PRELIMINARY STUDY ON DEVELOPING AN L-BAND WIND RETRIEVAL MODEL FUNCTION USING ALOS/PALSAR

Size: px
Start display at page:

Download "PRELIMINARY STUDY ON DEVELOPING AN L-BAND WIND RETRIEVAL MODEL FUNCTION USING ALOS/PALSAR"

Transcription

1 PRELIMINARY STUDY ON DEVELOPING AN L-BAND WIND RETRIEVAL MODEL FUNCTION USING ALOS/PALSAR Osamu Isoguchi, Masanobu Shimada Earth Observation Research Center, Japan Aerospace Exploration Agency (JAXA) Sengen, Tsukuba, Ibaraki, , Japan ABSTRACT The relationship between ocean wind vectors and L- band normalized radar cross sections (NRCS) is examined using the Phased-Array L-band Synthetic Aperture Radar (PALSAR). We used PALSAR ScanSAR images with a wide range of incidence angles from 17º to 43º. More than 6,000 match-ups, each consisting of the NRCS, incidence angles, wind speeds and wind directions, were collected. The NRCS exhibits a power-law relationship with respect to the wind speed. The coefficients of the power law can be derived as a function of the incidence angles. Based on this relation, the wind speeds are then inversely estimated from the NRCS and the incidence angles. A comparison with the truth winds reveals -0.68m/s bias and 2.99m/s rms error, demonstrating the feasibility of L-band scatterometry. Collecting more match-ups and further considering wind-direction dependence, which was not included in this study, would lead to the derivation of a robust L-band model function. 1. INTRODUCTION Wind fields are very important to human activity. They are modified drastically in coastal areas, where sharp variations in heat, moisture, and momentum transfers as well as elevation occur between land and sea. Although the behavior of coastal wind fields has an immediate effect on social activities such as marine traffic and leisure, our understanding of these phenomena is inadequate due to the difficulty of conducting in-situ observations over the coastal seas with sufficient temporal and spatial resolution. Synthetic Aperture Radar (SAR) can provide highspatial-resolution images of ocean-surface roughness. It can be used to estimate wind speed even in coastal areas. Wind stress variations on the sea surface modulate the roughness, changing the backscattered radar power, usually expressed as normalized radar cross sections (NRCS). An empirical relation between NRCS and wind speeds known as the geophysical model function (GMF) has been established using scatterometermeasured NRCS and buoy or model winds [1] [2] [3]. SAR images can thus be used to resolve high-resolution wind fields by applying the model functions. Recently, SAR-measured NRCS have been directly compared with buoy and scatterometer-estimated winds to establish an L-band model function [4]. However, it does not take account of incidence angle dependency due to constraints on JERS-1 operation. In January 2006, the Japan Aerospace Exploration Agency (JAXA) launched the Advanced Land Observing Satellite (ALOS), which carries the Phased-Array L-band Synthetic Aperture Radar (PALSAR). PALSAR can observe the Earth with various off-nadir angles and has a ScanSAR function that enabled us to investigate incidence angle dependency and to develop an L-band model function. In this study, we investigate the relationship between NRCS from PALSAR and co-located wind data. 2. DATA AND METHOD We used PALSAR data observed with the ScanSAR HH mode from April to December The strip slantrange images produced by the Σ-SAR processor [5] cover a 350km swath with incidence angles ranging from 17º to 43º. The digital numbers (DN) of the PALSAR amplitude images are converted to NRCS by applying a conversion factor (CF) of -83 db. o 2 σ = 10 log 10 DN + CF (1) For truth winds, we used two types of products, depending on the time period: QSCAT/NCEP Blended Ocean Winds from Colorado Research Associates for April-June 2006, and the Center for Ocean-Atmospheric Prediction Studies (COAPS) QuikSCAT Global Daily Pseudo-Stress Vectors for July-November The QSCAT/NCEP are ocean-surface wind data derived by spatial blending of high-resolution satellite data (from the Seawinds instrument on the QuickSCAT satellite) and global weather center analyses (NCEP). The analyses have global coverage with high temporal and spatial resolutions (6-hourly, and 0.5 x 0.5 degree) [6]. The COAPS winds are produced using a variational approach (direct minimization) with tuning parameters determined using Generalized Cross-Validation (GCV) [7]. These products are on a 1 1 grid. We made a match-up data set consisting of the PALSAR NRCS, incidence angles, wind speeds, and relative wind directions from the PALSAR and co-located wind data. The relative wind direction represents the difference between the wind direction and the PALSAR beam angle. The wind speed and direction are linearly interpolated using the 6-hourly data pair acquired before and after the PALSAR observation. Data having Proc. Envisat Symposium 2007, Montreux, Switzerland April 2007 (ESA SP-636, July 2007)

2 changes in wind speeds > 2m/s or in wind directions > 20 o during the 6-hour period are eliminated. Fig. 1(a) is a PALSAR ScanSAR image acquired around Hokkaido, Japan, at 1247 UTC 8 June 2006, upon which the QSCAT/NCEP winds at 1200 UTC have been superimposed. The latitude-longitude coordinate in Fig. 1(a) is converted into a satellite ground track (azimuth-range) coordinate (Fig. 1(b)). In this coordinate system, incidence angles are a function of range addresses. The NRCS are calculated for a region of about 5 5km centered at the wind observation points. Data taken within 50km of the coast were eliminated to avoid land contamination. In total, 6,015 match-ups were collected. Fig. 2 presents histograms of the wind speeds and directions. Currently, we cannot collect sufficient data to establish a robust GMF, especially in strong wind ranges (> 10m/s) and in crosswind directions (90º and 270º). Figure 2. Histograms of match-up data with respect to (a) wind-speed bins and (b) wind-direction bins. 3. RESULTS Fiure 1. (a) PALSAR ScanSAR geo-coded image acquired around Hokkaido, Japan, at 1247 UTC 8 June 2006, with QSCAT/NCEP winds at 1200 UTC superimposed. (b) Same as (a) except for a satellite ground track (azimuth-range) coordinate. The GMF of NRCS over the ocean is generally expressed as σº = A 0 (1+A 1 cosφ+a 2 cos2φ), (2) where φ is the wind direction and A n s are functions of the wind speed and incidence angle. In order to investigate the dependency of NRCS on wind speed, wind direction, and incidence angle, the matchups were classified into bins of 1m/s wind speed, 11.25º wind direction, and 5.2º incidence angle. Any data whose deviation exceeded 3σ was excluded. The mean and standard deviation were then calculated for each bin whose final count was larger than 10. The A 0 coefficient in Eq. 2 generally indicates a power law of A 0 =kw a, where W is the wind speed. Assuming A 1 =0, we calculated a modified NRCS (σº/(1+a 2 cos2φ)), normalized with respect to the wind directions and their average, for each wind-speed and incidence-angle bin. We then derived wind-speed coefficients (a) and backscattered power coefficients (b=10log 10 k), using the least-square method, for various A 2 s ranging from 0 to 0.2 at 0.05 intervals. The errors reached a minimum when A 2 ranged from 0 to 0.05, which is generally consistent with past results for L-band airborne SAR (A 2 =0.05±0.05) [8]. It seems that the wind-direction dependence of the L-band is not as significant as that of the c-band or the Ku-band. In the following sections, we

