The tensile capacity of suction caissons in sand under rapid loading

Size: px
Start display at page:

Download "The tensile capacity of suction caissons in sand under rapid loading"

Transcription

1 Frontiers in Offshore Geotechnics: ISFOG 25 Gourvenec & Cassidy (eds) 25 Taylor & Francis Group, London, ISBN X The tensile capacity of suction caissons in sand under rapid loading Guy T. Houlsby, Richard B. Kelly & Byron W. Byrne Department of Engineering Science, Oxford University ABSTRACT: We develop here a simplified theory for predicting the capacity of a suction caisson in sand, when it is subjected to rapid tensile loading. The capacity is found to be determined principally by the rate of pullout (relative to the permeability of the sand), and by the ambient pore pressure (which determines whether or not the water cavitates beneath the caisson). The calculation procedure depends on first predicting the suction beneath the caisson lid, and then further calculating the tensile load. The method is based on similar principles to a previously published method for suction-assisted caisson installation (Houlsby & Byrne 25). In the analysis a number of different cases are identified, and successful comparisons with experimental data are achieved for cases in which the pore water either does or does not cavitate. 1 INTRODUCTION Suction caissons are an option for the foundations for offshore structures. Under large environmental loads the upwind foundations of a multiple-caisson foundation might be subjected to tensile loads. Recent research indicates that serviceability requirements will often dictate that, under working and frequently encountered storm loads, tensile loads on caissons should be avoided, as they are accompanied by large displacements. However, it may be appropriate to design structures so that under certain extreme conditions the caissons are allowed to undergo tension. It is therefore necessary to have a means of estimating the tensile capacity of a caisson foundation, whilst recognising that large displacements may be necessary to mobilise this capacity. The calculations are also relevant to the holding capacity of caisson anchors subjected to pure vertical load, and to calculation of forces necessary to extract a caisson rapidly (for whatever reason). Under rapid tensile loading, a suction caisson in sand will exhibit a limiting load which will typically consist of a suction developed within the caisson, and friction on the outer wall. However, a number of different possible modes of failure exist. The purpose of this paper note is to set out simple calculations for capacities under various failure modes, and to compare these with experimental results. 2 TENSILE CAPACITY CALCULATIONS 2.1 Drained capacity If the tensile load is applied very slowly, then pore pressures will be small, and a fully drained calculation is applicable for calculating the capacity. For the purposes of calculation an idealised case of a foundation on a homogeneous deposit of sand is considered here. The resistance on the caisson is calculated as the sum of friction on the outside and the inside of the skirt. The effective stresses on the annular rim are likely to be sufficiently small that they can be neglected, and it is assumed that the soil breaks contact with the lid of the caisson. The frictional terms are calculated in the same way as for the installation calculation (Houlsby & Byrne 25), by calculating the vertical effective stress adjacent to the caisson, then assuming that horizontal effective stress is a factor K times the vertical effective stress. Assuming that the mobilised angle of friction between the caisson wall and the soil is then we obtain the result that the shear stress acting on the caisson is vk tan. Note that in the subsequent analysis the values of K and never appear separately, but only in the combination K tan, so it is not possible to separate out the effects of these two variables. Allowance is made, however, for the possibility of different values of K tan acting on the outside and inside of the caisson. A difference between this analysis and conventional pile design is that the contribution of friction in reducing the vertical stress further down the caisson is taken into account. If, as a preliminary, no account is taken of the reduction of vertical stress close to the caisson due to the frictional forces further up the caisson, then the tensile vertical load on the caisson for penetration to depth h is given by: (1) 45

2 z V' h D i Mudline Figure 1. D o Caisson geometry. A similar analysis follows for the stress on the outside of the caisson. We assume that (a) there is a zone between diameters D o and D m md o in which the vertical stress is reduced through the action of the upward friction from the caisson, (b) within this zone the vertical stress does not vary with radial coordinate and (c) there is no shear stress on vertical planes at diameter D m. We then obtain the same results as for the inside of the caisson, but with Z i replaced by Z o D o (m 2 1)/(4(K tan ) o ). Alternative assumptions could be made for the variation of D m with depth, but at present there is little evidence to justify any more sophisticated approach. If D m is taken as a variable, then the differential equation for vertical stress will usually need to be integrated numerically. Accounting for the effects of stress enhancement, Eq. (1) becomes modified to: Figure 2. caisson. Vertical equilibrium of a slice of soil within the where the dimensions are as in Figure 1, and is the effective weight of the soil. V is the buoyant weight of the caisson and structure. A check should always be made that the friction calculated inside the caisson does not exceed the weight of the trapped soil plug h D 2 i/4. Ignoring the reduction of the stress in this case proves unconservative (i.e. it overestimates the force that can be developed), so we develop here a theory which takes this effect into account. Consider first the soil within the caisson. Assuming that the vertical effective stress is constant across the section of the caisson, the vertical equilibrium equation for a disc of soil within the caisson (Fig. 2) leads to: Writing D i /(4(K tan ) i ) Z i, Eq. (2) becomes d v /d z v /Z i, which has the solution v Z i (1 exp( z/zi)) for v at z. The total frictional terms depend on the integral of the vertical effective stress with depth, and we can also obtain. For For small h/z i the integral simplifies to h 2 /2 as in Eq. (1). For brevity in the following we shall write the function y(x) (exp( x) 1 x), so that in the above. (2) (3) In the special case where m is taken as a constant and uniform stress is assumed within the caisson this becomes: (4) The calculation accounting for stress reduction obviates the need to check that the internal friction does not exceed the soil plug weight, as the capacity asymptotically approaches that value at large h. 2.2 Tensile capacity in the presence of suction If the caisson is extracted more rapidly, then transient excess pore pressures will occur, and the suction within the caisson will need to be taken into account. We return later to the calculation of the relationship between the rate of movement and the suction, but first address the calculation of load in terms of the suction. If the pressure in the caisson is s with respect to the ambient seabed water pressure, i.e. the absolute pressure in the caisson is p a w h w s (where p a is atmospheric pressure, w is the unit weight of water and h w the water depth), then we at first assume that the excess pore pressure at the tip of the caisson is as, 46

