Suction Caissons for Wind Turbines

Size: px
Start display at page:

Download "Suction Caissons for Wind Turbines"

Transcription

1 Suction Caissons for Wind Turbines Guy T. Houlsby 1, Lars Bo Ibsen 2 & Byron W. Byrne 1 1: Department of Engineering Science, Oxford University, U.K. 2: Department of Civil Engineering, Aalborg University, Denmark ABSTRACT: Suction caissons may be used in the future as the foundations for offshore wind turbines. We review recent research on the development of design methods for suction caissons for these applications. We give some attention to installation, but concentrate on design for in-service performance. Whilst much can be learned from previous offshore experience, the wind turbine problem poses a particularly challenging combination of a relatively light structure, with large imposed horizontal forces and overturning moments. Monopod or tripod/tetrapod foundations result in very different loading regimes on the foundations, and we consider both cases. The results of laboratory studies and field trials are reported. We also outline briefly relevant numerical and theoretical work. Extensive references are given to sources of further information. 1. INTRODUCTION The purpose of this paper is to review recent research work on the design of suction caisson foundations for offshore wind turbines. Most of the relevant work has been conducted at, or in cooperation with, the universities of Oxford and Aalborg, so we report here mainly the work of our own research groups. Suction caissons have been extensively used as anchors, principally in clays, and have also been used as foundations for a small number of offshore platforms in the North Sea. They are currently being considered as possible foundations for offshore wind turbines. As discussed by Houlsby and Byrne (2) and by Byrne and Houlsby (23), it is important to realise that the loading regimes on offshore turbines differ in several respects from those on structures usually encountered in the offshore oil and gas industry. Firstly the structures are likely to be founded in much shallower water: 1m to 2m is typical of the early developments, although deeper water applications are already being planned. Typically the structures are relatively light, with a mass of say 6t (vertical deadload 6MN), but in proportion to the vertical load the horizontal loads and overturning moments are large. For instance the horizontal load under extreme conditions may be about 6% of the vertical load. An important consideration is that, unlike the oil and gas industry where large one-off structures Figure 1: Offshore tests in Frederikshavn, Denmark. Front: Vestas V9 3.MW turbine. Back: Nordex 2.3MW turbine. dominate, many relatively small and inexpensive foundations are required for a wind farm development, which might involve anything from 3 to 25 turbines. The dominant device used for large scale wind power generation is a horizontal axis, 3-bladed

2 turbine with the blades upwind of the tower, as shown in Figure 1. The details of the generator, rotational speed and blade pitch control vary between designs. Most offshore turbines installed to date generate 2MW rated power, and typically have a rotor about 8m in diameter with a hub about 8m above mean sea level. The size of turbines available is increasing rapidly, and prototypes of 5MW turbines already exist. These involve a rotor of about 128m diameter at a hub height of about 1m. The loads on a typical 3.5MW turbine are shown in Figure 2, which is intended to give no more than a broad indication of the magnitude of the problem. Figure 2: Typical loads on a 3.5MW offshore wind turbine Note that in conditions as might be encountered in the North Sea, the horizontal load from waves (say 3MN) is significantly larger than that from the wind (say 1MN). However, because the latter acts at a much higher point (say 9m above the foundation) it provides more of the overturning moment than the wave loading, which may only act at say 1m above the foundation. Using these figures the overturning moment of 12MNm would divide as 9MNm due to wind and 3MNm due to waves. Realistic combinations of loads need to be considered. For instance the maximum thrust on the turbine occurs when it is generating at the maximum allowable wind speed for generation (say 25m/s). At higher wind speeds the blades will be feathered and provide much less wind resistance. It is thus unlikely that the maximum storm wave loading would occur at the same time as maximum thrust. Turbine designers must also consider important load cases such as emergency braking. It is important to recognise that the design of a turbine foundation is not usually governed by considerations of ultimate capacity, but is typically dominated by (a) considerations of stiffness of the foundation and (b) performance under fatigue loading. An operational wind turbine is subjected to harmonic excitation from the rotor. The rotor's rotational frequency is the first excitation frequency and is commonly referred to as 1P. The second excitation frequency to consider is the blade passing frequency, often called 3P (for a three-bladed wind turbine) at three times the 1P frequency. Figure 3 shows a representative frequency plot of a selection of measured displacements for the Vestas V9 3.MW wind turbine in operational mode. The foundation is a suction caisson. The measured data, monitoring system and Output-Only Modal Analysis used to establish the frequency plot are described in Ibsen and Liingaard (25). The first mode of the structure is estimated, and corresponds to the frequency observed from idling conditions. The peak to the left of the first natural frequency is the forced vibration from the rotor at 1P. To the right of the first natural frequency is the 3P frequency. It should be noted that the 1P and 3P frequencies in general cover frequency bands and not just two particular values, because the Vestas wind turbine is a variable speed device. To avoid resonances in the structure at the key excitation frequencies (1P, 3P) the structural designer needs to know the stiffness of the foundation with some confidence, this means that problems of deformation and stiffness are as important as capacity. Furthermore, much of the structural design is dictated by considerations of high cycle fatigue (up to about 1 8 cycles), and the foundation too must be designed for these conditions. 2. CASES FOR STUDY The two main problems that need to be studied in design of a suction caisson as a foundation are: installation; in service performance. In this review we shall discuss installation methods briefly, but shall concentrate mainly on design for in service performance. The relevant studies involve techniques as diverse as laboratory model testing, centrifuge model testing, field trials at reduced scale, and a full-scale field installation.

3 db 1. / Hz 2 1P First mode Frequency Domain Decomposition - Peak Picking Average of the Normalized Singular Values of Spectral Density Matrices of all Data Sets. 3P Frequency Figure 3. Frequency plot of measured displacements for a wind turbine in operational mode. Complementing these experiments are numerical studies using finite element techniques, and the development of plasticity-based models to represent the foundation behaviour. Suction caissons may be installed in a variety of soils, but we shall consider here two somewhat idealised cases: a caisson installed either in clay, which may be treated as undrained, or in sand. For typical sands the combination of permeability value, size of caisson and loading rates leads to partially drained conditions, although much of the testing we shall report is under fully drained conditions. In this paper we report mainly work on sands. We shall consider two significantly different loading regimes, which depend on the nature of the structure supporting the wind turbine. Most offshore wind turbines to date have been supported on a monopile a single large diameter pile, which in effect is a direct extension of the tubular steel tower which supports the turbine. Some turbines have been supported on circular gravity bases. An obvious alternative is to use a single suction caisson to support the turbine, and we shall call this a monopod foundation, Figure 4(a). The monopod resists the overturning moment (usually the most important loading component) directly by its rotational fixity in the seabed. As turbines become larger, monopod designs may become sufficiently large to be uneconomic, and an alternative is a structure founded on three or four smaller foundations: a tripod or tetrapod, Figure 4(b). In either of these configurations the overturning moment on the structure is resisted principally by push-pull action of opposing vertical loads on the upwind and downwind foundations. Alternatives using asymmetric designs of tripod, and those employing jacket type substructures are also under consideration. (a) (b) Figure 4: caisson foundations for a wind turbine, (a) monopod, (b) tripod/tetrapod

4 3. NORMALISATION PROCEDURES A number of studies have been conducted at different scales and it is necessary to compare the results from these various studies. To do this it is appropriate to normalise all the results so that they can be represented in non-dimensional form. This procedure also allows more confident extrapolation to full scale. The geometry of a caisson is shown in Figure 5. The outside radius is R (diameter D o ), skirt length is L and wall thickness t. In practice caissons may also involve stiffeners on the inside of the caisson, these being necessary to prevent buckling instability during suction installation, but we ignore these in a simplified analysis. Geometric similarity is achieved by requiring similar values of L 2 R and t 2 R. Figure 5: Geometry of a caisson foundation Figure 6: Loading and displacement conventions for a caisson foundation (displacements exaggerated). The sign convention for applied loads and displacements is shown in Figure 6. The rotation of the caisson θ is already dimensionless, and we normalise the displacements simply by dividing by the caisson diameter, to give w 2 R and u 2 R. In sand it is straightforward to show that, for similar values of dimensionless bearing capacity factor, the loads at failure would be proportional to 3 γ and to R. We therefore normalise vertical and horizontal loads as V 2πR 3 γ and H 2πR 3 γ, where we have included the factor 2 π to give the normalisation factor a simple physical meaning: it is the effective weight of a cylinder of soil of the same diameter of the caisson, and depth equal to the diameter. In a similar way we normalise the overturning moment as M 4πR 4 γ. Use of the above normalisation is appropriate for comparing tests in sands with similar angles of friction and dilation. We recognise that these angles both decrease slightly with pressure and increase rapidly with Relative Density (Bolton, 1986). This means that comparable tests at smaller scales (and therefore lower stress levels) will need to be at lower Relative Densities to be comparable with field tests. In clay the vertical capacity is proportional to a representative undrained shear strength s u and to 2 R, so we normalise loads as 2 R s u V R 2 s u M R 3 2π s. π and H π, and the moment as u In order to be comparable, tests at different scales will need the profile of undrained strength with depth to be similar. If the strength profile is fitted by a simple straight-line fit su = suo + ρz, then this requires similar values of the factor 2 Rρ suo. Scaling of results using the above methods should give satisfactory results in terms of capacity. For clays it should also lead to satisfactory comparisons in terms of stiffness, provided that the clays being compared have similar values of I r = G su. This condition is usually satisfied if the clays are of similar composition and overconsolidation ratio. For sands, however, an extra consideration needs to be taken into account. The shear modulus of a sand does not increase in proportion to the stress level, but instead can reasonably be expressed by: n G p = g p a p (1) a where g and n are dimensionless constants, and p a is atmospheric pressure (used as a reference pressure). The value of n is typically about.5, so that the stiffness is proportional roughly to the square root of pressure.

