and unwavering need to know why. With your inquisitiveness, you can learn to do science. There are five basic skills you need

More information

2006 AIMS Education Foundation

2006 AIMS Education Foundation TM Developed and Published by AIMS Education Foundation This book contains materials developed by the AIMS Education Foundation. AIMS (Activities Integrating Mathematics and Science) began in 1981 with

More information

See if you can determine what the following magnified photos are. Number your paper to 5.

See if you can determine what the following magnified photos are. Number your paper to 5. Challenge 7 See if you can determine what the following magnified photos are. Number your paper to 5. The Answers: EXPERIMENTAL DESIGN Science answers questions with experiments DEFINE THE PROBLEM Begin

More information

Vocabulary: Objectives: Materials: For Each Station: (Have 2 stations for each liquid; 8 stations total, in student groups of 3-4) Students will:

Vocabulary: Objectives: Materials: For Each Station: (Have 2 stations for each liquid; 8 stations total, in student groups of 3-4) Students will: Author: Ms. Adrienne Maribel López Date Created: August 2007 Subject: Properties of Matter Level: 6 th 8 th grade Standards: NYS Learning Standards for Mathematics, Science, and Technology-- Intermediate

More information

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and Activityengage the best experience on this site: Update your browser Ignore Gearing Up with Robots How are gears used to change

More information

Design and Make a foam rocket

Design and Make a foam rocket Design and Make a foam rocket Activity DESIGN AND MAKE A FOAM ROCKET - and investigate its flight path. Equipment For each rocket: Foam pipe insulation (½ diameter) 30 cm length Wide rubber band - (6 mm.

More information

STAT 115 : INTRO TO EXPERIMENTAL DESIGN. Science answers questions with experiments

STAT 115 : INTRO TO EXPERIMENTAL DESIGN. Science answers questions with experiments STAT 115 : INTRO TO EXPERIMENTAL DESIGN Science answers questions with experiments 1 DEFINE THE PROBLEM Begin by asking a question about your topic What is a good question for an experiment? One that is

More information

May the Forces Be With You

May the Forces Be With You Science - Year 5 Forces Block 5F May the Forces Be With You Session 3 Resource pack Original resource copyright Hamilton Trust, who give permission for it to be adapted as wished by individual users. We

More information

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage?

Simple Machines Problem Set. 2. What does it mean to say that a machine has a certain mechanical advantage? Simple Machines Problem Set 1. In what two ways can a machine alter an input force? 2. What does it mean to say that a machine has a certain mechanical advantage? 3. Distinguish between ideal mechanical

More information

Today Mr. Happer told us to use the following physics vocabulary words and relate them to our experiment:

Today Mr. Happer told us to use the following physics vocabulary words and relate them to our experiment: Design Your Own Experiment Lab Report Objective While making our water rocket, our group tried to achieve different criteria listed by Mr. Happer. With our rocket, we were trying to achieve a distance

More information

Rocket Activity Using Dependent and Independent Variables. Constructing the Rocket and Launch System Compressor (LSC)

Rocket Activity Using Dependent and Independent Variables. Constructing the Rocket and Launch System Compressor (LSC) Rocket Activity Using Dependent and Independent Variables This rocket activity is intended to be used with early middle school students. It can be used to illustrate a number of related principles in science

More information

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation

Partnerships Implementing Engineering Education Worcester Polytechnic Institute Worcester Public Schools Supported by: National Science Foundation Partnerships Implementing Engineering Education Measurements 6.F.3 Density and Hydrometers Grade Level 6 Sessions 1 approximately 60 minutes Seasonality N/A Instructional Mode(s) Class Team Size Class

More information

Measuring Lung Capacity

Measuring Lung Capacity Name Class Date Chapter 37 Circulatory and Respiratory Systems Measuring Lung Capacity Introduction The amount of air that you move in and out of your lungs depends on how quickly you are breathing. The

More information

Spirit Lesson 3 Robot Wheelies Lesson Outline Content: Context: Activity Description:

Spirit Lesson 3 Robot Wheelies Lesson Outline Content: Context: Activity Description: Spirit Lesson 3 Lesson Title: Robot Wheelies Draft Date: July 13, 2008 1 st Author: Deb Hipnar 2 nd Author: Rachel Neurath Algebra Topic: Formulas: Circumference, Distance Grade Level: Upper Elementary,

