Principles of glider flight

Size: px
Start display at page:

Transcription

1 Principles of glider flight [ Lecture 2: Control and stability ] Richard Lancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher GmbH & Co. All other content Copyright 2007 Richard Lancaster. This and other gliding presentations can be downloaded from:

2 [ Flight surfaces ] Main wings Tail fin (Vertical stabiliser) Tailplane (Horizontal stabiliser)

3 [ Control surfaces ] Airbrake Flap Aileron Rudder Elevator

4 [ Axes ] Lateral axis Longitudinal axis Normal axis (vertical axis)

5 [ How a control surface works ] Deflecting a control surface down: Increases aerofoil camber. Increases angle of attack. Chord line Therefore lift is increased. Chord line Deflecting a control surface up: Decreases aerofoil camber. Decreases angle of attack. Therefore lift is reduced.

6 [ Equilibrium ]

7 [ Linear equilibrium ] LIFT To maintain steady wings level flight the lift, drag and weight forces must exactly balance each other out. Increase lift Reduce lift Increase drag Reduce drag glider climbs glider falls glider decelerates glider accelerates DRAG WEIGHT

8 [ Centre of gravity (CG) ] A glider's Centre of Gravity (CG) is the point at which if you placed the glider on a pivot it would balance perfectly. Increasing the weight of the pilot will move the CG forwards. Decreasing the weight of the pilot will move the CG backwards. Pivot The CG can be considered as the point on which the force of gravity acts. = Centre of Gravity (CG) WEIGHT

9 [ Centre of pressure (CP) ] Lift and drag forces are produced across the entire surface of the wing. For the sake of simplicity, all of these individual forces can be represented by a single force. The point on the wing at which this single force can be considered to act is called the Centre of Pressure (CP). The distribution of pressure across a wing changes with angle of attack. On most glider wings this causes the centre of pressure to move forward on the wing as the angle of attack is increased and back as it is decreased. CP Centre of Pressure

10 [ Unwanted pitching forces ] The centre of gravity will not move significantly during a flight as its position is set by the weights of the pilots and ballast. The centre of pressure will move forward and backward on the wing depending on the angle of attack. Aerodynamic force produced by glider's wings CP Therefore although the aerodynamic force produced by the wing may be of the correct size to balance the gravitational force, the point at which it acts on the aircraft may be offset from the CG. This produces a rotational pitching torque on the aircraft. WEIGHT Offset Pitching torque

11 [ Rotational equilibrium & trimming ] To balance the rotational torque produced by the locations of the CP and CG, the tailplane therefore needs to produce a counter torque. If CP in front of CG: Tailplane needs to generate an up force. If CP behind CG: Tailplane needs to generate a down force. When you trim a glider you are setting the elevator to a position that will cause the tailplane to generate the up or down force required to counteract the torque produced by the CP and CG. Counter torque

12 [ Control ]

13 [ Effect of the elevator ] Page 1 of 7 Consider an aircraft that is trimmed and flying wings level.

14 [ Effect of the elevator ] Page 2 of 7 Stick is pushed forward which deflects the elevator down.

15 [ Effect of the elevator ] Page 3 of 7 This produces a net upwards force on the tailplane.

16 [ Effect of the elevator ] Page 4 of 7 Pitching torque The torque produced by the upwards force on the tailplane pitches the nose down.

17 [ Effect of the elevator ] Page 5 of 7 The pitching down of the nose reduces the angle of attack of main wing. Hence decreasing the amount of lift it is producing. This means that the aerodynamic force produced by the wing is no longer large enough to counteract gravity. The glider therefore starts to fall and accelerate.

18 [ Effect of the elevator ] Page 6 of 7 Once the desired speed has been reached a slight adjustment of the position of the elevator might be required to correctly hold and trim the glider at the new speed.

19 [ Effect of the elevator ] Page 7 of 7 Note: The effect that the elevator has on the glider is the most complex of all the control surfaces. The preceding explanation has therefore been kept at a fairly simplistic level. Interested students may like to lookup the Phugoid.

20 [ Primary effect of the ailerons ] Page 1 of 2 Aircraft is trimmed and flying wings level. Stick is pushed to the right. Left aileron deflected down. Angle of attack increased. Lift increased. Right aileron deflected up. Angle of attack decreased. Lift reduced and possibly made slightly negative.

21 [ Primary effect of the ailerons ] Page 2 of 2 Aircraft rolls and will continue rolling until the stick is centred and the ailerons return to their neutral position.

22 [ Secondary effect of the ailerons ] 1 of 2 Aircraft is trimmed and flying wings level. Stick is pushed to the right. Aileron deflected down. Angle of attack increased. Lift increased. Drag increased. Aileron deflected up. Angle of attack decreased. Lift reduced. Drag reduced.