5 Comparing rotational stiffnesses on the basis of a plot of M 4πR 4 γ against θ effectively makes the assumption that the shear stiffness is proportional to 2 Rγ, which may be regarded as a representative stress level. Since in fact the stiffness increases at a lower rate with stress level, this comparison will result in larger scale tests giving lower apparent normalised stiffness. This effect can be reduced by multiplying the θ scale by the dimensionless factor n ( p a Rγ ) 1 2, which compensates for the stiffness variation with stress level. Thus we recommend that to compare both stiffness and capacity data for sands one should plot M 4πR 4 γ against θ( p 2Rγ ). 5 a (assuming n =.5) for moment tests, and V 2πR 3 γ against ( 2R)( p 2Rγ ). 5 w a for vertical loading tests. A fuller description of these normalisation procedures is given by Kelly et al. (25a). 4. INSTALLATION STUDIES The principal difference between installation of a suction caisson for an offshore wind turbine and for previous applications is that the turbines are likely to be installed in much shallower water. There is a popular misconception that suction caissons can only be installed in deep water, where a very substantial head difference can be established across the lid of the caisson. In shallow water the net suction that can be achieved is indeed much smaller (being limited by the efficiency of the pumps, as the absolute pressure approaches zero), but the suctions that can be achieved are nevertheless sufficient for installation in most circumstances. Only in stiff clays is it likely that some possible caisson designs, which might otherwise be suitable as far as in-service conditions are concerned, could not be installed by suction in shallow water. In Table 1 we list the main instances where caissons have been installed in shallow water, as appropriate to wind turbine installations. The water depths h w are approximate only. In addition to the field tests listed, a large number of small scale model tests of installation have been carried out at Oxford University (on caissons of.1m to.4m diameter), the University of Western Australia (UWA), Aalborg and elsewhere. The largest completed installation in shallow water is that of a prototype suction caisson, shown in Figure 7, installed in the offshore research test facility in Frederikshavn, Denmark. The prototype Table 1: Installations in shallow water h Site Soil w (m) D (m) L (m) Ref. Wilhelmshaven Sand Installation April 25 Frederikshavn Sand Frederikshavn Sand Sandy Haven Sand Tenby Sand Burry Port Sand Luce Bay Sand Bothkennar Clay (a) (b) Figure 7: Installation of the prototype foundation at the test site in Frederikshavn: (a) during installation, (b) at the end of installation. has a diameter of 12m and a skirt length of 6m. The operational water depth is 4m, and as the site is in a basin, no wave or ice loads are applied. As seen in Figure 7 the suction caisson was installed in only 1m of water in the basin. The steel construction has a mass of approximately 14t, and the caisson was placed in late October 22. The installation period 26

6 was about 12 hours, with the soil penetration time being 6 hours. A computer system was used to control the inclination, suction pressure and penetration rate. Det Norske Veritas (DNV) has certified the design of the prototype in Frederikshavn to B level. The Vestas V9 3.MW turbine was erected on the foundation in December 22. The development of the design procedure for the bucket foundation is described in Ibsen and Brincker (24). An even larger installation is currently in progress at Wilhelmshaven, Denmark. There are two main ways of predicting firstly the self-weight penetration of the caisson and secondly the suction required to achieve full installation. The first method (Houlsby and Byrne, 25a,b) involves use of adaptations of pile capacity analysis, in which the resistance to penetration is calculated as the sum of an end bearing term on the rim and friction on the inside and outside. In sands the seepage pattern set up by the suction processes alters the effective stress regime in a way that aids installation. The calculation has been implemented in a spreadsheet program SCIP. Figure 8 shows for example a comparison between variation of measured suction in a model test installation with tip penetration of the caisson (Sanham, 23), and the SCIP calculation. Penetration, h (mm) Suction, s (Pa) SCIP Results Experimental Result Figure 8: Comparison of SCIP with model test The other approach involves use of CPT data to infer directly the resistance R d to penetration of the caisson. The required suction u req to penetrate the caisson to depth d is calculated as: Rd ( d) G'( d) ureq ( d) = (2) A suc where G'( d ) is the self-weight of the caisson at penetration depth d (reduced for buoyancy), and Asuc is the area inside the caisson, where the suction is applied. The penetration resistance is calculated from the following expression, which is based on calibration against measured data: d d t tip t out out s d Ain Kin( z) fs ( z) dz R ( d) = K ( d) A q ( d) + A K ( z) f ( z) dz+ (3) where q t is the corrected cone resistance and f s the sleeve friction at depth z. K t is a coefficient relating q t to the unit tip resistance on the rim. This resistance is adjusted for the reduction due to the applied suction by the expression: β t u Kt = kt 1 rt (4) ucrit where k t is an empirical coefficient relating q t to the tip resistance during static penetration of the caisson, r t is the maximum reduction in tip resistance. ucrit is the critical suction resulting in the critical hydraulic gradient i crit = 1 along the skirt. β t is an empirical factor. K out and K in are coefficients relating f s to the unit skin friction on the outside and inside of the skirt. The water flow along the skirt changes the skin friction. For the inside skin friction the coefficient reduces the skin friction when suction is applied, whereas on the outside the skin friction is increased. The coefficients are established as: K K = α 1+ r out out out = α 1 r in in in u u u u crit crit β in β out (5a,b) Where αout andα in are empirical coefficients relating f s to the unit skin friction during static penetration of the caisson. r out and r in are the maximum changes in skirt friction. β out and β in are empirical factors. The required suction u req to penetrate the prototype in Frederikshavn was predicted using equation (2). The result of the analysis is shown in Figure 9. The lower line represents u req calculated from the CPT tests. The curved line represents the limiting suction u pip which would cause piping to occur. u max is the theoretical maximum net suction, limited by the possibility of cavitation within the caisson, as the absolute pressure approaches zero, so

7 Penetration, h (mm) Volume, (1-3 m 3 ) Seepage Volume Volume Displaced Total Volume Figure 11: Volumes pumped from 2-cell caisson in sand. Cell 1 Cell 2 Figure 9: Suction required for installation at Frederikshavn Figure 1: The limiting suction u pip has been achieved and soil failure by piping has occurred. that u max = 1kPa above water level and increases linearly with the water depth, as shown by Figure 9. u max is used to calculate the accessible net suction, which is limited by the efficiency of the pumps, u pump. As is seen, the suction in shallow water can be limited either by the suction causing piping or by the accessible net suction available from the pumps. The suction u pip causing piping has been studied at the test site in Frederikshavn by installation tests on 2x2m and 4x4m caissons. Figure 1 shows a 4x4m caisson where the limiting suction u pip has been achieved, and soil failure by piping has occurred. The soil outside of the skirt is sucked into the caisson and the penetration of the caisson cannot proceed. If a tripod or tetrapod structure is to be installed, then levelling of the structure can be achieved by separately controlling the suction in each of the caissons. For a monopod structure, however, an alternative strategy has to be adopted. Experience suggests that for installation in either clay or sand, the level of the caisson is rather sensitive to the application of eccentric loads (moments), especially in the early stages of installation. This offers one possibility for controlling the level of the caisson: by use of an eccentric load that can be adjusted in position to keep the caisson level. An alternative strategy, which has proven to be highly successful for installation in sand, is to divide the rim into sections and to control the pressures at the skirt tip in each section individually. By applying pressure over one segment of the caisson rim the upward hydraulic gradient within the caisson can be enhanced locally, thus encouraging additional downward movement for that sector. By controlling the pressures at a number of points the caisson may be maintained level. This method would not be applicable in clays. One possibility, as yet untried at large scale, for controlling level in clays would be to use a segmented caisson in which the suctions in the different segments could be controlled independently. Some preliminary small scale tests suggest that this approach might be successful in sand too (Coldicott, 25). Figure 11 shows the volumes of water pumped from the two halves of a 4mm diameter caisson split by a diametral vertical wall. About 6% of the water pumped represents the volume displaced by the descending caisson, whilst about 4% represents seepage beneath the caisson rim. Figure 12 shows that during the installation the suctions developed in the two halves were (as would be expected in a uniform material) almost equal. 5. CAISSON PERFORMANCE: MONOPOD A large number of tests have been devoted to studying the performance of a caisson under moment loading at relatively small vertical loads, as is relevant to the wind turbine design. Some details of the test programmes are given in Table 2.