3 focus on a simple power law relationship (σº= kw a ) in which wind-direction dependence is not considered (A 1, A 2 =0). Only the incidence-angle dependency on the wind-speed (a) and backscattered power coefficients (b) was investigated. Figure 3. Scatter plots of the NRCS with respect to the incidence angle. The data are colored according to the wind-speed bin. First, the NRCS variation within a bin (5º width) due to incidence-angle dependency is modified by approximating the value at a central incidence angle. Fig. 3 presents scatter plots of the NRCS with respect to the incidence angle, colored depending on the wind speed. The NRCS in each wind-speed bin decreases in a roughly linear fashion with the incidence angle. In addition, they increase stepwise with the wind speed. However, those in the lower wind range (< 3m/s) are scattered off the mode toward the low-nrcs direction. Here, we modify the NRCS by assuming a constant slope for all wind-speed and incidence-angle ranges. Linear approximation formulas for each wind range are calculated. Because their slopes converge at about for wind speeds of 4 to 14m/s, the NRCSs are modified based on their mean (A=-0.628): σº =σº +A(θ-θ o ), (3) where σº is the modified NRCS, θ is the incidence angle, and θ o is the central incidence angle at each bin. The mean and standard deviation of the modified NRCS were calculated for each incidence-angle and windspeed bin and are plotted with respect to wind speeds in Fig. 4. The x-axis for wind speed is logarithmic. The means increase linearly with the logarithm of wind speed, revealing a roughly power-law relationship, although the anomalies in the relations and the standard deviations are large for wind speeds lower than 3m/s. Also indicated is their step-like decrease with respect to the incidence angle. Linear approximation formulas were derived from the data for wind speeds greater than 3m/s and are superimposed on the plots. Figure 4. Plots of the mean NRCS with respect to wind speed, calculated for each incidence angle and windspeed bin. The x-axis for the wind speed is logarithmic. Linear approximations for each incidence-angle bin are superimposed. Figure 5. (a) Wind-speed and (b) back-scattered power coefficients with respect to the incidence angle. Coefficients for the c-band and Ku-band are superimposed.

4 result was derived based on assumptions of no winddirection dependency and no wind-speed dependency for the wind-speed coefficient (a). However, a close look at Fig. 4 reveals the wind-speed dependence of the power law: the slopes (i.e. the wind speed coefficients (a)) seem to change around 8m/s. In addition, a relatively clear wind-direction dependence was confirmed for large incidence angles and high windspeed ranges (not shown). Currently, there are not enough match-ups, especially for high winds and crosswinds, to take these dependencies into account. We plan to conduct detailed derivations involving these effects after collecting more match-ups. 4. SUMMARY Figure 6. Histograms of scattering diagram relating the truth and SAR-estimated wind speeds. The wind-speed and backscattered power coefficients are derived from the formulas for each incidence-angle bin (Fig. 5). Those for the c- and Ku-bands, based on existing GMFs [2][3], are overlaid. The backscattered power coefficients decrease with the incidence angle. The decrease is smaller than those in the c- and Kubands, resulting in a smaller total dynamic range (from - 24 to -12dB). The wind-speed coefficients also decrease with the incidence angle, which is opposite of the results from the c- and Ku-band. The value of 0.9 at a 20º incidence angle is larger than that derived from the airborne SAR (0.5±0.1) [8]. Assuming no wind-speed dependency, the wind-speed (a) and backscattered power (b) coefficients were approximated by a third-degree equation involving incidence angles. Based on this derived relationship, we estimated the approximate wind speed from the NRCS and incidence angle as: W sar =10^((NRCS-b(θ))/(10 a(θ))), (4) where W sar is the SAR-derived speed and θ is the incidence angle. Fig. 6 presents histograms of the scattering diagram relating the truth and SAR-derived wind speeds. The comparison indicates -0.68m/s bias and 2.99m/s root mean square (rms) error. The result certainly suggests the feasibility of L-band scatterometry. However, the plot still exhibits relatively large deviations, with those derived by SAR tending to be underestimated in the low-speed range (< 5m/s) and overestimated in the high-speed range (> 10m/s). This We investigated the relationship between wind fields and L-band NRCS, derived from the ALOS/PALSAR ScanSAR data, over the ocean. By co-registering the QuikSCAT-based winds onto the PALSAR images, more than 6,000 match-ups consisting of the NRCS, incidence angles, wind speeds, and wind directions were collected. This marks the first time that this kind of comprehensive investigation of L-band NRCS for ocean wind vectors has been conducted. Because no significant wind-direction dependency was found within the current match-ups, only the dependencies of the NRCS on wind speed and incidence angle were examined in this study. The plots with respect to wind speed roughly follow a power-law relationship, depending on the incidence angle. We derived the wind-speed and backscattered power coefficients as a function of the incidence angle. Wind speeds were inversely estimated from the NRCS and incidence angles of the match-ups based on this derived relationship. A comparison of the estimations with the truth winds indicates a bias of -0.68m/s and an rms error of 2.99m/s. This accuracy does not achieve the quality of real-world usage in the current manner. Further consideration regarding wind-direction and wind-speed dependency would improve the accuracy. The result indicates the feasibility of wind-field detection by an L-band SAR. It should be noted, however, that maintaining radiometric accuracy seems to be more critical for an L-band SAR than for a c-band SAR due to its narrower dynamic range for wind-speed variations. RERERENCES 1. Stoffelen, A. & Anderson, D. (1997). Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res. 102,

5 2. Stoffelen, A. & Anderson, D. (1997). Scatterometer data interpretation: measurement space and inversion. J. Atmos. Oceanic Technol. 14, Wentz, F. J. & Smith, D. K. (1999) A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res. 104, Shimada, T., Kawamura, H. & Shimada, M. (2003) An L-band geophysical model function for SAR wind retrieval using JERS-1 SAR. IEEE Trans. Geosci. Remote Sensing. 41, Shimada, M. (1999) Verification processor for SAR calibration and interferometry. Advances in Space Research. 23, Chin, T. M., Milliff, R. F. & Large W. G. (1998) Basin-Scale High-Wavenumber Sea Surface Wind Fields from Multiresolution Analysis of Scatterometer Data. Journal of Atmospheric and Oceanic Technology. 15, Pegion, P. J., Bourassa, M. A., Legler, D. M. & O'Brien, J. J. (2000) Objectively-derived daily "winds" from satellite scatterometer data. Mon. Wea Rev. 128, Thompson, T. W., Weissman, D. E. & Gonzalez, F. I. (1983) L band radar backscatter dependence upon surface wind stress: A summary of new SEASAT-1 and Aircraft observations. J. Geophys. Res. 88,

Development of SAR-Derived Ocean Surface Winds at NOAA/NESDIS

Development of SAR-Derived Ocean Surface Winds at NOAA/NESDIS Development of SAR-Derived Ocean Surface Winds at NOAA/NESDIS Pablo Clemente-Colón, William G. Pichel, NOAA/NESDIS Frank M. Monaldo, Donald R. Thompson The Johns Hopkins University Applied Physics Laboratory