23 [ Secondary effect of the ailerons ] 2 of 2 Aircraft yaws in the opposite direction to that in which it is rolling. This is termed as adverse yaw. The yaw does not cause the aircraft's direction of flight to change. Hence the yaw is prevented from building above about 40 degrees by the stabilising weathercock effect of the vertical fin.

24 [ Primary effect of the rudder ] Page 1 of 2 Aircraft is trimmed and flying wings level. Right rudder pedal depressed. Rudder deflected to the right Angle of attack of tail fin increased relative to oncoming airflow. Lateral aerodynamic force produced on tail fin directed to the left.

25 [ Primary effect of the rudder ] Page 2 of 2 Aircraft yaws to the right but the direction of flight doesn't change. The yaw will therefore reach a point at which despite the deflection of the rudder, the angle of attack of the tail fin to the oncoming airflow becomes zero. At this point the yaw will stop increasing.

26 [ Secondary effect of the rudder ] While the down wind wing is swinging backward its speed is momentarily decreased. Hence while yawing the down wind wing will generate less lift. While the into wind wing is swinging forward its speed is momentarily increased. Hence while yawing the into wind wing will generate more lift. Once yawed dihedral effects increase the amount of lift the up wind wing produces. Once yawed dihedral and fuselage shadowing effects decreasing the amount of lift the down wind wing produces. These effects are small but cause a gentle rolling of the glider in the direction of the yaw.

27 [ Manoeuvring ]

28 [ Centripetal force ] The laws of physics state that for a glider to fly along a circular path (E.g. when thermalling or simply turning through 90 degrees) there must be a force acting on the glider toward the centre of the circle. This force is called a centripetal force. Centripetal force The force required to turn a glider is exactly the same kind of force as the tension in a piece of string if you have bucket attached to the end of it and you are swinging it around your head. Bucket Centripetal force

29 [ Turning ] There is only one force produced by a glider that is large enough to provide enough centripetal force to turn the glider. This is the lift force produced by its main wings. Centripetal force LIFT To use the main wing's lift force as a centripetal force, the glider must be banked over so that some of the lift force is pushing the glider toward the centre of the circle. WEIGHT

30 [ Stick back pressure during turns ] During a turn, if the main wing's lift force is inclined over to the side to provide a centripetal force. Then less of the lift force will be acting vertically to counteract the force of gravity. Loss of vertical lift if aircraft banked without stick back pressure Increase in lift force produced by stick back pressure Stick back pressure is therefore required during a turn to increase the main wing's angle of attack, hence increasing the size of the lift force produced by the wing, such that the component of the wing's lift force that is acting vertically up is once again large enough to counteract the force of gravity. WEIGHT LIFT

31 [ Load factor (n,g) ] Load factor is a measure of the number of times greater the lift force being produced by a wing is than the weight force produced by gravity. Load factor (n) = Lift Weight G A glider in steady wings level flight will have a lift force which approximately counterbalances the weight force. It will therefore have a load factor of 1G. The wings of a glider performing a loop and pulling 2G will be generating a lift force that is twice as large as the weight force that is acting on the glider.

32 [ Load factor's effect on stall speed ] The speed at which a glider stalls increases with load factor. The higher the load factor the higher the speed at which the glider will stall. 80 Stall speed graph for a glider with a 1G stall speed of 40 knots: The stall speed at a particular load factor can be calculated using the equation: Stall speed = (n) (v SL-STALL ) n v SL-STALL : Load factor : 1G stall speed Stall speed (knots) Note: The 1G stall speed is the steady wings level flight stall speed Load factor (G)

33 [ Why does load factor increase stall speed? ] An aircraft travelling at 50knots and pulling 2G is by definition generating twice as much lift as a similar aircraft travelling at 50knots and pulling 1G. As the airspeed is the same in both cases the 2G aircraft will require twice the angle of attack on its wing to generate the 2G of lift as the aircraft that is only generating 1G of lift. 50knots 2G Whilst the wing of the 1G aircraft might be well below its stall angle, the increased angle of attack required by the other aircraft to generate 2G of lift may take the wing past it's stalling angle and stall it. 50knots 1G

34 [ Load factor and stall speed in a turn ] In a turn, as the bank angle increases, the lift force produced by the main wing needs to be made larger and larger by application of stick back pressure for it to maintain a great enough vertical component to counteract gravity. Therefore as bank angle increases so does the load factor and hence the stall speed. Bank angle : 0º Load factor : 1G Stall speed : 40kts Bank angle : 30º Load factor : 1.15G Stall speed : 43kts Bank angle : 45º Load factor : 1.41G Stall speed : 47kts Bank angle : 60º Load factor : 2.0G Stall speed : 56kts

35 [ Stability ]