3 i.e. the absolute pressure is p a w (h w h) as. There is therefore an average downward hydraulic gradient of as/ w h on the outside of the caisson and upward hydraulic gradient of (1 a)s/ w h on the inside. We assume that the distribution of pore pressure on the inside and outside of the caisson is linear with depth. A detailed flow net analysis shows that this approximation is reasonable. The solutions for the vertical stresses inside and outside the caisson are exactly as before, except that is replaced by as/h outside the caisson and by (1 a)s/h inside the caisson. The capacity, accounting for the pressure differential across the top of the caisson and pore pressure on the rim (only relevant for a thick caisson), is again calculated as the sum of the external and internal frictional terms: (5) In the special case of m constant and a uniform stress assumed within the caisson, this gives: D 2 /4 A): (8) where Z D(m 2 1)/(4K tan ). Neglecting the effects of stress reduction would give: (9) which means that the capacity is simply calculated by applying a linearly varying factor to the suction force beneath the lid. 2.3 Undrained failure A further condition should be considered: that of undrained failure of the sand. In any dilative sand, however, the pore pressures developed under undrained conditions are potentially so large that invariable (except in very deep water) the cavitation mechanism would intervene first. Since the undrained strength of sand is in any case very difficult to determine, we do not pursue this case here. (6) We can often make a further simplifying assumption, that the suction is sufficiently large that the soil within the caisson liquefies and therefore (1 a)s/h. For a large suction this means that a 1 and almost all of the suction appears at the caisson tip. The above rearranges to give as/h s/h, and Eq (6) can be simplified to: (7) In the case either that the thickness of the caisson is small, or that a 1 this simplifies to the following (writing the outer diameter as D, and the caisson area 3 RELATIONSHIP BETWEEN SUCTION AND DISPLACEMENT RATE At low displacement rates, the rate of influx of water q to the caisson can be calculated by Darcy s law, and equated to the rate of displacement times the area of the caisson. Flow calculations were presented by Houlsby & Byrne (25), and yield: (1) where F is a dimensionless factor as determined by the procedures in Houlsby & Byrne (25), which may be fitted approximately by the equation F 3.6/(1 5h/D) for.1 h/d.8. If the displacement rate is increased, the above condition is interrupted by one of two conditions (a) the suction becomes large enough for liquefaction of the sand within the caisson to occur or (b) cavitation occurs within the caisson. When liquefaction occurs, the permeability of the liquefied sand increases to a large value, with the 47

4 Dimensionless flow factor F L Aspect ratio h/d Figure 3. Dimensionless flow factor for liquefaction case. Note that this will imply a sudden jump in s and V at the onset of liquefaction. (c) Cavitation without liquefaction Onset of cavitation occurs at s p a (1 f ) w h w. After that dh/dt is unbounded, s is constant and: result that the a factor in the calculation of the load changes (as noted above) to near unity. The displacement rate may still be estimated from a flow calculation, but the appropriate boundary condition now becomes one of the suction applied at the base rather than top of the caisson. Modified values of F (termed F L for this case) are given in Figure 3, and may be fitted approximately by the equation F exp( 5h/D) for.1 h/d 1.. When cavitation occurs, either before or after liquefaction, the displacement rate becomes unlimited and (assuming that cavitation occurs at an absolute pressure fp a where f is a constant), the suction will be constant and determined by p a w h w s fp a, or s p a (1 f ) w h w. In practice it appears that the factor f is near zero. 4 SUMMARY OF ANALYSIS CASES The following summary presents equations for the above cases, for a thin-walled caisson. To simplify the equations we neglecting here the stress reduction effect, although this should be included in more accurate calculations: (for dh/dt, s and these reduce to the equations for the fully drained case). (b) Liquefaction without cavitation Onset of liquefaction occurs at h/(1 a), after that as in case (a). (d) Cavitation with liquefaction Since s is constant once cavitation occurs, this condition can only occur when liquefaction occurs before cavitation. Onset of cavitation is at s p a (1 f ) w h w, after which dh/dt is unbounded, s is constant and: Note that the above cases only occur in order (a), (b), (d) or (a), (c). When several possibilities exist for calculating load capacity it is often true that the correct case is simply found by calculating all cases and then taking the lowest value. Note in this analysis that this simple approach cannot be adopted as the onset of some states can preclude other cases occurring, and the calculated load is not necessarily the lowest of the cases. 5 COMPARISONS WITH DATA We present here a number of pullout tests conducted two sands and at different pullout rates. The tests were conducted in a pressure chamber: some tests at an ambient (mudline) water pressure equal to atmospheric, and some at atmospheric plus 2 kpa. The model caisson was 28 mm diameter, 18 mm skirt length. In the following the loads presented include the caisson weight. The first test reported here (Test 9) was conducted on Redhill Sand, at a pullout rate of 1 mm/s and atmospheric pressure. Figure 4 shows the record of suction developed beneath the lid of the caisson against time, and Figure 5 shows the corresponding vertical load. It can be seen that (with a minor initial fluctuation) the suction rapidly approaches 1 kpa, at which stage cavitation occurs. At around s there is a sudden loss of both suction and vertical 48

5 Figure 4. Pressure v. time for test 9. Figure 7. Pressure v. time for test Figure 5. Vertical load v. time for test Figure 8. Vertical load v. time for test 1. V / sa Figure 6. V/sA v. time for test 9. load, but this is of little practical interest since by then the displacements are enormous and about threequarters of the caisson had been pulled out of the soil. Figure 6 shows the ratio V/sA, showing that this ratio remains approximately constant during most of the pullout. It can readily be shown that the suction in this case rapidly increased to sufficient value to cause liquefaction (which would occur at a suction of only about 3kPa), and that the relevant case for analysis here is case (d). The predicted values from the theory described above (including stress reduction) are also shown on each of Figures 4 to 6, and it is clear that the theory (whilst not capturing some of the detail at the beginning of the pullout) predicts the broad trends of the test correctly. Figures 7 and 8 show corresponding results for Test 1 (at the same pullout rate) but at an ambient pressure of atmospheric plus 2 kpa. The suctions developed at this rate of loading are insufficient to cause cavitation, which would occur at 3 kpa relative to ambient. It can be seen that again the theory predicts the overall pattern of behaviour well. This time it is case (b) that applies. The fluctuations in predicted suction (and hence load) are due to minor variations in the calculated velocity of extraction. Figures 9 and 1 show the results from Test 11, which is directly comparable to Test 9, but this time at a pullout rate of only 5 mm/s. Although the suctions are sufficient to cause liquefaction, the pullout rate is such that the suction is sufficiently small so that cavitation does not occur, and the vertical loads are correspondingly lower too. The predicted suction and load are also shown on the Figures. The match to the data could be improved by adjusting the permeability, but the value used in the predictions were deliberately kept the same for all three tests discussed. The permeability value used was k m/s, which 49