More information

Reprocessed QuikSCAT (V04) Wind Vectors with Ku-2011 Geophysical Model Function

Reprocessed QuikSCAT (V04) Wind Vectors with Ku-2011 Geophysical Model Function Reprocessed QuikSCAT (V04) Wind Vectors with Ku-2011 Geophysical Model Function Lucrezia Ricciardulli and Frank Wentz Introduction In April 2011, we reprocessed the QuikSCAT ocean wind vectors using a

More information

SIMON YUEH, WENQING TANG, ALEXANDER FORE, AND JULIAN CHAUBELL JPL-CALTECH, PASADENA, CA, USA GARY LAGERLOEF EARTH AND SPACE RESEARCH, SEATTLE, WA, US

SIMON YUEH, WENQING TANG, ALEXANDER FORE, AND JULIAN CHAUBELL JPL-CALTECH, PASADENA, CA, USA GARY LAGERLOEF EARTH AND SPACE RESEARCH, SEATTLE, WA, US Applications of L-Band Scatterometry and Radiometry to Aquarius and SMAP SIMON YUEH, WENQING TANG, ALEXANDER FORE, AND JULIAN CHAUBELL JPL-CALTECH, PASADENA, CA, USA GARY LAGERLOEF EARTH AND SPACE RESEARCH,

More information

Geophysical Model Functions for the Retrieval of Ocean Surface Winds

Geophysical Model Functions for the Retrieval of Ocean Surface Winds Geophysical Model Functions for the Retrieval of Ocean Surface Winds Donald R. Thompson and Frank M. Monaldo Johns Hopkins University Applied Physics Laboratory 11100 Johns Hopkins Road, Laurel, MD 20708

More information

CHANGE OF THE BRIGHTNESS TEMPERATURE IN THE MICROWAVE REGION DUE TO THE RELATIVE WIND DIRECTION

CHANGE OF THE BRIGHTNESS TEMPERATURE IN THE MICROWAVE REGION DUE TO THE RELATIVE WIND DIRECTION JP4.12 CHANGE OF THE BRIGHTNESS TEMPERATURE IN THE MICROWAVE REGION DUE TO THE RELATIVE WIND DIRECTION Masanori Konda* Department of Geophysics, Graduate School of Science, Kyoto University, Japan Akira

More information

Using several data sources for offshore wind resource assessment

Using several data sources for offshore wind resource assessment Author manuscript, published in ", Copenhagen : Denmark (2005)" Ben Ticha M. B., Ranchin T., Wald L., Using several data sources for offshore wind resource assessment, 2005, Using several data sources

More information

ON THE USE OF DOPPLER SHIFT FOR SAR WIND RETRIEVAL

ON THE USE OF DOPPLER SHIFT FOR SAR WIND RETRIEVAL ON THE USE OF DOPPLER SHIFT FOR SAR WIND RETRIEVAL K-F. Dagestad 1, A. Mouche 2, F. Collard 2, M. W. Hansen 1 and J. Johannessen 1 (1) Nansen Environmental and Remote Censing Center, Thormohlens gt 47,

More information

SENSOR SYNERGY OF ACTIVE AND PASSIVE MICROWAVE INSTRUMENTS FOR OBSERVATIONS OF MARINE SURFACE WINDS

SENSOR SYNERGY OF ACTIVE AND PASSIVE MICROWAVE INSTRUMENTS FOR OBSERVATIONS OF MARINE SURFACE WINDS SENSOR SYNERGY OF ACTIVE AND PASSIVE MICROWAVE INSTRUMENTS FOR OBSERVATIONS OF MARINE SURFACE WINDS N. Ebuchi Institute of Low Temperature Science, Hokkaido University, N19-W8, Kita-ku, Sapporo 060-0819,

More information

THE EFFECT OF RAIN ON ASCAT OBSERVATIONS OF THE SEA SURFACE RADAR CROSS SECTION USING SIMULTANEOUS 3-D NEXRAD RAIN MEASUREMENTS

THE EFFECT OF RAIN ON ASCAT OBSERVATIONS OF THE SEA SURFACE RADAR CROSS SECTION USING SIMULTANEOUS 3-D NEXRAD RAIN MEASUREMENTS THE EFFECT OF RAIN ON ASCAT OBSERVATIONS OF THE SEA SURFACE RADAR CROSS SECTION USING SIMULTANEOUS 3-D NERAD RAIN MEASUREMENTS David E. Weissman Hofstra University Hempstead, New York 11549 Mark A. Bourassa

More information

High resolution wind retrieval for SeaWinds

High resolution wind retrieval for SeaWinds High resolution wind retrieval for SeaWinds David G. Long and Jeremy B. Luke Brigham Young University, 459 Clyde Building, Provo, UT 84602, USA ABSTRACT The SeaWinds instrument on the QuikSCAT satellite

More information

Satellite information on ocean vector wind from Scatterometer data. Giovanna De Chiara

Satellite information on ocean vector wind from Scatterometer data. Giovanna De Chiara Satellite information on ocean vector wind from Scatterometer data Giovanna De Chiara Why is Scatterometer important? The scatterometer measures the ocean surface winds (ocean wind vector). Ocean surface

More information

Wind Direction Analysis over the Ocean using SAR Imagery

Wind Direction Analysis over the Ocean using SAR Imagery Journal of Information & Computational Science 5: 1 (2008) 223-231 Available at http: www.joics.com Wind Direction Analysis over the Ocean using SAR Imagery Kaiguo Fan a,b,, Weigen Huang a, Mingxia He

More information

EVALUATION OF ENVISAT ASAR WAVE MODE RETRIEVAL ALGORITHMS FOR SEA-STATE FORECASTING AND WAVE CLIMATE ASSESSMENT

EVALUATION OF ENVISAT ASAR WAVE MODE RETRIEVAL ALGORITHMS FOR SEA-STATE FORECASTING AND WAVE CLIMATE ASSESSMENT EVALUATION OF ENVISAT ASAR WAVE MODE RETRIEVAL ALGORITHMS FOR SEA-STATE FORECASTING AND WAVE CLIMATE ASSESSMENT F.J. Melger ARGOSS, P.O. Box 61, 8335 ZH Vollenhove, the Netherlands, Email: info@argoss.nl

More information

OCEAN vector winds from the SeaWinds instrument have

OCEAN vector winds from the SeaWinds instrument have IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 6, NO. 3, JULY 2009 413 Coastal Validation of Ultra-High Resolution Wind Vector Retrieval From QuikSCAT in the Gulf of Maine A. M. Plagge, Student Member,

More information

Jackie May* Mark Bourassa. * Current affilitation: QinetiQ-NA

Jackie May* Mark Bourassa. * Current affilitation: QinetiQ-NA Jackie May* Mark Bourassa * Current affilitation: QinetiQ-NA Background/Motivation In situ observations (ships and buoys) are used to validate satellite observations Problems with comparing data Sparseness

More information

A. Bentamy 1, S. A. Grodsky2, D.C. Fillon1, J.F. Piollé1 (1) Laboratoire d Océanographie Spatiale / IFREMER (2) Univ. Of Maryland