8 Penetration, h (mm) Sand: field tests Suction, s (Pa) Cell 1 Cell 2 Figure 12: Suctions required for installation of 2-cell caisson in sand. The largest test involves the instrumented Vestas V9 3.MW prototype turbine at Frederikshavn, Denmark. The caisson is installed in a shallow 4m depth lagoon next to the sea, and the turbine is fully operational. The only significant difference between this installation and an offshore one is that the structure is not subjected to wave loading. The test program involving the prototype (turbine and caisson) is focusing on long-term deformations, soil structure interaction, stiffness and fatigue. The prototype has been equipped with: an online monitoring system that measures the dynamic deformation modes of the foundation and the wind turbine, a monitoring system that measures the long-time deflection and rotation of the caisson a monitoring system that measures the pore pressure along the inside of the skirt. The online monitoring system that measures the modes of deformation of the foundation and wind turbine involves 15 accelerometers and a real-time data-acquisition system. The accelerometers are placed at three different levels in the turbine tower and at one level in compartments inside the caisson foundation. The positions are shown in Figure 13, and the locations and measuring directions are defined in Figure14. Output-only Modal Analysis has been used to analyze the structural behaviour of the wind turbine during various operational conditions. The modal analysis has shown highly damped mode shapes of the foundation/wind turbine system, which the present aero-elastic codes for wind turbine design cannot model. Further studies are to be carried out with respect to soil-structure interaction. A detailed description of the measuring system and the Output- Only Modal Analysis is given by Ibsen and Liingaard (25). Table 2: Moment loading tests D L Site Soil Ref. (m) (m) Frederikshavn Sand Frederikshavn Sand Sandy Haven Sand Burry Port Sand Luce Bay Sand , ,7 Oxford laboratory Sand , ,42, , ,42,43 Aalborg laboratory Sand Bothkennar Clay Oxford laboratory Clay UWA centrifuge Clay (1g).6 Level IV: 89 m Level III: 46 m Level II: 13 m Level I: 6 m Figure 13: Sensor positions in tower and foundation. The static moment tests referred to in Table 2 at Sandy Haven and at Burry Port were relatively straightforward, with very simple instrumentation, but those at Frederikshavn test site and at Luce Bay were detailed investigations. The large scale tests at Frederikshavn is part of a research and development program concerning caisson foundation for offshore wind turbines. The research program is a co-operation between Aalborg -

9 Table 3. Loading heights in the Aalborg test program Prototype Laboratory Model Field Model p D = 12m m D =.2m.3m.4m 2.m p h [m] m h [m] m h [m] Figure 14: Sensor mountings in the tower and foundation at Frederikshavn. University and MBD offshore power (Ibsen et al. 23). The large scale tests are complemented by laboratory studies. The laboratory and large scale tests are intended to model the prototype in Frederikshavn directly. In order to design a caisson foundation for offshore wind turbines several load combinations have to be investigated. Each load combination is represented by a height of load h above the foundation and a horizontal force H. The moment at the seabed is calculated as M = hh. Table 3 shows that the resulting loading height varies from 1m (for a wave force in shallow water) to 14.4m (force from normal production of a 3MW turbine in 2m of water). Scaling of the tests is achieved by: m m p D h p D h = (6) where D is the diameter of the caisson and index m and p are for model and prototype. The values of the loading height in the test program are shown in Table 3. The large scale tests at Frederikshavn employ loading by applying a horizontal load at a fixed height, under constant vertical load. A steel caisson with an outer diameter of 2m and a skirt length of 2m has been used. The skirt is made of 12mm thick steel plate. Figure 15 shows the caisson prior to installation, and Figure 16 the overall test setup. Currently 1 experiments have been conducted, but the testing program is ongoing. Each test has three phases: Figure 15: Caisson for large scale test at Frederikshavn tower located on bucket foundation 3 MW Vestas windmill on bucket foundation loading wire loading tower Figure 16: Setup for combined loading of 2x2m caisson at Frederikshavn. (Back: prototype 3MW Vestas wind turbine on the 12 x 6m caisson) 1. Installation phase: The caisson is installed by means of suction. CPT tests are performed before and after installation of the caisson. 2. Loading phase: An old tower from a wind turbine is mounted on top of the caisson. The caisson is loaded by pulling the tower

10 horizontally with a wire. The combined loading (H,M) is controlled by changing the height of loading. 3. Dismantling phase. The caisson is removed by applying overpressure inside the bucket. Figure 17 shows the moment rotation curve for a test on the 2x2m caisson at Frederikshavn. The test is performed with h m = 17.4m and a vertical load on the caisson of 37.3kN. The fluctuations in the curve are caused by wind on the tower. Figure 17: Moment-rotation test on 2x2m caisson. Tests at Luce Bay were designed by Oxford University and conducted by Fugro Ltd.. The moment loading tests were of two types. Firstly small amplitude (but relatively high frequency) loading was applied by a Structural Eccentric Mass Vibrator (SEMV) in which rotating masses are used to apply inertial loads at frequencies up to about 12Hz. Secondly larger amplitude, but lower frequency, cycles were applied using a hydraulic jack. A diagram of the loading rig, which allowed both moment and vertical loading tests, is shown in Figure 18. The SEMV test involve cycles of moment loading at increasing amplitude as the frequency increases. Figure 19 shows the hysteresis loops obtained from a series of these cycles at different amplitudes. As the cycles become larger the stiffness reduces but hysteresis increases. The tests were interpreted (Houlsby et al., 25b) using the theory of Wolf (1994), which takes account of the dynamic effects in the soil, and the equivalent secant shear modulus for each amplitude of cycling determined. Figure 2 shows the moment rotation curves for much larger amplitude cycling applied by the hydraulic jack. Again hysteresis increases and secant stiffness decreases as the amplitude increases. The unusual waisted shape of the hysteresis loops at very large amplitude is due to gapping occurring at the sides of the caisson. The secant stiffnesses deduced from both the SEMV tests and the hydraulic jacking tests are combined in Figure 21, where they are plotted against the amplitude of cyclic rotation. It is clear that the two groups of tests give a consistent pattern of reduction of shear modulus with strain amplitude, similar to that obtained for instance from laboratory tests. 5.2 Sand: laboratory tests Turning now to model testing, a large number of tests have been carried out both at Aalborg and at Oxford. Almost all the model tests have involved in plane loading (in which the moment is about an H L V V A W A H H B B L L L L L L R 15 C R 3 C C (a) Figure 18: Field testing equipment, dimensions in mm. Water level and displacement reference frames not shown. (a) arrangement for jacking tests on 1.5m and 3.m caissons, (b) alternative arrangement during SEMV tests. Labels indicate (A) A-frame, (B) concrete block, (C) caissons, (H) hydraulic jacks, (L) load cells, (R) foundations of reaction frame, (V) SEMV, (W) weight providing offset load for SEMV tests. (b)

11 6Hz 7Hz 3 2 Moment (knm) 8Hz 9Hz 1 1H Rotation (radians) Figure 19: Hysteresis loops from SEMV tests on 3m caisson Moment (knm) Rotation of caisson centre (2R θ) (m) Figure 2: Hysteresis loops from hydraulic jacking tests on 3m caisson. Figure 22: The caisson test rig at Aalborg University G (MPa) Jacking SEMV Hyperbolic curve fit θ (radians) Figure 21: Shear modulus against rotation amplitude. axis perpendicular to the horizontal load). However, a test rig capable of applying full 6 degree-offreedom loading has recently been developed by Byrne and Houlsby (25). The model tests at Aalborg are performed by the test rig shown in Figure 22. The rig consists of a test box and loading frame. The test box consists of a steel frame with an inner width of 1.6m x 1.6m and an inner total depth of.65m. The test box is filled with Aalborg University Sand No. After each experiment the sand in the box is prepared in a systematic way to ensure homogeneity within the box, and between the different test boxes. The sand is saturated by the water reservoir shown in Figure 22. Before each experiment CPT-tests are performed to verify the density and strength of the sand. The caisson is then installed and loaded with a constant vertical load. The vertical load is kept constant through the experiment, while the horizontal force is applied to the tower by the loading device mounted on the loading frame, see Figure 21. The tower and the loading device are connected by a wire. The combined loading (H, M) is controlled by the height of loading h. The loading frame allows the possibility of changing h from.1m to 4.m above the sand surface (Table 3). The horizontal force H is measured by a transducer connected to the wire. The deformation of the foundation and the moment are measured with the measuring cell mounted on the top of the caisson, as shown by Figure 23. Laboratory tests at Oxford University have used a versatile 3 degree-of-freedom loading rig designed by Martin (1994) and adapted by Byrne (2) (see also Martin and Houlsby (2) and Gottardi et al. (1999)). The rig is shown in Figure 24, and is capable of applying a wide range of combinations of vertical, horizontal and moment loading under either displacement or load control. Typical moment loading tests involve applying a fixed vertical load, and then cycling the rotation at