6 Figure 9. Pressure v. time for test 11. Figure 12. Vertical load v. time for test Table 1. Predicted and measured tensile loads. Max tensile load (kn) Test Predicted Measured Test 11 (5 mm/s, kpa) Test 9 (1 mm/s, kpa) Test 1 (1 mm/s, 2 kpa) HP5 sand: Test 23 (25 mm/s, 2 kpa) Figure 1. Vertical load v. time for test is somewhat higher than estimated previously for this sand (Kelly et al. 24). The other parameters used are K tan.7 and m 1.5. Finally, Figures 11 and 12 present equivalent data for a test on HP5 sand, which is much finer that Redhill Sand, and has an estimated permeability of k m/s. The extraction rate was 25 mm/s, and in this case, although the extraction rate is lower, the pore pressures are sufficient to cause cavitation even with the ambient pressure of atmospheric plus 2 kpa. Figure 11. Pressure v. time for test 23. The predicted and measured values of maximum tensile load for the three tests on Redhill sand and one on HP5 are shown in Table 1. The order of magnitude of the tensile load is correctly predicted in all cases, even though the actual capacity of the caisson varies greatly in the different tests. 6 CONCLUSIONS In this paper we develop a simplified theory for predicting the maximum tensile capacity of a caisson foundation in sand. The calculated capacity depends critically on the rate of pullout (in relation to the permeability) and the ambient water pressure (which determines whether cavitation occurs). The theory is used successfully to explain widely differing experimental results for caissons pulled out under different conditions. REFERENCES Houlsby, G.T. and Byrne, B.W. 25. Design procedures for installation of suction caissons in sand, Proc. ICE, Geotechnical Engineering, in press. Kelly, R.B., Byrne, B.W., Houlsby, G.T. and Martin, C.M. 24. Tensile loading of model caisson foundations for structures on sand, Proc. ISOPE, Toulon, Vol. 2,

Theory of a vertically loaded Suction Pile in CLAY

Theory of a vertically loaded Suction Pile in CLAY 11 Theory of a vertically loaded Suction Pile in CLAY Mainly based on the et Norske Veritas NV-RP-E303 1. Convention Water COG h L Soil COG t Figure 1 Suction Pile Figure 2 Suction pile with main parameters

More information

CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS

CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS CHAPTER 5: VACUUM TEST WITH VERTICAL DRAINS 5.1 Introduction Using surcharging as the sole soil consolidation mean can take a long time to reach the desired soil settlement. Soil consolidation using prefabricated

More information

Learn more at

Learn more at Full scale model tests of a steel catenary riser C. Bridge 1, H. Howells 1, N. Toy 2, G. Parke 2, R. Woods 2 1 2H Offshore Engineering Ltd, Woking, Surrey, UK 2 School of Engineering, University of Surrey,

More information

Cubzac-les-Ponts Experimental Embankments on Soft Clay

Cubzac-les-Ponts Experimental Embankments on Soft Clay Cubzac-les-Ponts Experimental Embankments on Soft Clay GEO-SLOPE International Ltd. www.geo-slope.com 1, 7 - th Ave SW, Calgary, AB, Canada TP T Main: +1 3 9 Fax: +1 3 39 Introduction In the 197 s, a series

More information

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET

COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics. Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET COURSE NUMBER: ME 321 Fluid Mechanics I Fluid statics Course teacher Dr. M. Mahbubur Razzaque Professor Department of Mechanical Engineering BUET 1 Fluid statics Fluid statics is the study of fluids in

More information

SUCTION CAISSON FOUNDATIONS FOR OFFSHORE WIND TURBINES

SUCTION CAISSON FOUNDATIONS FOR OFFSHORE WIND TURBINES SUCTION CAISSON FOUNDATIONS FOR OFFSHORE WIND TURBINES Felipe A. Villalobos Oxford University felipe.villalobos@eng.ox.ac.uk Guy T. Houlsby Oxford University guy.houlsby@eng.ox.ac.uk Byron W. Byrne Oxford

More information

Suction caisson extraction resistance in Gulf of Guinea clay

Suction caisson extraction resistance in Gulf of Guinea clay Frontiers in Offshore Geotechnics III Meyer (Ed.) 2015 Taylor & Francis Group, London, ISBN: 978-1-138-02848-7 Suction caisson extraction resistance in Gulf of Guinea clay C. Gaudin, M.F. Randolph, S.

More information

Transient vertical loading of model suction caissons in a pressure chamber

Transient vertical loading of model suction caissons in a pressure chamber Kelly, R. B., Houlsby, G. T. & Byrne, B. W. (6). Géotechnique 56, No. 1, 665 675 Transient vertical loading of model suction caissons in a pressure chamber R. B. KELLY, G. T. HOULSBY y and B. W. BYRNE

More information

UNIT-I SOIL EXPLORATION

UNIT-I SOIL EXPLORATION SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Geotechnical Engineering - II (16CE127) Year & Sem: III-B.Tech & II-Sem

More information

Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters

Comparison and Sensitivity Investigations of a CALM and SALM Type Mooring System for Wave Energy Converters J. Mar. Sci. Eng. 214, 2, 93-122; doi:1.339/jmse2193 Article OPEN ACCESS Journal of Marine Science and Engineering ISSN 277-1312 www.mdpi.com/journal/jmse Comparison and Sensitivity Investigations of a

More information

V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures and Wind Turbines on Caisson Foundations in Soft Clays

V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures and Wind Turbines on Caisson Foundations in Soft Clays NGM 2016 Reykjavik Proceedings of the 17 th Nordic Geotechnical Meeting Challenges in Nordic Geotechnic 25 th 28 th of May V-H-M Yield Surface describing Soil Structure Interaction of Sub-sea Structures

More information

Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand

Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand SECM/15/080 Vertical Uplift Capacity of a Group of Equally Spaced Helical Screw Anchors in Sand S. Mukherjee 1* and Dr. S. Mittal 2 1 Amity University, Noida, India 2 Indian Institute of Technology, Roorkee,