A. Bentamy 1, S. A. Grodsky2, D.C. Fillon1, J.F. Piollé1 (1) Laboratoire d Océanographie Spatiale / IFREMER (2) Univ. Of Maryland Calibration and Validation of Multi-Satellite scatterometer winds A. Bentamy 1, S. A. Grodsky2, D.C. Fillon1, J.F. Piollé1 (1) Laboratoire d Océanographie Spatiale / IFREMER (2) Univ. Of Maryland Topics

More information

THE QUALITY OF THE ASCAT 12.5 KM WIND PRODUCT

THE QUALITY OF THE ASCAT 12.5 KM WIND PRODUCT THE QUALITY OF THE ASCAT 12.5 KM WIND PRODUCT Jur Vogelzang, Ad Stoffelen, Maria Belmonte, Anton Verhoef, and Jeroen Verspeek Royal Netherlands Meteorological Institute, Wilhelminalaan 10, 3732 GK, De

More information

STUDY OF LOCAL WINDS IN MOUNTAINOUS COASTAL AREAS BY MULTI- SENSOR SATELLITE DATA

STUDY OF LOCAL WINDS IN MOUNTAINOUS COASTAL AREAS BY MULTI- SENSOR SATELLITE DATA STUDY OF LOCAL WINDS IN MOUNTAINOUS COASTAL AREAS BY MULTI- SENSOR SATELLITE DATA Werner Alpers Institute of Oceanography, University of Hamburg, Bundesstrasse 53, D-20146 Hamburg, Germany E-mail: alpers@ifm.uni-hamburg.de

More information

Wind Stress Working Group 2015 IOVWST Meeting Portland, OR

Wind Stress Working Group 2015 IOVWST Meeting Portland, OR Wind Stress Working Group 2015 IOVWST Meeting Portland, OR Summary of Research Topics, Objectives and Questions James B. Edson University of Connecticut SPURS Mooring, Farrar, WHOI Background Motivation

More information

Sentinel-1A Ocean Level-2 Products Validation Strategy

Sentinel-1A Ocean Level-2 Products Validation Strategy Sentinel-1A Ocean Level-2 Products Validation Strategy Sentinel-1 Mission Performance Centre ESL L2 Team and Ocean Data Lab G.Hajduch (1), A.Mouche (2), P.Vincent (1), R.Husson (1), H.Johnsen (3), F.Collard

More information

Aquarius Sca+erometer Calibra3on

Aquarius Sca+erometer Calibra3on Aquarius Sca+erometer Calibra3on Fore, A., Neumann, G., Freedman, A., Chaubell, M., Tang, W., Hayashi, A., and Yueh, S. 217 California Ins3tute of Technology, Government Sponsorship acknowledged Aquarius

More information

The Ice Contamination Ratio Method: Accurately Retrieving Ocean Winds Closer to the Sea Ice Edge While Eliminating Ice Winds

The Ice Contamination Ratio Method: Accurately Retrieving Ocean Winds Closer to the Sea Ice Edge While Eliminating Ice Winds The Ice Contamination Ratio Method: Accurately Retrieving Ocean Winds Closer to the Sea Ice Edge While Eliminating Ice Winds David Long Department of Electrical and Computer Engineering Brigham Young University

More information

HIGH RESOLUTION WIND RETRIEVAL FOR SEAWINDS ON QUIKSCAT. Jeremy B. Luke. A thesis submitted to the faculty of. Brigham Young University

HIGH RESOLUTION WIND RETRIEVAL FOR SEAWINDS ON QUIKSCAT. Jeremy B. Luke. A thesis submitted to the faculty of. Brigham Young University HIGH RESOLUTION WIND RETRIEVAL FOR SEAWINDS ON QUIKSCAT by Jeremy B. Luke A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master

More information

ENVISAT WIND AND WAVE PRODUCTS: MONITORING, VALIDATION AND ASSIMILATION

ENVISAT WIND AND WAVE PRODUCTS: MONITORING, VALIDATION AND ASSIMILATION ENVISAT WIND AND WAVE PRODUCTS: MONITORING, VALIDATION AND ASSIMILATION Peter A.E.M. Janssen (), Saleh Abdalla (), Jean-Raymond Bidlot (3) European Centre for Medium-Range Weather Forecasts, Shinfield

More information

ERS-1/2 Scatterometer new products: mission reprocessing and data quality improvement

ERS-1/2 Scatterometer new products: mission reprocessing and data quality improvement ERS-1/2 Scatterometer new products: mission reprocessing and data quality improvement Giovanna De Chiara (1), Raffaele Crapolicchio (1), Pascal Lecomte (2) (1) Serco SpA Via Sciadonna 22-24 Frascati (Roma),

More information

Review of Equivalent Neutral Winds and Stress

Review of Equivalent Neutral Winds and Stress Review of Equivalent Neutral Winds and Stress Mark A. Bourassa Center for Ocean-Atmospheric Prediction Studies, Geophysical Fluid Dynamics Institute & Department of Earth, Ocean and Atmospheric Science

More information

OBSERVATION OF HURRICANE WINDS USING SYNTHETIC APERTURE RADAR

OBSERVATION OF HURRICANE WINDS USING SYNTHETIC APERTURE RADAR OBSERVATION OF HURRICANE WINDS USING SYNTHETIC APERTURE RADAR Jochen Horstmann 1, Wolfgang Koch 1,DonaldR.Thompson 2, and Hans C. Graber 3 1 Institute for Coastal Research, GKSS Research Center, Geesthacht,

More information

IMPROVED BAYESIAN WIND VECTOR RETRIEVAL SCHEME USING ENVISAT ASAR DATA: PRINCIPLES AND VALIDATION RESULTS

IMPROVED BAYESIAN WIND VECTOR RETRIEVAL SCHEME USING ENVISAT ASAR DATA: PRINCIPLES AND VALIDATION RESULTS IMPROVED BAYESIAN WIND VECTOR RETRIEVAL SCHEME USING ENVISAT ASAR DATA: PRINCIPLES AND VALIDATION RESULTS Vincent Kerbaol (1), and the SAR Ocean Wind, Waves and Currents Team (1) BOOST Technologies, 115

More information

RapidScat wind validation report

RapidScat wind validation report Ocean and Sea Ice SAF Technical Note SAF/OSI/CDOP2/KNMI/TEC/RP/228 25 and 50 km wind products (OSI-109) Anton Verhoef, Jur Vogelzang and Ad Stoffelen KNMI Version 1.1 March 2015 DOCUMENTATION CHANGE RECORD

More information

Validation of 12.5 km Resolution Coastal Winds. Barry Vanhoff, COAS/OSU Funding by NASA/NOAA

Validation of 12.5 km Resolution Coastal Winds. Barry Vanhoff, COAS/OSU Funding by NASA/NOAA Validation of 12.5 km Resolution Coastal Winds Barry Vanhoff, COAS/OSU Funding by NASA/NOAA Outline Part 1: Determining empirical land mask Characterizing σ 0 near coast Part 2: Wind retrieval using new

More information

Comparison of data and model predictions of current, wave and radar cross-section modulation by seabed sand waves