36 [ What is stability? ] An object is termed as being stable if it tends to return to its original position after being disturbed. We want a glider to be stable. So that when it's flying along and is disturbed by a gust, it won't go into a dive or roll onto its back. Instead, without pilot intervention, it will tend to return to whatever it was doing before being disturbed. Unstable Neutrally stable However we don't want a glider to be over stable otherwise we won't be able to manoeuvre it. Stable Over stable

37 [ Yaw stability ] Due to an unplanned push on the rudder pedals the glider becomes yawed relative to the direction in which it is travelling (E.g. The oncoming air flow). The tail fin (vertical stabiliser) now has an angle of attack relative to the oncoming airflow. α Angle of attack of tail fin A lateral aerodynamic force is therefore produced on the tail fin that creates a torque which will tend to weathercock the glider back into line with the airflow. Restoring torque

38 [ Roll damping ] Due to a gust of wind, a wing is lifted and the glider starts to roll. Downward going wing: Angle of attack increased because the wing is moving down and hence the air is moving up past it. Lift on this wing is therefore increased. Upward going wing: Angle of attack reduced because the wing is moving up and hence the air is moving down past it. Lift on this wing is therefore reduced. Angle of attack reduced, lift reduced Direction of rotation This produces a counter torque that damps out the rolling motion. However this will not roll the glider back to wings level as the effect stops when the glider stops rolling. Angle of attack increased, lift increased

39 [ Dihedral ] If the tips of glider's wings are higher that their roots then the wings are said to have dihedral. If the tips are below the roots then the wings are said to have anhedral. Dihedral angle

40 [ Dihedral and roll stability ] If a glider is banked over but insufficient stick back pressure is applied to create enough lift to counteract gravity, then the glider will slip sideways though the air. If the glider has dihedral, then the wing facing into the sideslip will have its angle of attack increased by the air flowing in from the side due to the sideslip. The lift on this wing is therefore increased. Conversely the wing facing away from the sideslip will have its angle of attack reduced and hence the amount of lift it is producing will drop. Wing has decreased angle of attack and hence reduced lift due to sideslip Restoring torque Wing has increased angle of attack and hence increased lift due to sideslip Sideslip This produces a torque on the glider that will tend to roll it back to wings level. Note: Anhedral will reduce roll stability.

41 [ Pitch (longitudinal) stability ] Due to a gust of wind the glider's nose pitches up relative to the direction in which it is travelling. (E.g. The oncoming air flow). The tailplane (horizontal stabiliser) now has a significant angle of attack relative to the oncoming airflow. An aerodynamic force is therefore produced on the tailplane that creates a torque which will tend to weathercock the glider back into line with the airflow. Restoring torque α Angle of attack of tailplane

42 [ Pitch stability C of G limits ] For the tailplane to correctly function as a pitch stabilising device, the glider's centre of gravity must be within the fore and aft limits specified by the manufacturer in the glider's flight manual. Forward CofG limit Aft CofG limit A heavy pilot will move the CG forward. A light pilot will move the CG backwards. CG behind aft limit : Glider becomes unstable. Prone to spinning. CG in front of forward limit : Glider becomes too stable. Elevator will not have enough effectiveness to round out. Glider too stable Permitted range Glider unstable

43 [ Any questions? ]

44 Document revision: 02b - 05/08/2017 All illustrations of ASK-21 gliders contained in this presentation are Copyright 1983 Alexander Schleicher GmbH & Co and are used here with their kind written permission. All other content is Copyright 2007 Richard Lancaster. For non-commercial educational purposes permission is granted to project, printas handouts, anddistribute this presentation on physical digital media. Permission is also granted to distribute this presentation between acquaintances on a non-commercial basis via , physical digital media and hard copy printouts. However this presentation may not be otherwise republished or redistributed by any means electronic or conventional without prior written permission of the copyright holders. In particular this presentation may not be used for any commercial purposes whatsoever. This presentation may not be altered in any way without prior written permission of Richard Lancaster. The latest revision of the presentation can always be downloaded from: Richard Lancaster

Stability and Flight Controls

Stability and Flight Controls Three Axes of Flight Longitudinal (green) Nose to tail Lateral (blue) Wing tip to Wing tip Vertical (red) Top to bottom Arm Moment Force Controls The Flight Controls Pitch

Principles of glider flight

Principles of glider flight [ Lecture 1: Lift, drag & glide performance ] Richard Lancaster Email: Richard@RJPLancaster.net Twitter: @RJPLancaster ASK-21 illustrations Copyright 1983 Alexander Schleicher

LAPL(A)/PPL(A) question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080

PRINCIPLES OF FLIGHT 080 1 Density: Is unaffected by temperature change. Increases with altitude increase. Reduces with temperature reduction. Reduces with altitude increase. 2 The air pressure that acts

Aerodynamics Principles

Aerodynamics Principles Stage 1 Ground Lesson 3 Chapter 3 / Pages 2-18 3:00 Hrs Harold E. Calderon AGI, CFI, CFII, and MEI Lesson Objectives Become familiar with the four forces of flight, aerodynamic

Flight Control Systems Introduction

Flight Control Systems Introduction Dr Slide 1 Flight Control System A Flight Control System (FCS) consists of the flight control surfaces, the respective cockpit controls, connecting linkage, and necessary

CIRCLING THE HOLIGHAUS WAY -

CIRCLING THE HOLIGHAUS WAY - OR DO YOU REALLY WANT TO KEEP THE YAW STRING CENTERED? BY RICHARD H. JOHNSON ANSWERS: 1. During Straight Flight - YES, that minimizes drag and maximizes the sailplane's performance.