More information

OMAE INVESTIGATING THE RESPONSE OF OFFSHORE FOUNDATIONS IN SOFT CLAY SOILS

OMAE INVESTIGATING THE RESPONSE OF OFFSHORE FOUNDATIONS IN SOFT CLAY SOILS Proceedings of OMAE st International Conference on Offshore Mechanics and Arctic Engineering June 3-8, Oslo, Norway OMAE-857 INVESTIGATING THE RESPONSE OF OFFSHORE FOUNDATIONS IN SOFT CLAY SOILS B.W. Byrne

More information

Pressure Plate Drying and Wetting

Pressure Plate Drying and Wetting GEO-SLOPE International Ltd, Calgary, Alberta, Canada www.geo-slope.com 1 Introduction Pressure Plate Drying and Wetting Axis translation is used in pressure plate measurements of the water content function

More information

OMAE INVESTIGATING NOVEL FOUNDATIONS FOR OFFSHORE WINDPOWER GENERATION

OMAE INVESTIGATING NOVEL FOUNDATIONS FOR OFFSHORE WINDPOWER GENERATION Proceedings of OMAE 2 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-28, 22 Oslo, Norway OMAE22-28423 INVESTIGATING NOVEL FOUNDATIONS FOR OFFSHORE WINDPOWER GENERATION

More information

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay 43 Module 3: Lecture - 5 on Compressibility and Consolidation Contents Stresses in soil from surface loads; Terzaghi s 1-D consolidation theory; Application in different boundary conditions; Ramp loading;

More information

Field Testing of Suction Caissons at Bothkennar and Luce Bay

Field Testing of Suction Caissons at Bothkennar and Luce Bay Field Testing of Suction Caissons at Bothkennar and Luce Bay by G.T. Houlsby, R.B. Kelly, J. Huxtable and B.W. Byrne Report No. OUEL 2276/5 University of Oxford Department of Engineering Science Parks

More information

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018

ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 ANSWERS TO QUESTIONS IN THE NOTES AUTUMN 2018 Section 1.2 Example. The discharge in a channel with bottom width 3 m is 12 m 3 s 1. If Manning s n is 0.013 m -1/3 s and the streamwise slope is 1 in 200,

More information

Pore-Air Entrapment during Infiltration

Pore-Air Entrapment during Infiltration Pore-Air Entrapment during Infiltration GEO-SLOPE International Ltd. www.geo-slope.com 1200, 700-6th Ave SW, Calgary, AB, Canada T2P 0T8 Main: +1 403 269 2002 Fax: +1 888 463 2239 Introduction Infiltration

More information

Analysis of Shear Lag in Steel Angle Connectors

Analysis of Shear Lag in Steel Angle Connectors University of New Hampshire University of New Hampshire Scholars' Repository Honors Theses and Capstones Student Scholarship Spring 2013 Analysis of Shear Lag in Steel Angle Connectors Benjamin Sawyer

More information

Analysis of dilatometer test in calibration chamber

Analysis of dilatometer test in calibration chamber Analysis of dilatometer test in calibration chamber Lech Bałachowski Gdańsk University of Technology, Poland Keywords: calibration chamber, DMT, quartz sand, FEM ABSTRACT: Because DMT in calibration test

More information

Laboratory studies of water column separation

Laboratory studies of water column separation IOP Conference Series: Materials Science and Engineering OPEN ACCESS Laboratory studies of water column separation To cite this article: R Autrique and E Rodal 2013 IOP Conf. Ser.: Mater. Sci. Eng. 52

More information

2.1 Introduction to pressure vessels

2.1 Introduction to pressure vessels 2.1 Introduction to pressure vessels Pressure vessels in the form of cylinders and tanks are used for storing variety of liquids and gasses at different temperatures and pressures. Some of the substances

More information

Pressure Plate Drying and Wetting

Pressure Plate Drying and Wetting 1 Introduction Pressure Plate Drying and Wetting This air flow example illustrates how the process of axis translation, which is used in pressure plates to measure the water content function, can be modeled.

More information

Construction Dewatering

Construction Dewatering Construction Dewatering Introduction The control of groundwater is one of the most common and complicated problems encountered on a construction site. Construction dewatering can become a costly issue

More information

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators

Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the Vortex Generators Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Numerical and Experimental Investigation of the Possibility of Forming the Wake Flow of Large Ships by Using the

More information

Study to Establish Relations for the Relative Strength of API 650 Cone Roof Roof-to-Shell and Shell-to- Bottom Joints

Study to Establish Relations for the Relative Strength of API 650 Cone Roof Roof-to-Shell and Shell-to- Bottom Joints Thunderhead Engineering Consultants I N C O R P O R A T E D 1006 Poyntz Ave. Manhattan, KS 66502-5459 785-770-8511 www. thunderheadeng.com Study to Establish Relations for the Relative Strength of API

More information

For a cantilever pile wall shown in Figure 1, assess the performance of the system and answer the following questions.

For a cantilever pile wall shown in Figure 1, assess the performance of the system and answer the following questions. Question 1 For a cantilever pile wall shown in Figure 1, assess the performance of the system and answer the following questions. Figure 1 - Cantilever Pile Wall i. Estimate the net resulting horizontal

More information

3 1 PRESSURE. This is illustrated in Fig. 3 3.

3 1 PRESSURE. This is illustrated in Fig. 3 3. P = 3 psi 66 FLUID MECHANICS 150 pounds A feet = 50 in P = 6 psi P = s W 150 lbf n = = 50 in = 3 psi A feet FIGURE 3 1 The normal stress (or pressure ) on the feet of a chubby person is much greater than

More information

Drum Centrifuge Model Tests Comparing the Performance of Spudcans and Caissons in Kaolin Clay

Drum Centrifuge Model Tests Comparing the Performance of Spudcans and Caissons in Kaolin Clay Drum Centrifuge Model Tests Comparing the Performance of Spudcans and Caissons in Kaolin Clay by M.J. Cassidy and B.W. Byrne Report No. OUEL 48/ University of Oxford Department of Engineering Science Parks

More information

The below identified patent application is available for licensing. Requests for information should be addressed to:

The below identified patent application is available for licensing. Requests for information should be addressed to: DEPARTMENT OF THE NAVY OFFICE OF COUNSEL NAVAL UNDERSEA WARFARE CENTER DIVISION 1176 HOWELL STREET NEWPORT Rl 02841-1708 IN REPLY REFER TO Attorney Docket No. 300170 20 March 2018 The below identified

More information

Tension Cracks. Topics Covered. Tension crack boundaries Tension crack depth Query slice data Thrust line Sensitivity analysis.