12 Figure 23: The measuring cell connecting the caisson and the tower. Moment Load, M/2R (N) Rotational Displacement, 2Rθ (mm) Figure 25: Moment-rotation test on sand Experiment, M/2RH = 1 Fitted Yield Surface Soil Plug Weight Moment Load, M/2R (N) Vertical Load, V (N) Figure 26: Experimentally determined yield surface in V-M plane Figure 24: Three degree-of-freedom testing rig at Oxford University increasing amplitude. An example is given in Figure 25. The first interpretation of such tests is to determine the yield surface for a single surface plasticity model (see section 7.2 below, and also Martin and Houlsby (21), Houlsby and Cassidy (22), Houlsby (23), Cassidy et al. (24)). An example of the yield points obtained, plotted in the vertical load-moment plane, is given in Figure 26. Of particular importance is the fact that at very low vertical loads there is a significant moment capacity, and that this extends even into the tensile load range. In these drained tests the ultimate load in tension is a significant fraction of the weight of the soil plug inside the caisson. Sections of the yield surface can also be plotted in H-M space as shown in Figure 27, where the data here have been assembled from many tests at different stress levels. The flow vectors are also plotted in this figure, and show that in this plane (unlike the V-M plane) associated flow is a reasonable approximation to the behaviour. Feld (21) has observed similar shapes of a yield surface for a caisson in sand. We now consider the possibility of scaling the results of laboratory tests to the field. The test at Frederikshavn shown in Figure 17 was on a caisson with a ratio L 2 R = 1, at an M 2 RH value of approximately 8.7, and with a value of V 2πR 3 γ of about.62. Using the data from the Oxford laboratory on.2x.2m caissons this requires a vertical load of about 6N. In fact a test had been carried out with L 2 R = 1 and V = 5N. According to the scaling relationships discussed in section 3, 4 the moment should be scaled according to R γ (a factor of 625) and the rotational displacement 2 Rθ 3 according to R γ (a factor of 25). Figures 26 and 27 suggest that for a vertical load of 6N rather than

13 Moment Load, M/2R(N) Incremental Rotation, 2Rdtheta (mm) Horizontal Load, H(N) Incremental Horizontal Displacement, du (mm) 5N a moment capacity say 5% higher might be expected, and that for the higher value of M 2 RH a further increase of say 15% is appropriate. We therefore apply a factor of 75 to the moments and 25 to the rotational displacements. The result is shown in Figure 28. It can be seen that after scaling the moment at a 2 Rθ value of.4 m is about 12kNm, compared to about 28kNm measured in the field. Although there is a factor of about 2 between these values, it must be borne in mind that there are a number of possible causes of difference between the tests (e.g. the sand in the field test may be much denser), and also that a factor of 75 has already been applied: a factor of 2 is relatively small by comparison. 5.3 Clay: field and laboratory tests V = -5 N V = N V = 5 N Figure 27: Yield surfaces and flow vectors in H-M space. Moment, M (knm) Rotational Displacement, 2Rtheta (m) Figure 28: Laboratory moment test scaled to field conditions for comparison with Figure 17 Less work has been carried out on clay than on sand. The large scale trials at Bothkennar (Houlsby et al. 25b) are complemented by laboratory studies intended to model these trials directly, and therefore add confidence to the scaling of the results to prototype size caissons (Kelly et al., 25a). M/[s u (2R) 3 ] M/[s u (2R) 3 ] At Bothkennar, moment loads were applied to a 3m x 1.5m caisson by two means. Small amplitude, but relatively high frequency (1Hz) loading was applied by means of the SEMV device described above, and larger amplitude cycles, but at much lower frequency, were applied using a hydraulic jack. In both cases the loading was 4m above the caisson, so that h load D = The most important observation from these tests was the gradual reduction of secant stiffness (and increase in hysteresis) as the amplitude of the load cycles increases. The laboratory tests, specifically modelling the field tests, involved just relatively low frequency loading. After the scaling relationships described in section 3 were applied, there was a satisfactory agreement between laboratory and field data, especially at relatively small amplitudes of movement. As an example, Figure 29(a) shows the results (in dimensionless form) for rotation of the 3.m diameter caisson in the field, and Figure 29(b) the equivalent results, also in dimensionless form, from the small scale model test. The pattern of behaviour is remarkably similar in the two tests. This sort of comparison is vital to establish θ (a) field test (b) model test Figure 29: Moment-rotation results presented in nondimensional form for laboratory and field tests. θ

14 confidence in the use of model testing to develop design guidelines. 6. CAISSON PERFORMANCE: TETRAPOD OR TRIPOD In the following, in which we consider multiple footing designs to support the wind turbine, we shall refer principally to a tetrapod (four footings) rather than a tripod. As a tripod is perhaps the most obvious multiple footing design to use, and has the obvious advantage of simplicity, our preference for the tetrapod deserves some explanation. As is discussed below, prudent design of a multiple footing structure will avoid tension being applied to any of the foundations (except under the most extreme of circumstances). This in effect dictates the separation of the foundations for a given overturning moment and weight of structure. Approximate calculations indicate that the tetrapod structure is usually a more favourable configuration to avoid tension, as it requires somewhat less material. The differences are not large, and a tripod may be preferred in some circumstances, but we shall refer to a tetrapod, as this will probably be more efficient. The important mechanism is the same in both cases: the overturning moment is resisted by opposing push-pull action on the foundations. In Table 4 we list the tests that have been carried out on vertical loading of caissons relevant to the wind turbine problem. In addition to these studies there are a number of other relevant studies which have been directed towards vertical loading of caissons for structures in the oil and gas industry or for use as anchors. 6.1 Sand: field and laboratory tests The simplest tests on vertical loading of caissons in sand, which are relevant both to installation and to subsequent performance, simply involve pushing caissons vertically into sand to determine the vertical load-displacement response. Figure 3 shows the results of a set of such tests on caissons of different L/D ratios, Byrne et al. (23). It is clear from the figure that there is a well-established pattern. While the caisson skirt is penetrating the sand there is relatively low vertical capacity, but as soon as the top plate makes contact with the sand there is a sudden increase in capacity. The envelope of the ultimate capacities of footings of different initial L/D ratios also forms a single consistent line. Of most importance, however, is the performance of the caissons under cyclic vertical loading. Figure Table 4: Vertical loading tests D L Site Soil Ref. (m) (m) Luce Bay Sand ,5 Oxford ,5 Sand laboratory ,32,33,35 Bothkennar Clay UWA centrifuge (1g) Vertical Load, V (N) Clay Normalised Vertical Displacement, w/d Vertical Displacement, w (mm) Figure 3: Vertical load-penetration curves for caissons of different L/D ratios Vertical Stress (kpa) Vertical Displacement (mm) Figure 31: Cyclic vertical loading of model caisson. 31 shows the results of tests on a 3mm diameter caisson subjected to rapid cyclic loading. Smallamplitude cycles show a stiff response, with larger cycles showing both more hysteresis and more accumulated displacement per cycle. The most important observation is that as soon as the cycles go into tension, a much softer response is observed, and the hysteresis loops acquire a characteristic banana shape. Clearly the soft response on achieving tension should be avoided in design. Closer examination of the curves reveals that the softening in fact occurs 3

15 Vertical Stress (kpa) Vertical Displacement (mm) Direction of movement 5mm/s, kpa 1mm/s, kpa 1mm/s, 2kPa Figure 32: Tensile capacity of model caisson pulled at different rates and at different ambient pressures. V/[γ'(2R) 3 ] m Field.15m Suction.2m Pushed.15m Pushed [w/(2r)][p a /(2Rγ')] 1/2 Figure 33: Hysteresis loops from tests at different scales and rates. once the drained frictional capacity of the skirts has been exceeded, rather than simply the transition into tension. Paradoxically, although additional accumulated displacement is observed once tension is reached, this accumulated displacement is downwards (not upwards as one might expect because of the tensile loading). The above observations mean that tension must be avoided in a prudent design of a tripod or tetrapod foundation for a wind turbine. However, in all but the shallowest of water, avoiding this tension means that either the foundation must have a large spacing between the footings, or that ballasting must be used. The latter may in fact be a cost effective measure in deep water. Some designers may wish to reduce conservatism by allowing for the possibility of tension under extreme circumstances. It is therefore useful to examine the ultimate tensile capacity under rapid loading. Figure 32 shows the result of three such tests. The slowest test (at 5mm/s) is almost drained, and a very low capacity in tension is indicated. The capacity in this case is simply the friction on the skirts. The test at 1mm/s (but zero ambient water pressure) shows a larger capacity, and it is straightforward to show that this is controlled by cavitation beneath the foundation. This means that at elevated water pressures (as in the third test) the capacity rises approximately in step with to the ambient water pressure, as correspondingly larger pressure changes are required to cause cavitation. This problem is studied in more detail by Houlsby et al. (25a). It is important to note, however, that although ambient water pressure increases the ultimate capacity, it has negligible influence on the tensile load at which a flexible response begins to occur. Comparison of cyclic loading tests at different scales and at different speeds shows that it is difficult to scale reliably the accumulated displacements, which reduce with larger tests and higher loading rates. However, when the scaling rules described earlier are applied, the shapes of individual hysteresis loops at different scales and at different rates become remarkably similar. Figure 33 shows a comparison, for instance, of loops at three different load amplitudes from four different tests. At each particular load amplitude the loops from the different tests are very similar. The accumulation of displacement after very large numbers of cycles is difficult to predict, and so far few data are available. Rushton (25) has carried out vertical loading tests to about 1 cycles on a model caisson in sand, using a simple loading rig which employs a rotating mass and a series of pulleys to apply a cyclic load. A typical result is shown in Figure 34, on a caisson 2mm diameter and 1mm deep, with cycling between 21 ± 26N. The caisson is therefore subjected (at the minimum vertical load) to a small tension, but less than the frictional capacity of the skirts. The dimensionless accumulated vertical displacement is seen in Figure 34 to increase approximately with the logarithm of the number of cycles of loading (after about 1 cycles). Note that even in this case where there is a tensile loading in part of the cycle, the net movement is downwards. The displacement is of course very sensitive also to the amplitude of the cycling. 6.2 Clay: field and laboratory tests Very few vertical loading tests relevant to the wind turbine problem have been completed on caissons in clay, although there have been a number of studies directed towards suction caissons used as tension