II.E. Airplane Flight Controls

References: FAA-H-8083-3; FAA-8083-3-25 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of the elements related to

A103 AERODYNAMIC PRINCIPLES

A103 AERODYNAMIC PRINCIPLES References: FAA-H-8083-25A, Pilot s Handbook of Aeronautical Knowledge, Chapter 3 (pgs 4-10) and Chapter 4 (pgs 1-39) OBJECTIVE: Students will understand the fundamental aerodynamic

LAPL/PPL question bank FCL.215, FCL.120 Rev PRINCIPLES OF FLIGHT 080

LAPL/PPL question bank FCL.215, FCL.120 Rev. 1.7 11.10.2018 PRINCIPLES OF FLIGHT 080 1 Density: Reduces with temperature reduction. Increases with altitude increase. Reduces with altitude increase. Is

Uncontrolled copy not subject to amendment. Principles of Flight

Uncontrolled copy not subject to amendment Principles of Flight Principles of Flight Learning Outcome 2: Understand how the stability of an aeroplane is maintained in flight and how manoeuvrability is

PEMP ACD2501. M.S. Ramaiah School of Advanced Studies, Bengaluru

Aircraft Performance, Stability and Control Session delivered by: Mr. Ramjan Pathan 1 Session Objectives Aircraft Performance: Basicsof performance (t (steadystateand tt d accelerated) Performance characteristics

air cadet publication ACP 33 flight volume 2 - principles of flight No Amendment List Date Amended by Date Incorporated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 i ACP 33 FLIGHT CONTENTS Volume 1... History

THE AIRCRAFT IN FLIGHT Issue /07/12

1 INTRODUCTION This series of tutorials for the CIX VFR Club are based on real world training. Each document focuses on a small part only of the necessary skills required to fly a light aircraft, and by

Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design

Preliminary Design Review (PDR) Aerodynamics #2 AAE-451 Aircraft Design Aircraft Geometry (highlight any significant revisions since Aerodynamics PDR #1) Airfoil section for wing, vertical and horizontal

The Metric Glider. By Steven A. Bachmeyer. Aerospace Technology Education Series

The Metric Glider By Steven A. Bachmeyer Aerospace Technology Education Series 10002 Photographs and Illustrations The author wishes to acknowledge the following individuals and organizations for the photographs

Lesson: Pitch Trim. Materials / Equipment Publications o Flight Training Manual for Gliders (Holtz) Lesson 4.4 Using the Trim Control.

11/18/2015 Pitch Trim Page 1 Lesson: Pitch Trim Objectives: o Knowledge o An understanding of the aerodynamics related to longitudinal (pitch) stability o Skill o Use of the pitch trim system to control

XI.B. Power-On Stalls

XI.B. Power-On Stalls References: AC 61-67; FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge

XI.C. Power-Off Stalls

References: FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge of stalls regarding aerodynamics,

Homework Exercise to prepare for Class #2.

Homework Exercise to prepare for Class #2. Answer these on notebook paper then correct or improve your answers (using another color) by referring to the answer sheet. 1. Identify the major components depicted

wind wobble unstable

Rocket Stability During the flight of a model rocket, gusts of wind or thrust instabilities, can cause the rocket to "wobble", or change its attitude in flight. Poorly built or designed rockets can also

Ottawa Remote Control Club Wings Program

+ Ottawa Remote Control Club Wings Program Guide line By Shahram Ghorashi Chief Flying Instructor Table of Contents Rule and regulation Quiz 3 Purpose of the program 4 Theory of flight Thrust 4 Drag 4

Front Cover Picture Mark Rasmussen - Fotolia.com

Flight Maneuvers And Stick and Rudder Skills A complete learn to fly handbook by one of aviation s most knowledgeable and experienced flight instructors Front Cover Picture Mark Rasmussen - Fotolia.com

PILOT S HANDBOOK of Aeronautical Knowledge AC61-23C

PILOT S HANDBOOK of Aeronautical Knowledge AC61-23C Revised 1997 Chapter 1 Excerpt Compliments of... www.alphatrainer.com Toll Free: (877) 542-1112 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