Comparison of data and model predictions of current, wave and radar cross-section modulation by seabed sand waves Comparison of data and model predictions of current, wave and radar cross-section modulation by seabed sand waves Cees de Valk, ARGOSS Summary SAR Imaging of seabed features Seabed Sand waves Objectives

More information

Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations

Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations Ocean Sci., 4, 265 274, 2008 Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Ocean Science Characterization of ASCAT measurements based on buoy and QuikSCAT

More information

ERS WAVE MISSION REPROCESSING- QC SUPPORT ENVISAT MISSION EXTENSION SUPPORT

ERS WAVE MISSION REPROCESSING- QC SUPPORT ENVISAT MISSION EXTENSION SUPPORT REPORT 8/2011 ISBN 978-82-7492-248-8 ISSN 1890-5218 ERS WAVE MISSION REPROCESSING- QC SUPPORT ENVISAT MISSION EXTENSION SUPPORT - Annual Report 2010 Author (s): Harald Johnsen (Norut), Fabrice Collard

More information

THE POLARIMETRIC CHARACTERISTICS OF BOTTOM TOPOGRAPHY RELATED FEATURES ON SAR IMAGES

THE POLARIMETRIC CHARACTERISTICS OF BOTTOM TOPOGRAPHY RELATED FEATURES ON SAR IMAGES THE POLARIMETRIC CHARACTERISTICS OF BOTTOM TOPOGRAPHY RELATED FEATURES ON SAR IMAGES Taerim Kim Professor, Ocean System Eng. Dept. Kunsan University Miryong Dong San 68, Kunsan, Jeonbuk, Korea, trkim@kunsan.ac.kr

More information

Analyses of Scatterometer and SAR Data at the University of Hamburg

Analyses of Scatterometer and SAR Data at the University of Hamburg Analyses of Scatterometer and SAR Data at the University of Hamburg Wind, Waves, Surface Films and Rain ГАДЕ, Мартин Хорстович (aka Martin Gade) Institut für Meereskunde, Universität Hamburg, Германия

More information

Surface Wave Parameters Retrieval in Coastal Seas from Spaceborne SAR Image Mode Data

Surface Wave Parameters Retrieval in Coastal Seas from Spaceborne SAR Image Mode Data PIERS ONLINE, VOL. 4, NO. 4, 28 445 Surface Wave Parameters Retrieval in Coastal Seas from Spaceborne SAR Image Mode Data Jian Sun 1,2 and Hiroshi Kawamura 1 1 Graduate School of Science, Tohoku University,

More information

Cross-Calibrating OSCAT Land Sigma-0 to Extend the QuikSCAT Land Sigma-0 Climate Record

Cross-Calibrating OSCAT Land Sigma-0 to Extend the QuikSCAT Land Sigma-0 Climate Record Cross-Calibrating OSCAT Land Sigma-0 to Extend the QuikSCAT Land Sigma-0 Climate Record David G. Long Department of Electrical and Computer Engineering Brigham Young University May 2013 0 Scatterometer

More information

Validation of 12.5 km and Super-High Resolution (2-5 km)

Validation of 12.5 km and Super-High Resolution (2-5 km) Coastal and Orographic Wind Analyses from High Resolution QuikSCAT and SeaWinds Measurements M.H. Freilich, COAS/OSU D.B. Chelton, COAS/OSU D.G. Long, BYU Clive Dorman, SIO Barry Vanhoff, COAS/OSU OVWST

More information

Statistics of wind and wind power over the Mediterranean Sea

Statistics of wind and wind power over the Mediterranean Sea Conférence Méditerranéenne Côtière et Maritime EDITION 2, TANGER, MAROC (2011) Coastal and Maritime Mediterranean Conference Disponible en ligne http://www.paralia.fr Available online Statistics of wind

More information

USING SATELLITE SAR IN OFFSHORE WIND RESOURCE ASSESSMENT

USING SATELLITE SAR IN OFFSHORE WIND RESOURCE ASSESSMENT USING SATELLITE SAR IN OFFSHORE WIND RESOURCE ASSESSMENT B. R. Furevik (1), C. B. Hasager (2), M. Nielsen (2), T. Hamre (1), B. H. Jørgensen (2), O. Rathmann (2), and O. M. Johannessen (1,3) (1) Nansen

More information

Global Wind Speed Retrieval From SAR

Global Wind Speed Retrieval From SAR IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003 2277 Global Wind Speed Retrieval From SAR Jochen Horstmann, Helmut Schiller, Johannes Schulz-Stellenfleth, and Susanne

More information

Study of an Objective Performance Measure for Spaceborne Wind Sensors

Study of an Objective Performance Measure for Spaceborne Wind Sensors Final Report Study of an Objective Performance Measure for Spaceborne Wind Sensors Maria Belmonte Rivas Jos de Kloe Ad Stoffelen Weather Research Royal Netherlands Meteorological Institute De Bilt, November

More information

SeaWinds wind Climate Data Record validation report

SeaWinds wind Climate Data Record validation report Ocean and Sea Ice SAF Technical Note SAF/OSI/CDOP2/KNMI/TEC/RP/221 SeaWinds wind Climate Data Record validation report 25 and 50 km wind products (OSI-151) Anton Verhoef, Jur Vogelzang and Ad Stoffelen

More information

Evaluation of Marine Surface Winds Observed by SeaWinds and AMSR on ADEOS-II

Evaluation of Marine Surface Winds Observed by SeaWinds and AMSR on ADEOS-II Journal of Oceanography, Vol. 62, pp. 293 to 301, 2006 Evaluation of Marine Surface Winds Observed by SeaWinds and AMSR on ADEOS-II NAOTO EBUCHI* Institute of Low Temperature Science, Hokkaido University,

More information

THE SEAWINDS scatterometer was flown twice, once on

THE SEAWINDS scatterometer was flown twice, once on IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Land-Contamination Compensation for QuikSCAT Near-Coastal Wind Retrieval Michael P. Owen and David G. Long, Fellow, IEEE Abstract The QuikSCAT scatterometer

More information

HIGH RESOLUTION WIND AND WAVE MEASUREMENTS FROM TerraSAR-X IN COMPARISON TO MARINE FORECAST

HIGH RESOLUTION WIND AND WAVE MEASUREMENTS FROM TerraSAR-X IN COMPARISON TO MARINE FORECAST SAR Maritime Applications German Aerospace Center (DLR) Remote Sensing Technology Institute Maritime Security Lab HIGH RESOLUTION WIND AND WAVE MEASUREMENTS FROM TerraSAR-X IN COMPARISON TO MARINE FORECAST

More information

Correction of the Effect of Relative Wind Direction on Wind Speed Derived by Advanced Microwave Scanning Radiometer

Correction of the Effect of Relative Wind Direction on Wind Speed Derived by Advanced Microwave Scanning Radiometer Journal of Oceanography, Vol., pp. 39 to, Correction of the Effect of Relative Wind Direction on Wind Speed Derived by Advanced Microwave Scanning Radiometer MASANORI KONDA 1 *, AKIRA SHIBATA, NAOTO EBUCHI