16 [w/(2r)][p a /(2Rγ )] 1/2 anchors, e.g. El-Gharbawy (1998), Watson (1999), House (22). At Bothkennar tests were carried out in which inclined (but near vertical) loading was applied to a 1.5m diameter caisson (Houlsby et al., 25b). Difficulties were encountered with the control of the loads using a hydraulic system, and the resulting load paths are therefore rather complex, leading to difficulties in interpretation. Further work on vertical loading in clay is required before definitive conclusions can be drawn, and in particular the issue of tensile loading in clay needs attention. Some preliminary results (Byrne and Cassidy, 22), shown in Figure 35, show that the tensile response may be sensitive to prior compressive loading. Footings loaded in tension immediately after installation showed a stiff tensile response, whilst those loaded after first applying a compressive load to failure showed a more flexible tensile response. Vertical Stress, V/A (kpa) Min Max Number of Cycles Figure 34: Accumulated displacement during long term cyclic vertical loading on sand Test 1: Post Bearing Capacity Test 2: Pre Bearing Capacity Normalised Displacement, (w + L)/D Figure 35: Tension tests on caisson foundations in clay 7. NUMERICAL STUDIES 7.1. Finite element studies A number of analyses of suction caissons for offshore wind farms have been carried out as part of commercial investigations for possible projects. A more detailed research project was carried out by Feld (21). Finite element analysis is particularly appropriate for establishing the effects of design parameters on the elastic behaviour of caissons, and has been used by Doherty et al. (24a,b) to determine elastic stiffness coefficients for caisson design which take into account the flexibility of the caisson wall as well as coupling effects between horizontal and moment loading. 7.2 Plasticity models An important tool for the analysis of soil-structure interaction problems, particularly those involving dynamically sensitive structures are force resultant models. In these the behaviour of the foundation is represented purely through the force resultants acting upon it, and the resulting displacements (see Figure 4). Details of stresses and deformations within the soil are ignored. The models are usually framed within the context of work-hardening plasticity theory. Examples include models for foundations on clay (Martin and Houlsby, 21) and on sand (Houlsby and Cassidy, 22). Overviews of the development of these models are given by Houlsby (23) and Cassidy et al. (24) These models have been further developed specifically for the offshore wind turbine application. The developments include: Generalisation to full three-dimensional loading conditions, Inclusion of special features to represent the caisson geometry, Expression of the models within the continuous hyperplasticity framework to allow realistic description of hysteretic response during cyclic loading. A model with all these features is described by Lam and Houlsby (25). The fitting of cyclic data to a continuous hyperplastic model is discussed by Byrne et al (22a). 8. OTHER CONSIDERATIONS We have concentrated here on the design of caisson foundations as far as capacity and stiffness are concerned for in-service conditions. However, there a number of other issues which need to be addressed in a caisson design, and we mention them here briefly. 8.1 Scour Scour is more important for caissons, since they are relatively shallow, than for piles. The size of caissons, and the fact that part of the caisson

17 inevitably protrudes above mudline level, creates rather aggressive conditions for scour. The fact that the caissons may be installed in mobile shallowwater environments means that proper consideration of this problem is essential, especially in sands. If the scour depth can be determined with sufficient confidence (e.g. from comprehensive model testing) then it may be possible to permit the scour to occur, and simply allow for this in the design by ensuring that the caisson is deep enough. It is more likely, however, that scour protection measures such as rock-dumping will need to be employed. Practical experience suggests that such protection must be placed very soon after caisson installation, as scour can occur very rapidly. In highly mobile environments, significant scour can, for instance, occur due to the currents in a single tide. Model testing indicates, however, that scour protection measures can be effective in preventing further erosion (R. Whitehouse: private communication). For in-service conditions regular monitoring for the possibility of scour would be prudent. 8.2 Liquefaction The transient pore pressures induced in the seabed can induce liquefaction, especially if the seabed is partially saturated due to the presence of gas (as can occur in shallow seabeds, largely due to decay of organic matter). The problem is a complex one, but typically, at one stage in the wave cycle, the pore pressure in the seabed can become equal to the overburden stress, and the effective stress falls to zero. This problem is further complicated by the presence of a structure, which clearly modifies the pore pressure pattern that would occur in the far field. Although some progress has been made, the interactions are complex, and theoretical modelling of the problem is not straightforward. 8.3 Wave-induced forces A quite different problem from liquefaction is also related to the fact that the principal forces on the structure are wave induced. As a wave passes the column of the structure it exerts large horizontal forces (of the order of a few meganewtons for a large wave), which also cause overturning moments. However, at the same time the wave causes a transient pressure on the seabed, and on the lid of the caisson. Because the caissons are in shallow water these pressures are quite large. The pore water pressure within the caisson is unlikely to change as rapidly as the pressure on the lid, so there will be pressure differentials across the lid of the caisson which result in net vertical forces, and overturning moments on the caisson. The relative phase of the different sources of loading is important. As the crest of the wave just reaches the structure, the wave kinematics are such that the horizontal forces are likely to be largest. At this stage the pressure on the upwave side of the caisson is likely to be larger than on the downwave side. The net result is that the moment caused by the pressures on the caisson lid opposes that caused by the horizontal loading, so this effect is likely to be beneficial to the performance of the caisson. Little work has, however, yet been completed on the magnitudes of these effects. The problem is complicated by the fact that the kinematics of large (highly non-linear) shallow water waves is still a matter of research, as is their interaction with structures. 8. CONCLUSIONS In this paper we have provided an overview of the extensive amount of work that has been carried out on the design of suction caisson foundations for offshore wind turbines. Further verification of the results presented here is still required, and in due course it is hoped that this will come from instrumented caisson foundations offshore. Our broad conclusions at present are: Suction caissons could be used as foundations for offshore wind turbines, either in monopod or tripod/tetrapod layout. The combination of low vertical load and high horizontal load and moment is a particular feature of the wind turbine problem. Stiffness and fatigue are as important for turbine design as ultimate capacity. Monopod foundation design is dominated by moment loading. Tripod/tetrapod foundation design is dominated by considerations of tensile loading. The moment-rotation response of caissons in sand has been extensively investigated by model tests and field trials, and modelled theoretically by finite element analyses and force resultant (yield surface) models. As amplitude of moment loading increases, stiffness reduces and hysteresis increases. Moment loading in clay has been less extensively investigated in the laboratory and field. Vertical loading in sand has been extensively investigated in the laboratory and field.

Research on Offshore Foundations: Papers at the International Symposium on Frontiers in Offshore Geotechnics Perth, Australia, 2005

Research on Offshore Foundations: Papers at the International Symposium on Frontiers in Offshore Geotechnics Perth, Australia, 2005 Research on Offshore Foundations: Papers at the International Symposium on Frontiers in Offshore Geotechnics Perth, Australia, 5 by G.T. oulsby, C.. artin, B.W. Byrne, R.B. Kelly E.J. azell, L. guyen-sy,

More information

The tensile capacity of suction caissons in sand under rapid loading

The tensile capacity of suction caissons in sand under rapid loading Frontiers in Offshore Geotechnics: ISFOG 25 Gourvenec & Cassidy (eds) 25 Taylor & Francis Group, London, ISBN 415 3963 X The tensile capacity of suction caissons in sand under rapid loading Guy T. Houlsby,

More information

SUCTION CAISSON FOUNDATIONS FOR OFFSHORE WIND TURBINES

SUCTION CAISSON FOUNDATIONS FOR OFFSHORE WIND TURBINES SUCTION CAISSON FOUNDATIONS FOR OFFSHORE WIND TURBINES Felipe A. Villalobos Oxford University felipe.villalobos@eng.ox.ac.uk Guy T. Houlsby Oxford University guy.houlsby@eng.ox.ac.uk Byron W. Byrne Oxford

More information

OMAE INVESTIGATING NOVEL FOUNDATIONS FOR OFFSHORE WINDPOWER GENERATION

OMAE INVESTIGATING NOVEL FOUNDATIONS FOR OFFSHORE WINDPOWER GENERATION Proceedings of OMAE 2 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-28, 22 Oslo, Norway OMAE22-28423 INVESTIGATING NOVEL FOUNDATIONS FOR OFFSHORE WINDPOWER GENERATION

More information

Theory of a vertically loaded Suction Pile in CLAY

Theory of a vertically loaded Suction Pile in CLAY 11 Theory of a vertically loaded Suction Pile in CLAY Mainly based on the et Norske Veritas NV-RP-E303 1. Convention Water COG h L Soil COG t Figure 1 Suction Pile Figure 2 Suction pile with main parameters

More information

Field Testing of Suction Caissons at Bothkennar and Luce Bay

Field Testing of Suction Caissons at Bothkennar and Luce Bay Field Testing of Suction Caissons at Bothkennar and Luce Bay by G.T. Houlsby, R.B. Kelly, J. Huxtable and B.W. Byrne Report No. OUEL 2276/5 University of Oxford Department of Engineering Science Parks

More information

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007 Aalborg Universitet Design Loads on Platforms on Offshore wind Turbine Foundations with Respect to Vertical Wave Run-up Damsgaard, Mathilde L.; Gravesen, Helge; Andersen, Thomas Lykke Published in: Proceedings