AIRCRAFT PRIMARY CONTROLS A I R C R A F T G E N E R A L K N O W L E D G E

1.02.02 AIRCRAFT PRIMARY CONTROLS 1. 0 2 A I R C R A F T G E N E R A L K N O W L E D G E CONTROLLING AIRCRAFT AIRCRAFT CONTROL SYSTEM In general, we use control inputs of the following devices in cabin:

C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings

C-130 Reduction in Directional Stability at Low Dynamic Pressure and High Power Settings The C-130 experiences a marked reduction of directional stability at low dynamic pressures, high power settings,

Aircraft Stability and Control Prof. A. K. Ghosh Department of Aerospace Engineering Indian Institute of Technology-Kanpur. Lecture- 25 Revision

Aircraft Stability and Control Prof. A. K. Ghosh Department of Aerospace Engineering Indian Institute of Technology-Kanpur Lecture- 25 Revision Yes, dear friends, this is the mann ki baat session for lateral

CHAPTER 1 - PRINCIPLES OF FLIGHT

CHAPTER 1 - PRINCIPLES OF FLIGHT Reilly Burke 2005 INTRODUCTION There are certain laws of nature or physics that apply to any object that is lifted from the Earth and moved through the air. To analyze

Detailed study 3.4 Topic Test Investigations: Flight

Name: Billanook College Detailed study 3.4 Topic Test Investigations: Flight Ivanhoe Girls Grammar School Questions 1 and 2 relate to the information shown in the diagram in Figure 1. z Question 1 y Figure

WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult.

GLIDER BASICS WHAT IS GLIDER? A light engineless aircraft designed to glide after being towed aloft or launched from a catapult. 2 PARTS OF GLIDER A glider can be divided into three main parts: a)fuselage

AERODYNAMICS VECTORS

AERODYNAMICS The challenge in explaining aerodynamics for glider pilots is to provide the information needed to fly safely and efficiently without overloading the student with complex theories. Meeting

It should be noted that the symmetrical airfoil at zero lift has no pitching moment about the aerodynamic center because the upper and

NAVWEPS -81-8 and high power, the dynamic pressure in the shaded area can be much greater than the free stream and this causes considerably greater lift than at zero thrust. At high power conditions the

PRIMARY FLIGHT CONTROLS. AILERONS Ailerons control roll about the longitudinal axis. The ailerons are attached to the outboard trailing edge of

Aircraft flight control systems are classified as primary and secondary. The primary control systems consist of those that are required to safely control an airplane during flight. These include the ailerons,

Lesson: Airspeed Control

11/20/2018 Airspeed Control Page 1 Lesson: Airspeed Control Objectives: o Knowledge o An understanding of the aerodynamics related to airspeed control o Skill o The ability to establish and maintain a

Aerobatic Trimming Chart

Aerobatic Trimming Chart From RCU - Chip Hyde addresses his view of Engine/Motor thrust. I run almost no right thrust in my planes and use the thottle to rudd mix at 2% left rudd. to throttle at idle.

Aerodynamics. A study guide on aerodynamics for the Piper Archer

Aerodynamics A study guide on aerodynamics for the Piper Archer Aerodynamics The purpose of this pilot briefing is to discuss the simple and complex aerodynamics of the Piper Archer. Please use the following

Related Careers: Aircraft Instrument Repairer Aircraft Designer Aircraft Engineer Aircraft Electronics Specialist Aircraft Mechanic Pilot US Military

Airplane Design and Flight Fascination with Flight Objective: 1. You will be able to define the basic terms related to airplane flight. 2. You will test fly your airplane and make adjustments to improve

BRONZE LECTURES. Slides on bayriver.co.uk/gliding

BRONZE LECTURES 2014 Slides on bayriver.co.uk/gliding 1 STUDY Lectures only meant to be a stimulus and provide an opportunity for questions EXAM paper is multi-choice with x sections. 2 READING BOOKS?

Aero Club. Introduction to Flight

Aero Club Presents Introduction to RC Modeling Module 1 Introduction to Flight Centre For Innovation IIT Madras Page2 Table of Contents Introduction:... 3 How planes fly How is lift generated?... 3 Forces

Theory of Flight Stalls. References: FTGU pages 18, 35-38

Theory of Flight 6.07 Stalls References: FTGU pages 18, 35-38 Review 1. What are the two main types of drag? 2. Is it possible to eliminate induced drag? Why or why not? 3. What is one way to increase

PRINCIPLES OF FLIGHT

CHAPTER 3 PRINCIPLES OF FLIGHT INTRODUCTION Man has always wanted to fly. Legends from the very earliest times bear witness to this wish. Perhaps the most famous of these legends is the Greek myth about

Gleim Private Pilot Flight Maneuvers Seventh Edition, 1st Printing Updates February 2018

Page 1 of 11 Gleim Private Pilot Flight Maneuvers Seventh Edition, 1st Printing Updates February 2018 If you are tested on any content not represented in our materials or this update, please share this

The Fly Higher Tutorial IV

The Fly Higher Tutorial IV THE SCIENCE OF FLIGHT In order for an aircraft to fly we must have two things: 1) Thrust 2) Lift Aerodynamics The Basics Representation of the balance of forces These act against

Aerodynamic Terms. Angle of attack is the angle between the relative wind and the wing chord line. [Figure 2-2] Leading edge. Upper camber.