More information

Gravity, Force and Work

Gravity, Force and Work Gravity, Force and Work Vocabulary: force something that pushes or pulls something else gravity a force that pulls everything toward the center of the earth friction a force that is created when something

More information

The Science of Golf. Test Lab Toolkit The Swing: Putting. Facilitator Guide Grades 9-12

The Science of Golf. Test Lab Toolkit The Swing: Putting. Facilitator Guide Grades 9-12 The Science of Golf Test Lab Toolkit The Swing: Facilitator Guide Grades 9-12 Science Technology Engineering Mathematics Table of Contents Welcome to the Test Lab 02 How to Use the Toolkit 03 Investigate:

More information

Land Yacht. Teacher s Notes. Technology Using mechanisms gearing down Assembling components Combining materials

Land Yacht. Teacher s Notes. Technology Using mechanisms gearing down Assembling components Combining materials Teacher s Notes Land Yacht Technology Using mechanisms gearing down Assembling components Combining materials Science Renewable energy Measuring area Measuring distance Measuring time Forces Friction Air

More information

A Liter a Lung Measuring Lung Capacity

A Liter a Lung Measuring Lung Capacity A Liter a Lung Measuring Lung Capacity OBJECTIVE In this investigation, students will compare the actual and expected vital capacities of their classmates. LEVEL Middle Grades Life Science CONNECTIONS

More information

DATA EQUATIONS MATH ANSWER

DATA EQUATIONS MATH ANSWER HCP PHYSICS REVIEW SHEET MID TERM EXAM Concepts And Definitions 1. Definitions of fact, hypothesis, law, theory 2. Explain the scientific method 3. Difference between average and instantaneous speed and

More information

The Rubber Band Car. Lesson Guide. The Challenge: To build a car that moves under the power of rubber bands! Topics: Forces, Energy, Simple Machines

The Rubber Band Car. Lesson Guide. The Challenge: To build a car that moves under the power of rubber bands! Topics: Forces, Energy, Simple Machines The Rubber Band Car The Challenge: To build a car that moves under the power of rubber bands! Topics: Forces, Energy, Simple Machines Version 1 Materials: 2 compact discs (per group) Corrugated cardboard

More information

Aim To investigate the effect of drag on cones of various sizes, dropped through the air.

Aim To investigate the effect of drag on cones of various sizes, dropped through the air. Aim Discovery Sheet To investigate the effect of drag on cones of various sizes, dropped through the air. Equipment four BLOODHOUND SSC cone templates scissors PVA glue (Pritt Stick type) 3m retractable

More information

Welcome to Force-Land

Welcome to Force-Land Science Year 5/6B Spring 1 Forces Welcome to Force-Land Session 5 Resource Pack Original resource copyright Hamilton Trust, who give permission for it to be adapted as wished by individual users. We refer

More information

Smooth Track, Steel Marble, Wood Block, Stopwatch, Ditto (carbon) paper, white paper, meter stick.

Smooth Track, Steel Marble, Wood Block, Stopwatch, Ditto (carbon) paper, white paper, meter stick. Teacher s Notes Main Topic Subtopic Learning Level Technology Level Activity Type Motion Projectile Motion High School Low Student Description: Measure the initial velocity of a horizontal projectile,

More information

Science Science as Inquiry Unifying Concepts and Processes. Science Process Skills Observing Measuring Predicting Controlling Variables

Science Science as Inquiry Unifying Concepts and Processes. Science Process Skills Observing Measuring Predicting Controlling Variables SLED KITE Objectives The students will: Construct and fly a simple sled kite. Demonstrate how to make the kite fly at varying heights. Standards and Skills Science Science as Inquiry Unifying Concepts

More information

Unit 2, Lesson 9: Constant Speed

Unit 2, Lesson 9: Constant Speed Unit 2, Lesson 9: Constant Speed Lesson Goals Use a double number line to find the speed expressed in distance traveled per 1 unit of time. Use per language in the context of constant speed. Understand

More information

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should:

The grade 5 English science unit, Speed, meets the academic content standards set in the Korean curriculum, which state students should: This unit deals with the speed of objects. Speed is a basic concept used to quantify an object s movement, which can be measured by positional changes over time. It is important to express and object s

More information

Chapters 25: Waves. f = 1 T. v =!f. Text: Chapter 25 Think and Explain: 1-10 Think and Solve: 1-4

Chapters 25: Waves. f = 1 T. v =!f. Text: Chapter 25 Think and Explain: 1-10 Think and Solve: 1-4 Text: Chapter 25 Think and Explain: 1-10 Think and Solve: 1-4 Chapters 25: Waves NAME: Vocabulary: wave, pulse, oscillation, amplitude, wavelength, wave speed, frequency, period, interference, constructive,

More information

Science of Sports Teacher Packet

Science of Sports Teacher Packet Science of Sports Teacher Packet GRADE LEVELS: Grades K 6 th OBJECTIVES: Participants will become more aware of the forces that are used in sports and will use various measurement tools to record data.

More information

Grade: 8. Author(s): Hope Phillips

Grade: 8. Author(s): Hope Phillips Title: Tying Knots: An Introductory Activity for Writing Equations in Slope-Intercept Form Prior Knowledge Needed: Grade: 8 Author(s): Hope Phillips BIG Idea: Linear Equations how to analyze data from

More information

Date 23/ 06/2017 Participants

Date 23/ 06/2017 Participants Date Participants 23/ 06/2017 23rd June: STEM DAY Plan Period STEM Activity 1 Science Students meet in under the COLA after roll call Student go to hall where they will listen to presentation by Air force

More information

Bernoulli s Principle at Work

Bernoulli s Principle at Work Diagram of demonstration Denise Winkler and Kim Brown July 25, 2003 Bernoulli s Principle at Work *Airflow should be straight on the edge of the airfoil. pivot rod airflow counter weight support rod airfoil

More information

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009

Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009 Instructor: Biswas/Ihas/Whiting PHYSICS DEPARTMENT PHY 2053 Exam 1, 120 minutes October 14, 2009 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on

More information

Rocket Activity Rocket Wind Tunnel

Rocket Activity Rocket Wind Tunnel Rocket Activity Rocket Wind Tunnel Objective Students predict the performance of their air rockets by measuring their streamlining properties. National Science Content Standards Unifying Concepts and Processes

More information

Friction. Experiment 1 A Soleful Experiment

Friction. Experiment 1 A Soleful Experiment Friction Now let s talk about the other ever present force on this Earth, and that s friction. Friction is the force between one object rubbing against another object. Friction is what makes things slow

More information

GLIDING ON AIR (1 Hour)

GLIDING ON AIR (1 Hour) GLIDING ON AIR (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: 3-5 OVERVIEW In this activity, the students will construct a simple hovercraft. They will learn how friction helps or hinders

More information

Practicum Lesson Plan

Practicum Lesson Plan Practicum Lesson Plan Liz Kilpatrick 3/7/12 EDD 485 Grade Level: Kindergarten Concept: Force & Motion Objectives: 1. Students will be able to explain that when an object s weight increases, so does the

More information

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM

Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM Regents Exam Practice: Measurement, Kinematics, Free Fall, PJM, and UCM 1. Which quantity and unit are correctly paired? 2. Which is a derived unit? meter second kilogram Newton 3. The fundamental unit

More information

Systems and Simple Machines Student Activity Book Answer Key

Systems and Simple Machines Student Activity Book Answer Key Answer Key Pages 3-6 Systems 1. Answers vary. Examples include: solar system, the body systems, etc. 2. Answers vary. Definitions may include the idea that the parts work together to do a job. 3. Answers

More information

Let it Roll: The Soup Can Experiment

Let it Roll: The Soup Can Experiment Let it Roll: The Soup Can Experiment Objectives To roll different kinds of soup cans down a ramp to determine how the content and weight of the can affects how fast and how far it rolls. Materials Procedure

More information

Part A How Many Drops Are in 1 ml of Water?

Part A How Many Drops Are in 1 ml of Water? Investigation: Tools and Measurements Name(s): Introduction: This investigation requires you to use various scientific tools to measure volume, mass, and dimensions of objects. The goal is to become familiar

More information