Tension Cracks. Topics Covered. Tension crack boundaries Tension crack depth Query slice data Thrust line Sensitivity analysis. Tension Cracks 16-1 Tension Cracks In slope stability analyses with cohesive soils, tension forces may be observed in the upper part of the slope. In general, soils cannot support tension so the results

More information

Hardware Triaxial and Consolidation Testing Systems Pressure Measurement and Control

Hardware Triaxial and Consolidation Testing Systems Pressure Measurement and Control 25 GDS Helpsheet Hardware Triaxial and Consolidation Testing Systems Pressure Measurement and Control World Leaders in Computer Controlled Testing Systems for Geotechnical Engineers and Geologists 1. Digital

More information

Vapour pressure of liquids SURFACE TENSION

Vapour pressure of liquids SURFACE TENSION Vapour pressure of liquids A liquid in a closed container is subjected to partial vapour pressure due to the escaping molecules from the surface; it reaches a stage of equilibrium when this pressure reaches

More information

Experimental Investigations of the Cyclic Response of Suction Caissons in Sand B.W. Byrne and G.T. Houlsby

Experimental Investigations of the Cyclic Response of Suction Caissons in Sand B.W. Byrne and G.T. Houlsby OTC 12194 Experimental Investigations of the Cyclic Response of Suction Caissons in Sand B.W. Byrne and G.T. Houlsby Copyright 2, Offshore Technology Conference This paper was prepared for presentation

More information

INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important to filter design and filter performance.

INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important to filter design and filter performance. Measurement of Filter Porosity using a Custom-Made Pycnometer George Chase The University of Akron INTRODUCTION Porosity, permeability, and pore size distribution are three closely related concepts important

More information

ESTIMATION OF LATERAL SPREAD OF A CAISSON TYPE QUAY CAUSED BY BACK FILL LIQUEFACTION

ESTIMATION OF LATERAL SPREAD OF A CAISSON TYPE QUAY CAUSED BY BACK FILL LIQUEFACTION ESTIMATION OF LATERAL SPREAD OF A CAISSON TYPE QUAY CAUSED BY BACK FILL LIQUEFACTION Kunio MIZUMOTO 1, Tetsuya TSURUMI 2, Hidekatsu NAKAJIMA 3 And Susumu OKADA 4 SUMMARY It is said on the lateral spread

More information

Flow in a shock tube

Flow in a shock tube Flow in a shock tube April 30, 05 Summary In the lab the shock Mach number as well as the Mach number downstream the moving shock are determined for different pressure ratios between the high and low pressure

More information

An experimental study of inflatable offshore anchors in soft clay

An experimental study of inflatable offshore anchors in soft clay An experimental study of inflatable offshore anchors in soft clay T.A. Newson and F.W. Smith Department of Civil Engineering, University of Dundee P. Brunning Stolt Offshore MS Ltd., Aberdeen Introduction

More information

using Strength Ratios

using Strength Ratios Shear Strength of Liquefied Soil using Strength Ratios Prof. Scott M. Olson, PhD, PE 86 th Annual Meeting Transportation Research Board January 22, 2007 Liquefaction Problems Photos from eeri.org Undrained

More information

computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23.

computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23. computed using Equation 3-18 by setting the 2nd term equal to 0 and K A equal to K o and using the pressure distribution as shown in Figure 3-23. (2) For the resisting side, passive pressure theory indicates

More information

Suction Caissons for Wind Turbines

Suction Caissons for Wind Turbines Suction Caissons for Wind Turbines Guy T. Houlsby 1, Lars Bo Ibsen 2 & Byron W. Byrne 1 1: Department of Engineering Science, Oxford University, U.K. 2: Department of Civil Engineering, Aalborg University,

More information

INSTALLATION CONSTRAINTS OF SUCTION ASSISTED FOUNDATIONS AND ANCHORS FOR OFFSHORE ENERGY DEVELOPMENT

INSTALLATION CONSTRAINTS OF SUCTION ASSISTED FOUNDATIONS AND ANCHORS FOR OFFSHORE ENERGY DEVELOPMENT Geotec., Const. Mat. & Env., DOI: https://doi.org/10.21660/2018.47.3695 ISSN: 2186-2982 (Print), 2186-2990 (Online), Japan INSTALLATION CONSTRAINTS OF SUCTION ASSISTED FOUNDATIONS AND ANCHORS FOR OFFSHORE

More information

Pressuremeters in Geotechnical Design

Pressuremeters in Geotechnical Design Pressuremeters in Geotechnical Design B.G. CLARKE Department of Civil Engineering University of Newcastle upon Tyne BLACK1E ACADEMIC & PROFESSIONAL An Imprint of Chapman & Hall London Glasgow Weinheim

More information

Infiltration and Air Pressure Build-up

Infiltration and Air Pressure Build-up 1 Introduction Infiltration and Air Pressure Build-up This air flow example illustrates how the build-up of air pressure in advance of a wetting front can inhibit water movement. The example is based on

More information

3. GRADUALLY-VARIED FLOW (GVF) AUTUMN 2018

3. GRADUALLY-VARIED FLOW (GVF) AUTUMN 2018 3. GRADUALLY-VARIED FLOW (GVF) AUTUMN 2018 3.1 Normal Flow vs Gradually-Varied Flow V 2 /2g EGL (energy grade line) Friction slope S f h Geometric slope S 0 In flow the downslope component of weight balances

More information

(i) Write down equations for x and y in terms of t. (iii) Find the range of the golf ball.