Chapters 2 and 3 of the Pilot s Handbook of Aeronautical Knowledge (FAA-H-8083-25) apply to powered parachutes and are a prerequisite to reading this book. This chapter will focus on the aerodynamic fundamentals

Learning Objectives 081 Principles of Flight

Learning Objectives 081 Principles of Flight Conventions for questions in subject 081. 1. The following standard conventions are used for certain mathematical symbols: * multiplication. > = greater than

PRINCIPLES OF FLIGHT

PRINCIPLES OF FLIGHT A BASIC OVERVIEW Bruce Wall 1982 _ DEFINITIONS AEROFOIL This term is used to describe the curved cross AXES OF MOVEMENT sectional design of an aeroplane wing. Normally, the cross sectional

Advanced Stalling. L = CL ½ ρ V 2 S. L = angle of attack x airspeed. h L = angle of attack x h airspeed. Advanced Manoeuvres

Advanced Manoeuvres Advanced Stalling This Advanced Stalling lesson covers the factors that affect the observed airspeed and nose attitude at the stall. Although the aeroplane always stalls when the aerofoil

Lesson: Turning Flight. Prerequisites: Airspeed Control

2/16/2016 Turning Flight Page 1 Lesson: Turning Flight Prerequisites: Airspeed Control Objectives: o Knowledge o An understanding of the aerodynamics related to directional (yaw) stability o A basic understanding

VIII.A. Straight and Level Flight

VIII.A. Straight and Level Flight References: FAA-H-8083-3; FAA-H-8083-25 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop the

CHAPTER 9 PROPELLERS

CHAPTER 9 CHAPTER 9 PROPELLERS CONTENTS PAGE How Lift is Generated 02 Helix Angle 04 Blade Angle of Attack and Helix Angle Changes 06 Variable Blade Angle Mechanism 08 Blade Angles 10 Blade Twist 12 PROPELLERS

The Academy of Model Aeronautics ALPHA: Potential Energy Background Information for the Teacher

The Academy of Model Aeronautics ALPHA: Potential Energy Background Information for the Teacher When the rubber motor of a model plane is wound it becomes a form of stored potential energy. As the rubber

Designing a Model Rocket

Designing a Model Rocket Design Components In the following pages we are going to look at the design requirements for a stable single stage model rocket. From the diagram here you can see that the rocket

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM 1 TEM: 0292 FLT/DSP - (HP. 03) ERODYNMIS OD_PREG: PREG20084823 (8324) PREGUNT: When are inboard ailerons normally used? Low-speed

VIII.A. Straight and Level Flight

VIII.A. Straight and Level Flight References: FAA-H-8083-3; FAA-H-8083-25 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop the

No Description Direction Source 1. Thrust

AERODYNAMICS FORCES 1. WORKING TOGETHER Actually Lift Force is not the only force working on the aircraft, during aircraft moving through the air. There are several aerodynamics forces working together

Analysis of the Z-wing configuration

School of Innovation, Design and Engineering BACHELOR THESIS IN AERONAUTICAL ENGINEERING 15 CREDITS, BASIC LEVEL 300 Analysis of the Z-wing configuration Author: Joakim Avén Report code: MDH.IDT.FLYG.0231.2011.GN300.15HP.Ae

Straight and Level. Basic Concepts. Figure 1

Basic Concepts Straight and Level This lesson should start with you asking the student what they did in the last lesson, what do they remember, and determining if they have remembered correctly. We must

Aerodynamic Basics Larry Bogan - Jan 2002 version MECHANICS

Aerodynamic Basics Larry Bogan - Jan 2002 version MECHANICS Vectors Force, displacement, acceleration, and velocity Inertia and Velocity Inertia is a property of mass. (When there is no force on an object,

Aviation Merit Badge Knowledge Check Name: Troop: Location: Test Score: Total: Each question is worth 2.5 points. 70% is passing Dan Beard Council Aviation Knowledge Check 1 Question 1: The upward acting

II.D. Principles of Flight

II.D. Principles of Flight References: FAA-H-8083-3; FAA-H-8083-25 Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should develop knowledge

V mca (and the conditions that affect it)

V mca (and the conditions that affect it) V mca, the minimum airspeed at which an airborne multiengine airplane is controllable with an inoperative engine under a standard set of conditions, is arguably