More information

Learn more at

Learn more at Full scale model tests of a steel catenary riser C. Bridge 1, H. Howells 1, N. Toy 2, G. Parke 2, R. Woods 2 1 2H Offshore Engineering Ltd, Woking, Surrey, UK 2 School of Engineering, University of Surrey,

More information

CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS

CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS 5.1 Introduction Using surcharging as the sole soil consolidation mean can take a long time to reach the desired soil settlement. Soil consolidation using prefabricated

More information

V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures and Wind Turbines on Caisson Foundations in Soft Clays

V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures and Wind Turbines on Caisson Foundations in Soft Clays NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures

More information

OMAE INVESTIGATING THE RESPONSE OF OFFSHORE FOUNDATIONS IN SOFT CLAY SOILS

OMAE INVESTIGATING THE RESPONSE OF OFFSHORE FOUNDATIONS IN SOFT CLAY SOILS Proceedings of OMAE st International Conference on Offshore Mechanics and Arctic Engineering June 3-8, Oslo, Norway OMAE-857 INVESTIGATING THE RESPONSE OF OFFSHORE FOUNDATIONS IN SOFT CLAY SOILS B.W. Byrne

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters J. Mar. Sci. Eng. 214, 2, 93-122; doi:1.339/jmse2193 Article OPEN ACCESS Journal of Marine Science and Engineering ISSN 277-1312 www.mdpi.com/journal/jmse Comparison and Sensitivity Investigations of a

More information

Sea-going vessel versus wind turbine

Sea-going vessel versus wind turbine Collision risk at high sea Sea-going vessel versus wind turbine Offshore wind power: Wind turbines off the German coast generally represent obstacles in the traffic routes of ships. What if a large sea-going

More information

Analysis of dilatometer test in calibration chamber

Analysis of dilatometer test in calibration chamber Analysis of dilatometer test in calibration chamber Lech Bałachowski Gdańsk University of Technology, Poland Keywords: calibration chamber, DMT, quartz sand, FEM ABSTRACT: Because DMT in calibration test

More information

Experimental Investigations of the Cyclic Response of Suction Caissons in Sand B.W. Byrne and G.T. Houlsby

Experimental Investigations of the Cyclic Response of Suction Caissons in Sand B.W. Byrne and G.T. Houlsby OTC 12194 Experimental Investigations of the Cyclic Response of Suction Caissons in Sand B.W. Byrne and G.T. Houlsby Copyright 2, Offshore Technology Conference This paper was prepared for presentation

More information

Pressuremeters in Geotechnical Design

Pressuremeters in Geotechnical Design Pressuremeters in Geotechnical Design B.G. CLARKE Department of Civil Engineering University of Newcastle upon Tyne BLACK1E ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall London Glasgow Weinheim

More information

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS

A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS A NOVEL FLOATING OFFSHORE WIND TURBINE CONCEPT: NEW DEVELOPMENTS L. Vita, U.S.Paulsen, T.F.Pedersen Risø-DTU Technical University of Denmark, Roskilde, Denmark luca.vita@risoe.dk Abstract: A novel concept

More information

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds

Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Control Strategies for operation of pitch regulated turbines above cut-out wind speeds Helen Markou 1 Denmark and Torben J. Larsen, Risø-DTU, P.O.box 49, DK-4000 Roskilde, Abstract The importance of continuing

More information

Drum Centrifuge Model Tests Comparing the Performance of Spudcans and Caissons in Kaolin Clay

Drum Centrifuge Model Tests Comparing the Performance of Spudcans and Caissons in Kaolin Clay Drum Centrifuge Model Tests Comparing the Performance of Spudcans and Caissons in Kaolin Clay by M.J. Cassidy and B.W. Byrne Report No. OUEL 48/ University of Oxford Department of Engineering Science Parks

More information

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK ABSTRACT Ventilation stacks are becoming increasingly common in the design of naturally

More information

Vibration Analysis and Test of Backup Roll in Temper Mill

Vibration Analysis and Test of Backup Roll in Temper Mill Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Vibration Analysis and Test of Backup Roll in Temper Mill Yuanmin Xie College of Machinery and Automation, Wuhan University of Science and

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2010

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 1, No 4, 2010 Effect of geometric dimensions on the transmission coefficient of floating breakwaters Mohammad Hosein Tadayon, Khosro Bargi 2, Hesam Sharifian, S. Reza Hoseini - Ph.D student, Department of Civil Engineering,

More information

Cyclic loading of shallow offshore foundations on sand

Cyclic loading of shallow offshore foundations on sand Cyclic loading of shallow offshore foundations on sand B.W. Byrne, G.T. Houlsby & C.M. Martin Department of Engineering Science, The University of Oxford, United Kingdom ABSTRACT: A significant challenge

More information

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS

GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS SMART SOLUTIONS FOR VIBRATION MONITORING GEA FOR ADVANCED STRUCTURAL DYNAMIC ANALYSIS ANALYSIS OF CIVIL STRUCTURES - EXPO MERLATA PEDESTRIAN BRIDGE ABSTRACT Civil structures and in particular bridges and

More information

Analysis of Shear Lag in Steel Angle Connectors

Analysis of Shear Lag in Steel Angle Connectors University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2013 Analysis of Shear Lag in Steel Angle Connectors Benjamin Sawyer

More information

UNIT-I SOIL EXPLORATION

UNIT-I SOIL EXPLORATION SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Geotechnical Engineering - II (16CE127) Year & Sem: III-B.Tech & II-Sem

More information

Offshore Wind Turbine monopile in 50 year storm conditions

Offshore Wind Turbine monopile in 50 year storm conditions TMR7 Experimental methods in marine hydrodynamics - lab exercise 3 2017 Offshore Wind Turbine monopile in 50 year storm conditions Trygve Kristiansen and Erin Bachynski, Trondheim, 20.09.2017 Background

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 43 Module 3: Lecture - 5 on Compressibility and Consolidation Contents Stresses in soil from surface loads; Terzaghi s 1-D consolidation theory; Application in different boundary conditions; Ramp loading;

More information

Dynamic response of composite caissonpiles

Dynamic response of composite caissonpiles Dynamic response of composite caissonpiles foundations Maosong Huang Department of Geotechnical Engineering Tongji University, Shanghai, China Outline of talk 1 Introduction 2 Lateral response 3 Seismic

More information

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL

PRESSURE DISTRIBUTION OF SMALL WIND TURBINE BLADE WITH WINGLETS ON ROTATING CONDITION USING WIND TUNNEL International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) ISSN 2249-6890 Vol.2, Issue 2 June 2012 1-10 TJPRC Pvt. Ltd., PRESSURE DISTRIBUTION OF SMALL WIND TURBINE

More information

RELIABILITY ASSESSMENT, STATIC AND DYNAMIC RESPONSE OF TRANSMISSION LINE TOWER: A COMPARATIVE STUDY

RELIABILITY ASSESSMENT, STATIC AND DYNAMIC RESPONSE OF TRANSMISSION LINE TOWER: A COMPARATIVE STUDY RELIABILITY ASSESSMENT, STATIC AND DYNAMIC RESPONSE OF TRANSMISSION LINE TOWER: A COMPARATIVE STUDY Yusuf Mansur Hashim M. Tech (Structural Engineering) Student, Sharda University, Greater Noida, (India)

More information

Cubzac-les-Ponts Experimental Embankments on Soft Clay

Cubzac-les-Ponts Experimental Embankments on Soft Clay Cubzac-les-Ponts Experimental Embankments on Soft Clay GEO-SLOPE International Ltd. www.geo-slope.com 1, 7 - th Ave SW, Calgary, AB, Canada TP T Main: +1 3 9 Fax: +1 3 39 Introduction In the 197 s, a series

More information

Khosla's theory. After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following;

Khosla's theory. After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following; Khosla's theory After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following; Following are some of the main points from Khosla's Theory From observation

More information

Engineering Practice on Ice Propeller Strength Assessment Based on IACS Polar Ice Rule URI3

Engineering Practice on Ice Propeller Strength Assessment Based on IACS Polar Ice Rule URI3 10th International Symposium on Practical Design of Ships and Other Floating Structures Houston, Texas, United States of America 2007 American Bureau of Shipping Engineering Practice on Ice Propeller Strength

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

Mechanical Stabilisation for Permanent Roads

Mechanical Stabilisation for Permanent Roads Mechanical Stabilisation for Permanent Roads Tim Oliver VP Global Applications Technology Tensar International toliver@tensar.co.uk Effect of geogrid on particle movement SmartRock Effect of geogrid on

More information

Reinforced Soil Retaining Walls-Design and Construction

Reinforced Soil Retaining Walls-Design and Construction Lecture 32 Reinforced Soil Retaining Walls-Design and Construction Prof. G L Sivakumar Babu Department of Civil Engineering Indian Institute of Science Bangalore 560012 Example calculation An 8 m high

More information

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life

Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Catenary Mooring Chain Eigen Modes and the Effects on Fatigue Life Tor Anders Nygaard and Jacobus de Vaal, IFE Morten Hviid Madsen and Håkon Andersen, Dr.techn Olav Olsen AS Jorge Altuzarra, Vicinay Marine

More information

Lateral Load Analysis Considering Soil-Structure Interaction. ANDREW DAUMUELLER, PE, Ph.D.