(i) Write down equations for x and y in terms of t. (iii) Find the range of the golf ball. 1 A golf ball is hit at an angle of 60 to the horizontal from a point, O, on level horizontal ground. Its initial speed is 20 m s 1. The standard projectile model, in which air resistance is neglected,

More information

CONE PENETRATION TESTS

CONE PENETRATION TESTS February 25, 2015 John Doe, P.E. Acme Engineering and Testing 1234 Test Avenue, Suite 204 Lake Wales, FL 33853 Re: Sample CPT Soundings Dear Mr. Doe, Direct Push Services, LLC (DPS) was retained by Acme

More information

A Review of the Bed Roughness Variable in MIKE 21 FLOW MODEL FM, Hydrodynamic (HD) and Sediment Transport (ST) modules

A Review of the Bed Roughness Variable in MIKE 21 FLOW MODEL FM, Hydrodynamic (HD) and Sediment Transport (ST) modules A Review of the Bed Roughness Variable in MIKE 1 FLOW MODEL FM, Hydrodynamic (HD) and Sediment Transport (ST) modules by David Lambkin, University of Southampton, UK 1 Bed roughness is considered a primary

More information

MODELLING ANCILLARIES: WEIR COEFFICIENTS

MODELLING ANCILLARIES: WEIR COEFFICIENTS WaPUG USER NOTE No 27 MODELLING ANCILLARIES: WEIR COEFFICIENTS David Balmforth, MWH 1. SCOPE This user note gives advice on the choice of coefficient for overflo eirs and orifices hen modelling storm seage

More information

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK

INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK INTERACTION BETWEEN WIND-DRIVEN AND BUOYANCY-DRIVEN NATURAL VENTILATION Bo Wang, Foster and Partners, London, UK ABSTRACT Ventilation stacks are becoming increasingly common in the design of naturally

More information

Irrigation &Hydraulics Department lb / ft to kg/lit.

Irrigation &Hydraulics Department lb / ft to kg/lit. CAIRO UNIVERSITY FLUID MECHANICS Faculty of Engineering nd Year CIVIL ENG. Irrigation &Hydraulics Department 010-011 1. FLUID PROPERTIES 1. Identify the dimensions and units for the following engineering

More information

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007

Aalborg Universitet. Published in: Proceedings of Offshore Wind 2007 Conference & Exhibition. Publication date: 2007 Aalborg Universitet Design Loads on Platforms on Offshore wind Turbine Foundations with Respect to Vertical Wave Run-up Damsgaard, Mathilde L.; Gravesen, Helge; Andersen, Thomas Lykke Published in: Proceedings

More information

I.CHEM.E. SYMPOSIUM SERIES NO. 97 BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES

I.CHEM.E. SYMPOSIUM SERIES NO. 97 BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES BUOYANCY-DRIVEN NATURAL VENTILATION OP ENCLOSED SPACES M. R. Marshall* and P. L. Stewart-Darling* A simple mathematical model for the buoyancy driven ventilation of an enclosed space, using a two-pipe

More information

RESOURCE DECREASE BY LARGE SCALE WIND FARMING

RESOURCE DECREASE BY LARGE SCALE WIND FARMING ECN-RX--4-14 RESOURCE DECREASE BY LARGE SCALE WIND FARMING G.P. Corten A.J. Brand This paper has been presented at the European Wind Energy Conference, London, -5 November, 4 NOVEMBER 4 Resource Decrease

More information

W I L D W E L L C O N T R O L PRESSURE BASICS AND CONCEPTS

W I L D W E L L C O N T R O L PRESSURE BASICS AND CONCEPTS PRESSURE BASICS AND CONCEPTS Pressure Basics and Concepts Learning Objectives You will be familiarized with the following basic pressure concepts: Defining pressure Hydrostatic pressure Pressure gradient

More information

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines

Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Computationally Efficient Determination of Long Term Extreme Out-of-Plane Loads for Offshore Turbines Anand Natarajan Senior Scientist Wind Energy Department, Risø DTU Denmark Introduction IEC 61400-1

More information

DESIGN AND DEVELOPMENT OF A RIG FOR THE PRESSURE TESTING OF WEAK VESSELS AND SUBSEQUENT WORK RELATING TO THE STRENGTH OF FLAT PLATES

DESIGN AND DEVELOPMENT OF A RIG FOR THE PRESSURE TESTING OF WEAK VESSELS AND SUBSEQUENT WORK RELATING TO THE STRENGTH OF FLAT PLATES DESIGN AND DEVELOPMENT OF A RIG FOR THE PRESSURE TESTING OF WEAK VESSELS AND SUBSEQUENT WORK RELATING TO THE STRENGTH OF FLAT PLATES D.F. Pilkington Ph.D. B.Sc(Eng)*, G Piatt B.Sc.*, G. Norton B.Sc.**

More information

Khosla's theory. After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following;

Khosla's theory. After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following; Khosla's theory After studying a lot of dam failure constructed based on Bligh s theory, Khosla came out with the following; Following are some of the main points from Khosla's Theory From observation

More information

Cyclic loading of shallow offshore foundations on sand

Cyclic loading of shallow offshore foundations on sand Cyclic loading of shallow offshore foundations on sand B.W. Byrne, G.T. Houlsby & C.M. Martin Department of Engineering Science, The University of Oxford, United Kingdom ABSTRACT: A significant challenge

More information

BUOYANCY, FLOATATION AND STABILITY

BUOYANCY, FLOATATION AND STABILITY BUOYANCY, FLOATATION AND STABILITY Archimedes Principle When a stationary body is completely submerged in a fluid, or floating so that it is only partially submerged, the resultant fluid force acting on

More information

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water

Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Numerical Simulations of a Train of Air Bubbles Rising Through Stagnant Water Hong Xu, Chokri Guetari ANSYS INC. Abstract Transient numerical simulations of the rise of a train of gas bubbles in a liquid

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 CIVIL ENGINEERING Tutorial Question Bank Name : FOUNDATION ENGINEERING Code : A60126 Class : III B. Tech II Semester Branch

More information

Compaction, Permeability, and Fluid Flow in Brent-type Reservoirs Under Depletion and Pressure Blowdown

Compaction, Permeability, and Fluid Flow in Brent-type Reservoirs Under Depletion and Pressure Blowdown Compaction, Permeability, and Fluid Flow in Brent-type Reservoirs Under Depletion and Pressure Blowdown by Øystein Pettersen, CIPR CIPR Technology Seminar 2010 Outline Experimental & Field Observations

More information

HOW FAST/FAR DOES FLY LINE FALL? N. Perkins of the University of Michigan, March 2003