Aerodynamics: The Wing Is the Thing

Page B1 Chapter Two Chapter Two Aerodynamics: The Wing Is the Thing The Wing Is the Thing May the Four Forces Be With You 1. [B1/3/2] The four forces acting on an airplane in flight are A. lift, weight,

Aircraft Stability and Performance 2nd Year, Aerospace Engineering. Dr. M. Turner

Aircraft Stability and Performance 2nd Year, Aerospace Engineering Dr. M. Turner Basic Info Timetable 15.00-16.00 Monday Physics LTA 16.00-17.00 Monday Physics LTA Exam 2 1 2 hour exam 6 questions 2 from

Flightlab Ground School 7. Longitudinal Dynamic Stability

Flightlab Ground School 7. Longitudinal Dynamic Copyright Flight Emergency & Advanced Maneuvers Training, Inc. dba Flightlab, 2009. All rights reserved. For Training Purposes Only Introduction to is the

Hints on Flying the Pilatus B4

Hints on Flying the Pilatus B4 This is an English summary of Jochen Reuter's paper, published on the SAGA-website www.sagach.ch I could not resist adding a few hints of my own, where I saw it appropriate.

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM 1 TEM: 0114 TP - (HP. 03) ERODYNMIS OD_PREG: PREG20078023 (8358) PREGUNT: What is the safest and most efficient takeoff and

Note: The following information might upset career aerodynamicists because it does not also include explanations of Mean Aerodynamic Center, Decalage, Neutral Point, and more when describing how to achieve

THEORY OF GLIDER FLIGHT

THEORY OF GLIDER FLIGHT In 1988 the Soaring Society rewrote the Joy Of Soaring originally written by Carle Conway. I was asked to assist in the rewriting. The following revision is part of what I recommended.

UNCORRECTED PAGE PROOFS

CHAPTER 18 How do heavy things fly? Contents Flight the beginning Forces acting on an aircraft Moving through fluids The Equation of Continuity Fluid speed and pressure Aerofoil characteristics Newton

PERFORMANCE MANEUVERS

Ch 09.qxd 5/7/04 8:14 AM Page 9-1 PERFORMANCE MANEUVERS Performance maneuvers are used to develop a high degree of pilot skill. They aid the pilot in analyzing the forces acting on the airplane and in

Trimming and Flying a Hand Launch Glider A basic and beginners guide by Kevin Moseley

Trimming and Flying a Hand Launch Glider A basic and beginners guide by Kevin Moseley First and foremost, I am by no means a master at what I have done, or do, in hlg or the class. I am fortunate enough

Medium, Climbing and Descending Turns

Basic Concepts Medium, Climbing and Descending Turns A medium turn is defined as a turn using up to 30 degrees angle of bank. Climbing and descending turns are combined with medium turns within this briefing,

POWERED FLIGHT HOVERING FLIGHT

Once a helicopter leaves the ground, it is acted upon by the four aerodynamic forces. In this chapter, we will examine these forces as they relate to flight maneuvers. POWERED FLIGHT In powered flight

TAILWHEEL AIRPLANES LANDING GEAR TAXIING

Ch 13.qxd 5/7/04 10:04 AM Page 13-1 TAILWHEEL AIRPLANES Tailwheel airplanes are often referred to as conventional gear airplanes. Due to their design and structure, tailwheel airplanes exhibit operational

Chapter 3: Aircraft Construction

Chapter 3: Aircraft Construction p. 1-3 1. Aircraft Design, Certification, and Airworthiness 1.1. Replace the letters A, B, C, and D by the appropriate name of aircraft component A: B: C: D: E: A = Empennage,

Aircraft Stability and Control Prof. A.K.Ghosh Department of Aerospace Engineering Indian Institute of Technology-Kanpur. Lecture-01 Introduction

Aircraft Stability and Control Prof. A.K.Ghosh Department of Aerospace Engineering Indian Institute of Technology-Kanpur Lecture-01 Introduction Wish you all very, very happy New Year. We are on the tarmac

file://c:\program Files\Microsoft Games\Microsoft Flight Simulator X\FSWeb\lessons\Stud...

Page 1 of 7 Lesson 2: Turns How Airplanes Turn Fly This Lesson Now by Rod Machado There are many misconceptions in aviation. For instance, there are pilots who think propwash is a highly specialized detergent.