Lateral Load Analysis Considering Soil-Structure Interaction. ANDREW DAUMUELLER, PE, Ph.D. Lateral Load Analysis Considering Soil-Structure Interaction ANDREW DAUMUELLER, PE, Ph.D. Overview Introduction Methods commonly used to account for soil-structure interaction for static loads Depth to

More information

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003

Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 CEE 331 Lab 1 Page 1 of 9 SAFETY Lab #1 Pressure: Bubblers and Water Balloons CEE 331 Fall 2003 Laboratory exercise based on an exercise developed by Dr. Monroe Weber-Shirk The major safety hazard in this

More information

Offshore platforms survivability to underwater explosions: part I

Offshore platforms survivability to underwater explosions: part I Computational Ballistics III 123 Offshore platforms survivability to underwater explosions: part I A. A. Motta 1, E. A. P. Silva 2, N. F. F. Ebecken 2 & T. A. Netto 2 1 Brazilian Navy Research Institute,

More information

Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip.

Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip. Lab 1: Pressure and surface tension. Bubblers, gravity and the mighty paper clip. CEE 3310 - Summer 2012 SAFETY The major safety hazard in this laboratory is a shock hazard. Given that you will be working

More information

computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23.

computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23. computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23. (2) For the resisting side, passive pressure theory indicates

More information

EMA and Other Dynamic Testing of a 2-Span Prestressed Concrete Floor. Tuan Nguyen, Nicholas Haritos, Emad Gad and John Wilson

EMA and Other Dynamic Testing of a 2-Span Prestressed Concrete Floor. Tuan Nguyen, Nicholas Haritos, Emad Gad and John Wilson EMA and Other Dynamic Testing of a 2-Span Prestressed Concrete Floor Tuan Nguyen, Nicholas Haritos, Emad Gad and John Wilson INTRODUCTION This paper discusses experimental modal analysis (EMA) using swept

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES

2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES Industry Guidelines Part 2 FUSION FITTINGS FOR USE WITH POLYETHYLENE PRESSURE PIPES DESIGN FOR DYNAMIC STRESSES ISSUE 5.1 Ref: POP10B 15 MAR 2010 Disclaimer In formulating this guideline PIPA has relied

More information

OIL AND GAS INDUSTRY

OIL AND GAS INDUSTRY This case study discusses the sizing of a coalescer filter and demonstrates its fouling life cycle analysis using a Flownex model which implements two new pressure loss components: - A rated pressure loss

More information

Appendix E BACKGROUND TO STRAIN GAUGE AND EXTENSOMETER CALIBRATIONS. R. Frederking and D. Sudom

Appendix E BACKGROUND TO STRAIN GAUGE AND EXTENSOMETER CALIBRATIONS. R. Frederking and D. Sudom Appendix E BACKGROUND TO STRAIN GAUGE AND EXTENSOMETER CALIBRATIONS R. Frederking and D. Sudom Table of contents 1. Strain Gauge Calibrations... 1 1.1 Variation of strain gauge factor with location around

More information

Wind loads investigations of HAWT with wind tunnel tests and site measurements

Wind loads investigations of HAWT with wind tunnel tests and site measurements loads investigations of HAWT with wind tunnel tests and site measurements Shigeto HIRAI, Senior Researcher, Nagasaki R&D Center, Technical Headquarters, MITSUBISHI HEAVY INDSUTRIES, LTD, Fukahori, Nagasaki,

More information

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration

Paper 2.2. Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration Paper 2.2 Operation of Ultrasonic Flow Meters at Conditions Different Than Their Calibration Mr William Freund, Daniel Measurement and Control Mr Klaus Zanker, Daniel Measurement and Control Mr Dale Goodson,

More information

Site-Specific Assessment of Jack-Ups Part 1: Jack-Up Basics & Why We Do Site-Specific Assessments

Site-Specific Assessment of Jack-Ups Part 1: Jack-Up Basics & Why We Do Site-Specific Assessments OIL & GAS Site-Specific Assessment of Jack-Ups Part 1: Jack-Up Basics & Why We Do Site-Specific Assessments Noble Denton marine services Mike White 1 SAFER, SMARTER, GREENER Overview What are we talking

More information

Stress and deformation of offshore piles under structural and wave loading

Stress and deformation of offshore piles under structural and wave loading Stress and deformation of offshore piles under structural and wave loading Author Eicher, Jackie, Guan, Hong, Jeng, Dong-Sheng Published 2003 Journal Title Ocean Engineering DOI https://doi.org/10.1016/s0029-8018(02)00031-8

More information

Critical Gust Pressures on Tall Building Frames-Review of Codal Provisions

Critical Gust Pressures on Tall Building Frames-Review of Codal Provisions Dr. B.Dean Kumar Dept. of Civil Engineering JNTUH College of Engineering Hyderabad, INDIA bdeankumar@gmail.com Dr. B.L.P Swami Dept. of Civil Engineering Vasavi College of Engineering Hyderabad, INDIA

More information

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE

EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE EXPERIMENTAL INVESTIGATIONS OF BARGE FLOATER WITH MOONPOOL FOR 5 MW WIND TURBINE 1 MR. G.VIJAYA KUMAR, 2 DR. R. PANNEER SELVAM 1 M.S. Research Scholar, Department of Ocean Engineering, IIT Madras, Chennai,

More information

Impact Fatigue on Suction Valve Reed: New Experimental Approach

Impact Fatigue on Suction Valve Reed: New Experimental Approach Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2004 Impact Fatigue on Suction Valve Reed: New Experimental Approach Michele Libralato ACC

More information

Suction anchor foundations for tension and taut leg floaters in deep waters. Tension Leg Platform. Taut Leg Platform. upper chain. risers.

Suction anchor foundations for tension and taut leg floaters in deep waters. Tension Leg Platform. Taut Leg Platform. upper chain. risers. Case history: Soil investigation for offshore suction anchors anchor foundations for tension and taut leg floaters in deep waters Alternative anchors for floating structures pile Over last 5 - years anchoring

More information

Plastic non-symmetric bifurcation buckling of circular cylinders under uniform external hydrostatic pressure

Plastic non-symmetric bifurcation buckling of circular cylinders under uniform external hydrostatic pressure icccbe 2010 Nottingham University Press Proceedings of the International Conference on Computing in Civil and Building Engineering W Tizani (Editor) Plastic non-symmetric bifurcation buckling of circular

More information

Displacement-based calculation method on soil-pile interaction of PHC pipe-piles

Displacement-based calculation method on soil-pile interaction of PHC pipe-piles Seattle, WA Displacement-based calculation method on soil-pile interaction of PHC pipe-piles Dr. Huang Fuyun Fuzhou University 31 st May, 217 Outline Background ing introduction ing results Simple calculation

More information

Offshore engineering science

Offshore engineering science Offshore engineering science In this research stream theoretical models advanced geotechnical models and new numerical techniques were used in applied offshore engineering topics such as loading, design

More information

Lab # 03: Visualization of Shock Waves by using Schlieren Technique

Lab # 03: Visualization of Shock Waves by using Schlieren Technique AerE545 Lab # 03: Visualization of Shock Waves by using Schlieren Technique Objectives: 1. To get hands-on experiences about Schlieren technique for flow visualization. 2. To learn how to do the optics

More information

Vibration of floors and footfall analysis

Vibration of floors and footfall analysis Webinar Autodesk Robot Structural Analysis Professional 20/04/2016 Vibration of floors and footfall analysis Artur Kosakowski Rafał Gawęda Webinar summary In this webinar we will focus on the theoretical

More information

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Anand Natarajan Senior Scientist Wind Energy Department, Risø DTU Denmark Introduction IEC 61400-1

More information

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2.

and its weight (in newtons) when located on a planet with an acceleration of gravity equal to 4.0 ft/s 2. 1.26. A certain object weighs 300 N at the earth's surface. Determine the mass of the object (in kilograms) and its weight (in newtons) when located on a planet with an acceleration of gravity equal to

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Absolute and Gage Pressure P abs = P gage + P atm where P abs = Absolute pressure P abs = Gage pressure P abs = atmospheric pressure A perfect vacuum is the lowest possible pressure.