HOW FAST/FAR DOES FLY LINE FALL? N. Perkins of the University of Michigan, March 2003 HOW FAST/FAR DOES FLY LINE FALL? N. Perkins of the University of Michigan, March 003 This report summarizes a simple model for the free fall dynamics of a length of fly line. The line is assumed to remain

More information

Typical factors of safety for bearing capacity calculation in different situations

Typical factors of safety for bearing capacity calculation in different situations Typical factors of safety for bearing capacity calculation in different situations Density of soil: In geotechnical engineering, one deals with several densities such as dry density, bulk density, saturated

More information

CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS

CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS - 56 - CONSIDERATION OF DENSITY VARIATIONS IN THE DESIGN OF A VENTILATION SYSTEM FOR ROAD TUNNELS Gloth O., Rudolf A. ILF Consulting Engineers Zürich, Switzerland ABSTRACT This article investigates the

More information

Design Project 2 Sizing of a Bicycle Chain Ring Bolt Set ENGR 0135 Sangyeop Lee November 16, 2016 Jordan Gittleman Noah Sargent Seth Strayer Desmond

Design Project 2 Sizing of a Bicycle Chain Ring Bolt Set ENGR 0135 Sangyeop Lee November 16, 2016 Jordan Gittleman Noah Sargent Seth Strayer Desmond 1 Design Project 2 Sizing of a Bicycle Chain Ring Bolt Set ENGR 0135 Sangyeop Lee November 16, 2016 Jordan Gittleman Noah Sargent Seth Strayer Desmond Zheng 2 Abstract This report will analyze our calculations,

More information

Permeability. Darcy's Law

Permeability. Darcy's Law Permeability Permeability is a property of the porous medium that measures the capacity and ability of the formation to transmit fluids. The rock permeability, k, is a very important rock property because

More information

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine Don t forget to visit our companion site http://www.vulcanhammer.org Use subject to the terms and conditions of the respective

More information

Critical Pool Level and Stability of Slopes in Granular Soils

Critical Pool Level and Stability of Slopes in Granular Soils TECHNICAL NOTES Critical Pool Level and Stability of Slopes in Granular Soils Radoslaw L. Michalowski, F.ASCE 1 Abstract: The influence of pore-water pressure and the pool water pressure on stability of

More information

OTC Copyright 2008, Offshore Technology Conference

OTC Copyright 2008, Offshore Technology Conference OTC 19545 Comparison of Jackup Rig Spudcan Penetration Methods in Clay David Menzies, Fugro-McClelland Marine Geosciences, Inc., and Richard Roper, ENSCO International, Inc. Copyright 2008, Offshore Technology

More information

ANALYSIS OF THE POSITIVE FORCES EXHIBITING ON THE MOORING LINE OF COMPOSITE-TYPE SEA CAGE

ANALYSIS OF THE POSITIVE FORCES EXHIBITING ON THE MOORING LINE OF COMPOSITE-TYPE SEA CAGE 194 He, W., Li, C.: Analysis of the positive forces exhibiting on ANALYSIS OF THE POSITIVE FORCES EXHIBITING ON THE MOORING LINE OF COMPOSITE-TYPE SEA CAGE Wei He 1* Chunliu Li 2 1 Ocean College, Agricultural

More information

Effective stress. Chapter Total vertical stress at 5 m depth: kpa. Pore water pressure: kpa. Therefore, effective vertical stress: kpa

Effective stress. Chapter Total vertical stress at 5 m depth: kpa. Pore water pressure: kpa. Therefore, effective vertical stress: kpa Chapter 3 Effective stress 3.1 Figure Q3.1 Total vertical stress at 5 m depth: Pore water pressure: Therefore, effective vertical stress: Alternative method: Buoyant unit weight: Effective vertical stress:

More information

Free Surface Flow Simulation with ACUSIM in the Water Industry

Free Surface Flow Simulation with ACUSIM in the Water Industry Free Surface Flow Simulation with ACUSIM in the Water Industry Tuan Ta Research Scientist, Innovation, Thames Water Kempton Water Treatment Works, Innovation, Feltham Hill Road, Hanworth, TW13 6XH, UK.

More information

Chapter 3 PRESSURE AND FLUID STATICS

Chapter 3 PRESSURE AND FLUID STATICS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 3 PRESSURE AND FLUID STATICS Lecture slides by Hasan Hacışevki Copyright The McGraw-Hill

More information

Mechanical Stabilisation for Permanent Roads

Mechanical Stabilisation for Permanent Roads Mechanical Stabilisation for Permanent Roads Tim Oliver VP Global Applications Technology Tensar International toliver@tensar.co.uk Effect of geogrid on particle movement SmartRock Effect of geogrid on

More information

THE EFFECT OF EMBEDMENT DEPTH ON BEARING CAPACITY OF STRIP FOOTING IN COHESIVE FRICTIONAL MEDIUM

THE EFFECT OF EMBEDMENT DEPTH ON BEARING CAPACITY OF STRIP FOOTING IN COHESIVE FRICTIONAL MEDIUM Proceedings of the 4 th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018), 9~11 February 2018, KUET, Khulna, Bangladesh (ISBN-978-984-34-3502-6) THE EFFECT OF EMBEDMENT

More information

Department of Civil & Geological Engineering GEOE Engineering Geology

Department of Civil & Geological Engineering GEOE Engineering Geology Department of Civil & Geological Engineering GEOE 218.3 Engineering Geology Assignment #3, Head, Pore Pressure & Effective Stress Due 08 Oct, 2010 NOTE: Numbered subscripts indicate depth, in metres, below

More information

FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics

FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics FC-CIV HIDRCANA: Channel Hydraulics Flow Mechanics Review Fluid Statics Civil Engineering Program, San Ignacio de Loyola University Objective Calculate the forces exerted by a fluid at rest on plane or

More information

Variation in Pressure in Liquid-Filled Plastic Film Bags Subjected to Drop Impact

Variation in Pressure in Liquid-Filled Plastic Film Bags Subjected to Drop Impact Materials Transactions, Vol. 53, No. 2 (12) pp. 291 to 295 Special Issue on APCNDT 9 12 The Japanese Society for Non-Destructive Inspection Variation in Pressure in Liquid-Filled Plastic Film Bags Subjected