BASIC AIRCRAFT STRUCTURES

Slide 1 BASIC AIRCRAFT STRUCTURES The basic aircraft structure serves multiple purposes. Such as aircraft aerodynamics; which indicates how smooth the aircraft flies thru the air (The Skelton of the aircraft

Flight Controls. Chapter 5. Introduction

Chapter 5 Flight Controls Introduction This chapter focuses on the flight control systems a pilot uses to control the forces of flight, and the aircraft s direction and attitude. It should be noted that

XI.D. Crossed-Control Stalls

References: FAA-H-8083-3; POH/AFM Objectives Key Elements Elements Schedule Equipment IP s Actions SP s Actions Completion Standards The student should understand the dynamics of a crossed-control stall

FORCES ACTING ON THE AIRPLANE

CH 03.qxd 10/24/03 6:44 AM Page 3-1 FORCES ACTING ON THE AIRPLANE In some respects at least, how well a pilot performs in flight depends upon the ability to plan and coordinate the use of the power and

1. GENERAL AERODYNAMICS

Chapter 1. GENERAL AERODYNAMICS Unless otherwise indicated, this handbook is based on a helicopter that has the following characteristics: 1 - An unsupercharged (normally aspirated) reciprocating engine.

The canard. Why such a configuration? Credit : Jean-François Edange

The canard Why such a configuration? Credit : Jean-François Edange N obody doubtless knows that a great majority of light or heavy planes share a common design. Schematically, we find a fuselage, wings

FAA AC 61-13B Basic Helicopter Handbook

FAA AC 61-13B Basic Helicopter Handbook Chapter 1. GENERAL AERODYNAMICS Unless otherwise indicated, this handbook is based on a helicopter that has the following characteristics: 1 - An unsupercharged

Flight Corridor. The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor.

Flight Corridor The speed-altitude band where flight sustained by aerodynamic forces is technically possible is called the flight corridor. The subsonic Boeing 747 and supersonic Concorde have flight corridors

Building Instructions ME 163 B 1a M 1:5 Turbine

Building Instructions ME 163 B 1a M 1:5 Turbine Thank you for choosing our kit of the Me-163B. We ask you to read the instruction once in advance before building this kit in order to avoid mistakes. Make

3D Torque Roll Introduction

3D Torque Roll Introduction The awe inspiring torque roll consists of rolling to the left while hovering. There are two methods pilots use to effect torque rolls. The first is to establish a stable hover

ATPL Principles of Flight - deel 2

ATPL Principles of Flight - deel 2 1. If flaps are deployed at constant IAS in straight and level flight, the magnitude of tip vortices will eventually: (flap span less then wing span) A decrease B remain

HOW AND WHY DO GLIDERS FLY - WHAT SHAPE SHOULD THEY BE?

HOW AND WHY DO GLIDERS FLY - WHAT SHAPE SHOULD THEY BE? What is flight? We all understand that air is a fluid, not dissimilar to, if lighter than, water, and we can all appreciate that an immerse body

Uncontrolled copy not subject to amendment. Principles of Flight

Uncontrolled copy not subject to amendment Principles of Flight Principles of Flight Learning Outcome 3: Know the principles of stalling Principles of Flight Revision Questions What effect does a Trailing

X-29 Canard Jet. A Simple Depron Foam Build.

X-29 Canard Jet. A Simple Depron Foam Build. Two full sized X-29 s were built and the first flew in 1984. They were experimental aircraft, testing this unusual configuration of a canard jet with swept

Things to remember when flying N102RE or any Taildragger

Page 1 of 8 Things to remember when flying N102RE or any Taildragger 1. The Center of Gravity (CG) is behind the main between a taildragger (i.e. conventional gear airplane) and a tricycle gear airplane

CHAPTER 5 AEROBATICS AND FORMATION FLYING

CHAPTER 5 AEROBATICS AND FORMATION FLYING 1. There is much more to flying than just taking off and landing. RAF training involves a sequence of carefully graded air exercises, which are far beyond the

Preliminary design of a high-altitude kite. A flexible membrane kite section at various wind speeds

Preliminary design of a high-altitude kite A flexible membrane kite section at various wind speeds This is the third paper in a series that began with one titled A flexible membrane kite section at high

DEFINITIONS. Aerofoil

Aerofoil DEFINITIONS An aerofoil is a device designed to produce more lift (or thrust) than drag when air flows over it. Angle of Attack This is the angle between the chord line of the aerofoil and the

Stalls and Spins. Tom Johnson CFIG

Stalls and Spins Tom Johnson CFIG Contents Angle of Attack Stall Recognition and Recovery Spin Entry and Recovery Load Limit Considerations Gust Induced Stall and Spin Accidents Stalls a stall is a loss

1. Introduction This example loads report is intended to be read in conjunction with BCAR Section S and CS-VLA both of which can be downloaded from the LAA webpage, and the excellent book Light Aircraft

ANNEX 5A F3A - RADIO CONTROLLED AEROBATIC MODEL AIRCRAFT DESCRIPTION OF MANOEUVRES

5.1.13. Schedule of Manoeuvres For (2011)-2012 Schedule A-12 is recommended to be flown in local competitions as to offer advanced pilots a suitable measure to achieve skills to step-up to P-13 Schedules.