More information

GLOBAL VALIDATION AND ASSIMILATION OF ENVISAT ASAR WAVE MODE SPECTRA

GLOBAL VALIDATION AND ASSIMILATION OF ENVISAT ASAR WAVE MODE SPECTRA GLOBAL VALIDATION AND ASSIMILATION OF ENVISAT ASAR WAVE MODE SPECTRA Saleh Abdalla, Jean-Raymond Bidlot and Peter Janssen European Centre for Medium-Range Weather Forecasts, Shinfield Park, RG 9AX, Reading,

More information

SeaWinds Validation with Research Vessels

SeaWinds Validation with Research Vessels 1 SeaWinds Validation with Research Vessels Mark A. Bourassa 1, David M. Legler 1,, James J. O'Brien 1, and Shawn R. Smith 1 Abstract. The accuracy of vector winds from the SeaWinds scatterometer on the

More information

IMPROVED OIL SLICK IDENTIFICATION USING CMOD5 MODEL FOR WIND SPEED EVALUATION ON SAR IMAGES

IMPROVED OIL SLICK IDENTIFICATION USING CMOD5 MODEL FOR WIND SPEED EVALUATION ON SAR IMAGES IMPROVED OIL SLICK IDENTIFICATION USING CMOD5 MODEL FOR WIND SPEED EVALUATION ON SAR IMAGES H.KHENOUCHI & Y. SMARA University of Sciences and Technology Houari Boumediene (USTHB). Faculty of Electronics

More information

Institut Français pour la Recherche et l Exploitation de la MER

Institut Français pour la Recherche et l Exploitation de la MER Institut Français pour la Recherche et l Exploitation de la MER Laboratoire d'océanographie Physique et Spatiale Satellites Interface Air- Mer June 2017 Document IFREMER/LOPS/Long Time Series Satellite

More information

An algorithm for Sea Surface Wind Speed from MWR

An algorithm for Sea Surface Wind Speed from MWR An algorithm for Sea Surface Wind Speed from MWR Carolina Tauro 1, Yazan Heyazin 2, María Marta Jacob 1, Linwood Jones 1 1 Comisión Nacional de Actividades Espaciales (CONAE) 2 Central Florida Remote Sensing

More information

Assessing the quality of Synthetic Aperture Radar (SAR) wind retrieval in coastal zones using multiple Lidars

Assessing the quality of Synthetic Aperture Radar (SAR) wind retrieval in coastal zones using multiple Lidars Assessing the quality of Synthetic Aperture Radar (SAR) wind retrieval in coastal zones using multiple Lidars Tobias Ahsbahs Merete Badger, Ioanna Karagali, Xiaoli Larsen What is the coastal zone? Coastal

More information

Offshore wind resource mapping in Europe from satellites

Offshore wind resource mapping in Europe from satellites Offshore wind resource mapping in Europe from satellites Charlotte Bay Hasager Seminar at University of Auckland, Dept. of Physics 1 April 2015 Content DTU Wind Energy Offshore wind turbines New European

More information

SATELLITE wind scatterometer instruments are active remote

SATELLITE wind scatterometer instruments are active remote 2340 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 10, NO. 5, MAY 2017 Improved Use of Scatterometer Measurements by Using Stress-Equivalent Reference Winds Jos

More information

Flow separation and lee-waves in the marine atmosphere

Flow separation and lee-waves in the marine atmosphere Flow separation and lee-waves in the marine atmosphere Det norske Videnskabs-Akademi 16 Oct. 2009 Bjørn Gjevik Universitetet i Oslo epost: bjorng@math.uio.no Flow separation and lee-waves in the marine

More information

QuikScat/Seawinds Sigma-0 Radiometric and Location Accuracy Requirements for Land/Ice Applications

QuikScat/Seawinds Sigma-0 Radiometric and Location Accuracy Requirements for Land/Ice Applications Brigham Young University Department of Electrical and Computer Engineering 459 Clyde Building Provo, Utah 84602 QuikScat/Seawinds Sigma-0 Radiometric and Location Accuracy Requirements for Land/Ice Applications

More information

HIGH RESOLUTION WIND FIELDS OVER THE BLACK SEA DERIVED FROM ENVISAT ASAR DATA USING AN ADVANCED WIND RETRIEVAL ALGORITHM

HIGH RESOLUTION WIND FIELDS OVER THE BLACK SEA DERIVED FROM ENVISAT ASAR DATA USING AN ADVANCED WIND RETRIEVAL ALGORITHM HIGH RESOLUTION WIND FIELDS OVER THE BLACK SEA DERIVED FROM ENVISAT ASAR DATA USING AN ADVANCED WIND RETRIEVAL ALGORITHM Werner Alpers (1), Alexis Mouche (2), Andrei Yu. Ivanov (3), Burghard Brümmer (4)

More information

TRMM TMI and AMSR-E Microwave SSTs

TRMM TMI and AMSR-E Microwave SSTs TMI and AMSR-E Microwave SSTs Chelle Gentemann, Frank Wentz, & Peter Ashcroft Gentemann@remss.com www.remss.com TMI/AMSR-E MW SST algorithm development Validation Results Sensor Issues Useful for Climate

More information

SEA SURFACE TEMPERATURE RETRIEVAL USING TRMM MICROWAVE IMAGER SATELLITE DATA IN THE SOUTH CHINA SEA

SEA SURFACE TEMPERATURE RETRIEVAL USING TRMM MICROWAVE IMAGER SATELLITE DATA IN THE SOUTH CHINA SEA SEA SURFACE TEMPERATURE RETRIEVAL USING TRMM MICROWAVE IMAGER SATELLITE DATA IN THE SOUTH CHINA SEA Mohd Ibrahim Seeni Mohd and Mohd Nadzri Md. Reba Faculty of Geoinformation Science and Engineering Universiti

More information

Air-Sea Interaction Spar Buoy Systems

Air-Sea Interaction Spar Buoy Systems DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited Air-Sea Interaction Spar Buoy Systems Hans C. Graber CSTARS - University of Miami 11811 SW 168 th Street, Miami,

More information

Singularity analysis: A poweful technique for scatterometer wind data processing

Singularity analysis: A poweful technique for scatterometer wind data processing Singularity analysis: A poweful technique for scatterometer wind data processing M. Portabella (ICM-CSIC) W. Lin (ICM-CSIC) A. Stoffelen (KNMI) A. Turiel (ICM-CSIC) G. King (ICM-CSIC) A. Verhoef (KNMI)

More information

WIND BIAS CORRECTION GUIDE. General. Introduction. Ad Stoffelen and Jur Vogelzang KNMI. Version 1.1 Apr 2014

WIND BIAS CORRECTION GUIDE. General. Introduction. Ad Stoffelen and Jur Vogelzang KNMI. Version 1.1 Apr 2014 WIND BIAS CORRECTION GUIDE Ad Stoffelen and Jur Vogelzang KNMI Version 1.1 Apr 2014 General This document is written for all users of Numerical Weather Prediction Satellite Application Facility (NWP SAF)

More information

4.9 ASSIMILATION OF SCATTEROMETER AND IN SITU WINDS FOR REGULARLY GRIDDED PRODUCTS

4.9 ASSIMILATION OF SCATTEROMETER AND IN SITU WINDS FOR REGULARLY GRIDDED PRODUCTS 4.9 ASSIMILATION OF SCATTEROMETER AND IN SITU WINDS FOR REGULARLY GRIDDED PRODUCTS Mark A. Bourassa*, Shawn R. Smith, and James J. O Brien Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida

More information

Synthetic Aperture Radar imaging of Polar Lows

Synthetic Aperture Radar imaging of Polar Lows Oslo Polar Low workshop 21-22 May 2012 Extended abstract Synthetic Aperture Radar imaging of Polar Lows Birgitte Furevik, Gunnar Noer and Johannes Röhrs met.no Forecasting polar lows is to a large degree

More information

On the quality of high resolution scatterometer winds

On the quality of high resolution scatterometer winds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010jc006640, 2011 On the quality of high resolution scatterometer winds Jur Vogelzang, 1 Ad Stoffelen, 1 Anton Verhoef, 1 and Julia Figa Saldaña

More information

DEVELOPMENT AND VALIDATION OF A SAR WIND EMULATOR

DEVELOPMENT AND VALIDATION OF A SAR WIND EMULATOR The Nansen Environmental and Remote Sensing Center a non-profit research institute affiliated with the University of Bergen Thormøhlensgate 47, N-5006 Bergen Norway NERSC Technical Report no. 304 DEVELOPMENT

More information

JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM

JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM JET PROPULSION LABORATORY INTEROFFICE MEMORANDUM 3348-99-008 June 16, 1999 To: From: CC: Subject: Philip S. Callahan Young-Joon Kim SAPIENT, SVT Validation of the NOAA Processor through a comparison with

More information

The RSS WindSat Version 7 All-Weather Wind Vector Product

The RSS WindSat Version 7 All-Weather Wind Vector Product 2010 International Ocean Vector Winds Meeting Barcelona, Spain May 18 20, 2010 The RSS WindSat Version 7 All-Weather Wind Vector Product Thomas Meissner Lucrezia Ricciardulli Frank Wentz Outline 1. Overview:

More information

ADVANCES ON WIND ENERGY RESOURCE MAPPING FROM SAR

ADVANCES ON WIND ENERGY RESOURCE MAPPING FROM SAR ADVANCES ON WIND ENERGY RESOURCE MAPPING FROM SAR C.B. Hasager, M. Nielsen, M.B. Christiansen, R. Barthelmie, P. Astrup Risoe National Laboratory, Wind Energy Department, Frederiksborgvej 399, DK-4000

More information

Combining wind and rain in spaceborne scatterometer observations: modeling the splash effects in the sea surface backscattering coefficient

Combining wind and rain in spaceborne scatterometer observations: modeling the splash effects in the sea surface backscattering coefficient Combining wind and rain in spaceborne scatterometer observations: modeling the splash effects in the sea surface backscattering coefficient F. Polverari (1,2,4), F. S. Marzano (1,2), L. Pulvirenti (3,1),

More information

PROPOSAL OF NEW PROCEDURES FOR IMPROVED TSUNAMI FORECAST BY APPLYING COASTAL AND OFFSHORE TSUNAMI HEIGHT RATIO

PROPOSAL OF NEW PROCEDURES FOR IMPROVED TSUNAMI FORECAST BY APPLYING COASTAL AND OFFSHORE TSUNAMI HEIGHT RATIO PROPOSAL OF NEW PROCEDURES FOR IMPROVED TSUNAMI FORECAST BY APPLYING COASTAL AND OFFSORE TSUNAMI EIGT RATIO Weniza MEE0997 Supervisor: Yutaka AYASI Yushiro FUJII ABSTRACT Regression analysis was performed

More information

MIKE 21 Toolbox. Global Tide Model Tidal prediction

MIKE 21 Toolbox. Global Tide Model Tidal prediction MIKE 21 Toolbox Global Tide Model Tidal prediction MIKE Powered by DHI 2017 DHI headquarters Agern Allé 5 DK-2970 Hørsholm Denmark +45 4516 9200 Telephone +45 4516 9333 Support +45 4516 9292 Telefax mike@dhigroup.com

More information

High Resolution Sea Surface Roughness and Wind Speed with Space Lidar (CALIPSO)

High Resolution Sea Surface Roughness and Wind Speed with Space Lidar (CALIPSO) High Resolution Sea Surface Roughness and Wind Speed with Space Lidar (CALIPSO) Yongxiang Hu NASA Langley Research Center Carl Weimer Ball Aerospace Corp. 1 CALIPSO Mission Overview CALIPSO seeks to improve

More information

Offshore wind mapping Mediterranean area using SAR

Offshore wind mapping Mediterranean area using SAR Downloaded from orbit.dtu.dk on: Jan 12, 2019 Offshore wind mapping Mediterranean area using SAR Calaudi, Rosamaria; Arena, Felice; Badger, Merete; Sempreviva, Anna Maria Published in: Energy Procedia

More information

Sea Surface Temperature Modification of Low-Level Winds. Dudley B. Chelton

Sea Surface Temperature Modification of Low-Level Winds. Dudley B. Chelton Sea Surface Temperature Modification of Low-Level Winds Dudley B. Chelton College of Oceanic and Atmospheric Sciences, 104 Oceanography Administration Building, Oregon State University, Corvallis, OR 97331-5503

More information

Coastal Scatterometer Winds Working Group

Coastal Scatterometer Winds Working Group Coastal Scatterometer Winds Working Group IOVWST Meeting 2015 Portland, Oregon, USA Melanie Fewings Julia Figa Saldaña Bryan Stiles Steve Morey Dmitry Dukhovskoy Larry O Neill if you want to be added to

More information

SATELLITE REMOTE SENSING APPLIED TO OFF-SHORE WIND ENERGY

SATELLITE REMOTE SENSING APPLIED TO OFF-SHORE WIND ENERGY EARSeL eproceedings 13, 1/014 1 SATELLITE REMOTE SENSING APPLIED TO OFF-SHORE WIND ENERGY Sara Venafra 1, Marco Morelli, and Andrea Masini 1 1. Flyby S.r.l., Livorno, Italy; {sara.venafra / andrea.masini}(at)flyby.it.

More information

Towards an Optimal Inversion Method. for SAR Wind Retrieval 1

Towards an Optimal Inversion Method. for SAR Wind Retrieval 1 Towards an Optimal Inversion Method for SAR Wind Retrieval 1 M. Portabella *, A. Stoffelen *, and J. A. Johannessen ** * KNMI, Postbus 201, 3730 AE De Bilt, The Netherlands ** NERSC, Edvard Griegsvei 3a,

More information

Scatterometer-Based Assessment of 10-m Wind Analyses from the Operational ECMWF and NCEP Numerical Weather Prediction Models

Scatterometer-Based Assessment of 10-m Wind Analyses from the Operational ECMWF and NCEP Numerical Weather Prediction Models FEBRUARY 2005 C H E L T O N A N D F R E I L I C H 409 Scatterometer-Based Assessment of 10-m Wind Analyses from the Operational ECMWF and NCEP Numerical Weather Prediction Models DUDLEY B. CHELTON AND

More information

Azimuthal variations of X-band medium grazing angle sea clutter

Azimuthal variations of X-band medium grazing angle sea clutter Azimuthal variations of X-band medium grazing angle sea clutter Z. Guerraou (1), S. Angelliaume (1), C.-A. Guérin (2) and L. Rosenberg (3) (1) : ONERA, the French Aerospace Lab France (2) : University

More information

ERGS are large expanses of sand in the desert. Aeolian

ERGS are large expanses of sand in the desert. Aeolian 1164 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 5, MAY 2007 Spatial and Temporal Behavior of Microwave Backscatter Directional Modulation Over the Saharan Ergs Haroon Stephen, Member,

More information

Supplementary Material for Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds Fig. S1.