More information

ANALYTICAL AND EXPERIMENTAL STUDIES OF DRAG EMBEDMENT ANCHORS AND SUCTION CAISSONS

ANALYTICAL AND EXPERIMENTAL STUDIES OF DRAG EMBEDMENT ANCHORS AND SUCTION CAISSONS ANALYTICAL AND EXPERIMENTAL STUDIES OF DRAG EMBEDMENT ANCHORS AND SUCTION CAISSONS A Thesis by RYAN DEKE BEEMER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

Response Analysis of a Suction Pile Under the Influence of Mooring Tension

Response Analysis of a Suction Pile Under the Influence of Mooring Tension Volume 1, Issue 1, pp. 4-8, 017. ISSN (Online): 456-7361 Response Analysis of a Suction Pile Under the Influence of Mooring Tension Ezenwankwo J. U. 1, Azubike N. D., Awuchi C. G. 3 1, 3 School of Engineering

More information

THIN CYLINDERS AND SHELLS

THIN CYLINDERS AND SHELLS CHAPTR 9 THIN CYLINDRS AND SHLLS Summary The stresses set up in the walls of a thin cylinder owing to an internal pressure p are: circumferential or hmp stress ah = longitudinal or axial stress al = -

More information

Suction anchor foundations for tension and taut leg floaters in deep waters. Tension Leg Platform. Taut Leg Platform. upper chain. risers.

Suction anchor foundations for tension and taut leg floaters in deep waters. Tension Leg Platform. Taut Leg Platform. upper chain. risers. Case history: Soil investigation for offshore suction anchors anchor foundations for tension and taut leg floaters in deep waters Alternative anchors for floating structures pile Over last 5 - years anchoring

More information

m v = 1.04 x 10-4 m 2 /kn, C v = 1.29 x 10-2 cm 2 /min

m v = 1.04 x 10-4 m 2 /kn, C v = 1.29 x 10-2 cm 2 /min 2.10 Problems Example 2.1: Design of Shallow Foundation in Saturated Clay Design a square footing to support a column load of 667 kn. The base of the footing will be located 1 m below the ground level

More information

DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS

DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS Takashi Ibata Isho Nakachi Dr. Kazuo Ishida Junichi

More information

Yasuyuki Hirose 1. Abstract

Yasuyuki Hirose 1. Abstract Study on Tsunami force for PC box girder Yasuyuki Hirose 1 Abstract In this study, a waterway experiment was performed in order to understand the influence of tsunami forms on tsunami forces acting on

More information

Chapter 2 Hydrostatics and Control

Chapter 2 Hydrostatics and Control Chapter 2 Hydrostatics and Control Abstract A submarine must conform to Archimedes Principle, which states that a body immersed in a fluid has an upward force on it (buoyancy) equal to the weight of the

More information

SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM

SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM 18 th Southeast Asian Geotechnical & Inaugural AGSSEA Conference 29-31 May 213, Singapore Leung, Goh & Shen (eds) SOIL IMPROVEMENT BY VACUUM PRELOADING FOR A POWER PLANT PROJECT IN VIETNAM GOUW TJIE-LIONG

More information

The effect of back spin on a table tennis ball moving in a viscous fluid.

The effect of back spin on a table tennis ball moving in a viscous fluid. How can planes fly? The phenomenon of lift can be produced in an ideal (non-viscous) fluid by the addition of a free vortex (circulation) around a cylinder in a rectilinear flow stream. This is known as

More information

2003 WJTA American Waterjet Conference August 17-19, 2003 Houston, Texas Paper PIPE THREADS-WHAT IS THE LIMIT?

2003 WJTA American Waterjet Conference August 17-19, 2003 Houston, Texas Paper PIPE THREADS-WHAT IS THE LIMIT? 23 WJTA American Waterjet Conference August 17-19, 23 Houston, Texas Paper PIPE THREADS-WHAT IS THE LIMIT? D. Wright, J. Wolgamott, G. Zink StoneAge, Inc. Durango, Colorado, U.S.A. ABSTRACT At present

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad CIVIL ENGINEERING TUTORIAL QUESTION BANK

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad CIVIL ENGINEERING TUTORIAL QUESTION BANK INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 00 04 CIVIL ENGINEERING TUTORIAL QUESTION BANK Course Name Course Code Regulation Course Structure Course Coordinator Course Faculty

More information

Flow and Mixing in the Liquid between Bubbles

Flow and Mixing in the Liquid between Bubbles Excerpt from the Proceedings of the COMSOL Conference 2009 Boston Flow and Mixing in the Liquid between Bubbles Bruce A. Finlayson, Professor Emeritus of Chemical Engineering Department of Chemical Engineering,

More information

Experiment (13): Flow channel

Experiment (13): Flow channel Experiment (13): Flow channel Introduction: An open channel is a duct in which the liquid flows with a free surface exposed to atmospheric pressure. Along the length of the duct, the pressure at the surface

More information

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump.

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump. Exercise 2-3 Centrifugal Pumps EXERCISE OBJECTIVE In this exercise, you will become familiar with the operation of a centrifugal pump and read its performance chart. You will also observe the effect that

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Absolute and Gage Pressure P abs = P gage + P atm where P abs = Absolute pressure P abs = Gage pressure P abs = atmospheric pressure A perfect vacuum is the lowest possible pressure.

More information

Objectives deals with forces applied by fluids at rest or in rigid-body motion.

Objectives deals with forces applied by fluids at rest or in rigid-body motion. Objectives deals with forces applied by fluids at rest or in rigid-body motion. The fluid property responsible for those forces is pressure, which is a normal force exerted by a fluid per unit area. discussion

More information

Practical Guide. By Steven T. Taylor, P.E., Member ASHRAE

Practical Guide. By Steven T. Taylor, P.E., Member ASHRAE ractical Guide The following article was published in ASHRAE Journal, March 2003. Copyright 2003 American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. It is presented for educational

More information

Lateral Load Analysis Considering Soil-Structure Interaction. ANDREW DAUMUELLER, PE, Ph.D.

Lateral Load Analysis Considering Soil-Structure Interaction. ANDREW DAUMUELLER, PE, Ph.D. Lateral Load Analysis Considering Soil-Structure Interaction ANDREW DAUMUELLER, PE, Ph.D. Overview Introduction Methods commonly used to account for soil-structure interaction for static loads Depth to

More information