More information

Figure 1 Schematic of opposing air bearing concept

Figure 1 Schematic of opposing air bearing concept Theoretical Analysis of Opposing Air Bearing Concept This concept utilizes air bearings to constrain five degrees of freedom of the optic as shown in the figure below. Three pairs of inherently compensated

More information

Assistant Lecturer Anees Kadhum AL Saadi

Assistant Lecturer Anees Kadhum AL Saadi Pressure Variation with Depth Pressure in a static fluid does not change in the horizontal direction as the horizontal forces balance each other out. However, pressure in a static fluid does change with

More information

OTC Copyright 2008, Offshore Technology Conference

OTC Copyright 2008, Offshore Technology Conference OTC 19545 Comparison of Jackup Rig Spudcan Penetration Methods in Clay David Menzies, Fugro-McClelland Marine Geosciences, Inc., and Richard Roper, ENSCO International, Inc. Copyright 2008, Offshore Technology

More information

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine

Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine 1 Ameliorating the Negative Damping in the Dynamic Responses of a Tension Leg Spar-Type Support Structure with a Downwind Turbine Madjid Karimirad Torgeir Moan Author CeSOS Centre Centre for Ships for

More information

Dynamic Response of Jacket Structures to Breaking and Nonbreaking Waves: Yesterday, Today, Tomorrow

Dynamic Response of Jacket Structures to Breaking and Nonbreaking Waves: Yesterday, Today, Tomorrow Leichtweiß-Institute for Hydraulic Engineering and Water Resources Department of Hydromechanics and Coastal Engineering Dynamic Response of Jacket Structures to Breaking and Nonbreaking Waves: Yesterday,

More information

Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand

Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand SECM/15/080 Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand S. Mukherjee 1* and Dr. S. Mittal 2 1 Amity University, Noida, India 2 Indian Institute of Technology, Roorkee,

More information

Vessel Weighing. Load Cells and Weigh Modules VPG TRANSDUCERS. Technical Note VPGT-06. Scope. Accuracy. Mode of Operation. Mechanical Considerations

Vessel Weighing. Load Cells and Weigh Modules VPG TRANSDUCERS. Technical Note VPGT-06. Scope. Accuracy. Mode of Operation. Mechanical Considerations VPG TRANSDUCERS Load Cells and Weigh Modules Technical Note VPGT-06 Scope Load cells may be used to weigh vessels in various installation configurations. The installation of load cells into a practical

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

Lifecycle Performance of Escape Systems

Lifecycle Performance of Escape Systems Lifecycle Performance of Escape Systems A look at laboratory vs field conditioning of aramid fiber based escape systems. By James Hunter, Cedric Smith, Ole Kils and Tyler Mayer for ITRS 2018 1.1 Introduction

More information

Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su

Figure 1 Figure 1 shows the involved forces that must be taken into consideration for rudder design. Among the most widely known profiles, the most su THE RUDDER starting from the requirements supplied by the customer, the designer must obtain the rudder's characteristics that satisfy such requirements. Subsequently, from such characteristics he must

More information

Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330 kw and 7,500 kw

Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330 kw and 7,500 kw World Transactions on Engineering and Technology Education Vol.11, No.1, 2013 2013 WIETE Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330

More information

Experimental Determination of Temperature and Pressure Profile of Oil Film of Elliptical Journal Bearing

Experimental Determination of Temperature and Pressure Profile of Oil Film of Elliptical Journal Bearing International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 4, Number 5 (2014), pp. 469-474 Research India Publications http://www.ripublication.com Experimental Determination of Temperature

More information

Finite Element Analysis of an Aluminium Bike Frame

Finite Element Analysis of an Aluminium Bike Frame Finite Element Analysis of an Aluminium Bike Frame Word Count: 1484 1 1. Introduction Each new bike model must pass a series of structural tests before being released for public retail. The purpose of

More information

Thomas Lykke Andersen, Morten Kramer, Peter Frigaard November 2003

Thomas Lykke Andersen, Morten Kramer, Peter Frigaard November 2003 Thomas Lykke Andersen, Morten Kramer, Peter Frigaard November 2003 HYDRAULICS & COASTAL ENGINEERING LABORATORY AALBORG UNIVERSITY DEPARTMENT OF CIVIL ENGINEERING SOHNGAARDSHOLMSVEJ 57 DK-9000 AALBORG DENMARK

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

Field trials of suction caissons in sand for offshore wind turbine foundations

Field trials of suction caissons in sand for offshore wind turbine foundations Houlsby, G. T., Kelly, R. B., Huxtable, J. & Byrne, B. W. (26). Géotechnique 56, No. 1, 3 1 Field trials of suction caissons in sand for offshore wind turbine foundations G. T. HOULSBY*, R. B. KELLY, J.

More information

Statnamic Load Testing Using Water as Reaction Mass

Statnamic Load Testing Using Water as Reaction Mass Sixth International Conference on the Application of Stress-Wave Theory To Piles 1 Statnamic Load Testing Using Water as Reaction Mass.D. Justason Berminghammer Foundation Equipment, Hamilton, Canada M.C.

More information

TLP Minimum tendon tension design and tendon down-stroke investigation

TLP Minimum tendon tension design and tendon down-stroke investigation Published by International Association of Ocean Engineers Journal of Offshore Engineering and Technology Available online at www.iaoejoet.org TLP Minimum tendon tension design and tendon down-stroke investigation

More information

Deepwater Floating Production Systems An Overview

Deepwater Floating Production Systems An Overview Deepwater Floating Production Systems An Overview Introduction In addition to the mono hull, three floating structure designs Tension leg Platform (TLP), Semisubmersible (Semi), and Truss Spar have been

More information

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio

2 Available: 1390/08/02 Date of returning: 1390/08/17 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditio 1. A suction cup is used to support a plate of weight as shown in below Figure. For the conditions shown, determine. 2. A tanker truck carries water, and the cross section of the truck s tank is shown

More information

Pressure Plate Drying and Wetting

Pressure Plate Drying and Wetting 1 Introduction Pressure Plate Drying and Wetting This air flow example illustrates how the process of axis translation, which is used in pressure plates to measure the water content function, can be modeled.

More information

Study to Establish Relations for the Relative Strength of API 650 Cone Roof Roof-to-Shell and Shell-to- Bottom Joints

Study to Establish Relations for the Relative Strength of API 650 Cone Roof Roof-to-Shell and Shell-to- Bottom Joints Thunderhead Engineering Consultants I N C O R P O R A T E D 1006 Poyntz Ave. Manhattan, KS 66502-5459 785-770-8511 www. thunderheadeng.com Study to Establish Relations for the Relative Strength of API

More information

Vessel Weighing. Load Cells VPG TRANSDUCERS. Application Note VPG-06 TECH NOTE. Scope. Accuracy. Mode of Operation. Mechanical Considerations

Vessel Weighing. Load Cells VPG TRANSDUCERS. Application Note VPG-06 TECH NOTE. Scope. Accuracy. Mode of Operation. Mechanical Considerations VPG TRANSDUCERS Load Cells Application Note VPG-06 Scope Load cells may be used to weigh vessels in various installation configurations. The installation of load cells into a practical field application

More information

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2

Centre for Offshore Renewable Energy Engineering, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, MK43 0AL, UK 2 Fluid Structure Interaction Modelling of A Novel 10MW Vertical-Axis Wind Turbine Rotor Based on Computational Fluid Dynamics and Finite Element Analysis Lin Wang 1*, Athanasios Kolios 1, Pierre-Luc Delafin

More information

m v = 1.04 x 10-4 m 2 /kn, C v = 1.29 x 10-2 cm 2 /min

m v = 1.04 x 10-4 m 2 /kn, C v = 1.29 x 10-2 cm 2 /min 2.10 Problems Example 2.1: Design of Shallow Foundation in Saturated Clay Design a square footing to support a column load of 667 kn. The base of the footing will be located 1 m below the ground level

More information

Yasuyuki Hirose 1. Abstract

Yasuyuki Hirose 1. Abstract Study on Tsunami force for PC box girder Yasuyuki Hirose 1 Abstract In this study, a waterway experiment was performed in order to understand the influence of tsunami forms on tsunami forces acting on

More information

V MW Offshore leadership

V MW Offshore leadership V120-4.5 MW Offshore leadership OptiSpeed allows the rotor speed to vary within a range of approximately 60 per cent in relation to nominal rpm. Thus with OptiSpeed, the rotor speed can vary by as much

More information

SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM

SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM 18 th Southeast Asian Geotechnical & Inaugural AGSSEA Conference 29-31 May 213, Singapore Leung, Goh & Shen (eds) SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM GOUW TJIE-LIONG

More information

Wind Energy Technology. What works & what doesn t

Wind Energy Technology. What works & what doesn t Wind Energy Technology What works & what doesn t Orientation Turbines can be categorized into two overarching classes based on the orientation of the rotor Vertical Axis Horizontal Axis Vertical Axis Turbines

More information

The Benefits Of Composite Materials In Deepwater Riser Applications. 26 th March 2015 Hassan Saleh Senior Engineer 2H Offshore Engineering Ltd

The Benefits Of Composite Materials In Deepwater Riser Applications. 26 th March 2015 Hassan Saleh Senior Engineer 2H Offshore Engineering Ltd The Benefits Of Composite Materials In Deepwater Riser Applications 26 th March 2015 Hassan Saleh Senior Engineer 2H Offshore Engineering Ltd Composite Benefits and Challenges Composite Materials offer

More information

Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders

Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders Acoustical Modeling of Reciprocating Compressors With Stepless Valve Unloaders Kelly Eberle, P.Eng. Principal Engineer keberle@betamachinery.com Brian C. Howes, M.Sc., P.Eng. Chief Engineer bhowes@betamachinery.com

More information

Research of Variable Volume and Gas Injection DC Inverter Air Conditioning Compressor

Research of Variable Volume and Gas Injection DC Inverter Air Conditioning Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2016 Research of Variable Volume and Gas Inection DC Inverter Air Conditioning Compressor

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL

A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL A STUDY OF THE LOSSES AND INTERACTIONS BETWEEN ONE OR MORE BOW THRUSTERS AND A CATAMARAN HULL L Boddy and T Clarke, Austal Ships, Australia SUMMARY CFD analysis has been conducted on a 100m catamaran hull

More information

STRIDE PROJECT Steel Risers in Deepwater Environments Achievements

STRIDE PROJECT Steel Risers in Deepwater Environments Achievements STRIDE PROJECT Steel Risers in Deepwater Environments Achievements 1999-21 Neil Willis Principal Engineer 2H Offshore Engineering 6 th Annual Deepwater Technologies and Developments Conference 21 The presentation

More information