Supplementary Material for Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds Fig. S1. Supplementary Material for Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds by D. B. Chelton, M. G. Schlax, M. H. Freilich and Ralph F. Milliff Fig. S1. Global 4-year average

More information

Climate-Quality Intercalibration of Scatterometer Missions

Climate-Quality Intercalibration of Scatterometer Missions Climate-Quality Intercalibration of Scatterometer Missions Lucrezia Ricciardulli and Frank Wentz Remote Sensing Systems, Santa Rosa, California IOVWST meeting Sapporo, Japan, May 2016 Photo Courtesy: 1

More information

ENVIRONMENTALLY ADAPTIVE SONAR

ENVIRONMENTALLY ADAPTIVE SONAR ENVIRONMENTALLY ADAPTIVE SONAR Ole J. Lorentzen a, Stig A. V. Synnes a, Martin S. Wiig a, Kyrre Glette b a Norwegian Defence Research Establishment (FFI), P.O. box 25, NO-2027 KJELLER, Norway b University

More information

Archimer

Archimer Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive publisher-authenticated version is available on the publisher Web site Journal

More information

Wavelet Analysis for Wind Fields Estimation

Wavelet Analysis for Wind Fields Estimation Sensors 2010, 10, 5994-6016; doi:10.3390/s100605994 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Wavelet Analysis for Wind Fields Estimation Gladeston C. Leite 1, Daniela M.

More information

Dynamic validation of Globwave SAR wave spectra data using an observation-based swell model. R. Husson and F. Collard

Dynamic validation of Globwave SAR wave spectra data using an observation-based swell model. R. Husson and F. Collard Dynamic validation of Globwave SAR wave spectra data using an observation-based swell model. R. Husson and F. Collard Context 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

More information

Monitoring Conditions Offshore with Satellites

Monitoring Conditions Offshore with Satellites Downloaded from orbit.dtu.dk on: Dec 15, 2017 Monitoring Conditions Offshore with Satellites Karagali, Ioanna; Hasager, Charlotte Bay; Badger, Merete; Bingöl, Ferhat; Ejsing Jørgensen, Hans Publication

More information

Aquarius Wind Speed Retrievals and Implica6ons for SMAP Ocean Vector Winds

Aquarius Wind Speed Retrievals and Implica6ons for SMAP Ocean Vector Winds Aquarius Wind Speed Retrievals and Implica6ons for SMAP Ocean Vector Winds Alex Fore, Simon Yueh, Wenqing Tang, Julian Chaubell, Gregory Neumann, Akiko Hayashi, and Adam Freedman 214 California Ins6tute

More information

Field assessment of ocean wind stress derived from active and passive microwave sensors

Field assessment of ocean wind stress derived from active and passive microwave sensors Field assessment of ocean wind stress derived from active and passive microwave sensors Doug Vandemark, Marc Emond (UNH) Jim Edson (UCONN) Bertrand Chapron (IFREMER) Motivations Are there 1 st or 2 nd

More information

Deborah K. Smith, Frank J. Wentz, and Carl A. Mears Remote Sensing Systems

Deborah K. Smith, Frank J. Wentz, and Carl A. Mears Remote Sensing Systems JP 4.9 RESULTS OF QUIKSCAT HIGH WIND DATA VALIDATION Deborah K. Smith, Frank J. Wentz, and Carl A. Mears Remote Sensing Systems ABSTRACT Traditional validation of satellite-derived winds includes comparison

More information

EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT

EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT Ayumi Saruwatari 1, Yoshihiro Yoneko 2 and Yu Tajima 3 The Tsugaru Strait between

More information

J4.2 AUTOMATED DETECTION OF GAP WIND AND OCEAN UPWELLING EVENTS IN CENTRAL AMERICAN GULF REGIONS

J4.2 AUTOMATED DETECTION OF GAP WIND AND OCEAN UPWELLING EVENTS IN CENTRAL AMERICAN GULF REGIONS J4.2 AUTOMATED DETECTION OF GAP WIND AND OCEAN UPWELLING EVENTS IN CENTRAL AMERICAN GULF REGIONS Xiang Li*, University of Alabama in Huntsville Huntsville, AL D. K. Smith Remote Sensing Systems Santa Rosa,

More information

Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters

Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters Remote Sens. 2013, 5, 1956-1973; doi:10.3390/rs5041956 Article OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Comparison of Geophysical Model Functions for SAR Wind Speed

More information

Quantifying variance due to temporal and spatial difference between ship and satellite winds

Quantifying variance due to temporal and spatial difference between ship and satellite winds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010jc006931, 2011 Quantifying variance due to temporal and spatial difference between ship and satellite winds Jackie C. May 1,2,3 and Mark A. Bourassa

More information

IMPROVEMENTS IN THE USE OF SCATTEROMETER WINDS IN THE OPERATIONAL NWP SYSTEM AT METEO-FRANCE

IMPROVEMENTS IN THE USE OF SCATTEROMETER WINDS IN THE OPERATIONAL NWP SYSTEM AT METEO-FRANCE IMPROVEMENTS IN THE USE OF SCATTEROMETER WINDS IN THE OPERATIONAL NWP SYSTEM AT METEO-FRANCE Christophe Payan CNRM-GAME, Météo-France and CNRS, 42 avenue Gaspard Coriolis, Toulouse, France Abstract Significant

More information

SCIENTIFIC COMMITTEE SEVENTH REGULAR SESSION August 2011 Pohnpei, Federated States of Micronesia

SCIENTIFIC COMMITTEE SEVENTH REGULAR SESSION August 2011 Pohnpei, Federated States of Micronesia SCIENTIFIC COMMITTEE SEVENTH REGULAR SESSION 9-17 August 2011 Pohnpei, Federated States of Micronesia CPUE of skipjack for the Japanese offshore pole and line using GPS and catch data WCPFC-SC7-2011/SA-WP-09

More information

Assessment and Analysis of QuikSCAT Vector Wind Products for the Gulf of Mexico: A Long-Term and Hurricane Analysis

Assessment and Analysis of QuikSCAT Vector Wind Products for the Gulf of Mexico: A Long-Term and Hurricane Analysis Sensors 2008, 8, 1927-1949 sensors ISSN 1424-8220 2008 by MDPI www.mdpi.org/sensors Full Research Paper Assessment and Analysis of QuikSCAT Vector Wind Products for the Gulf of Mexico: A Long-Term and

More information

Wave forecasting at ECMWF

Wave forecasting at ECMWF Wave forecasting at ECMWF Peter Janssen, ECMWF 1. . Freak Waves. INTRODUCTION I will briefly discuss progress in ocean wave forecasting at ECMWF during the past years or so, by

More information