Reliability of Safety-Critical Systems Chapter 3. Failures and Failure Analysis

Size: px
Start display at page:

Download "Reliability of Safety-Critical Systems Chapter 3. Failures and Failure Analysis"

Transcription

1 Reliability of Safety-Critical Systems Chapter 3. Failures and Failure Analysis Mary Ann Lundteigen and Marvin Rausand RAMS Group Department of Production and Quality Engineering NTNU (Version 1.1 per July 2015) Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 1 / 29

2 Reliability of Safety-Critical Systems Slides related to the book Reliability of Safety-Critical Systems Theory and Applications Wiley, 2014 Theory and Applications Marvin Rausand Homepage of the book: books/sis Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 2 / 29

3 Learning objectives To become familiar with key terms and concepts related to failures and failure classification To become familiar with different ways of failure classification strategies, using the following sources as basis: IEC (and IEC 61511) The PDS method OREDA To become aware of some typical SIS related failures Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 3 / 29

4 Definition of failure Failure: The termination of the ability of an item to perform a required function. [IEV ] A failure is always related to a required function. The function is often specified together with a performance requirement. 1 A failure occurs when the function cannot be performed or has a performance that falls outside the performance requirement. Shutdown valve According to the performance requirement, the maximum closing time of a shutdown valve shall be no longer than 15 seconds. A failure of the closing function occurs when the closing time exceeds 15 seconds. 1 Also called a functional requirement Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 4 / 29

5 Failure attributes A failure is an event that occurs at a specific point in time. A failure may: Develop gradually Occur as a sudden event The failure may sometimes be revealed: On demand (i.e., when the function is needed) ( hidden ) During a functional test (also hidden ) By monitoring or diagnostics ( evident ) Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 5 / 29

6 Fault Fault: The state of an item characterized by inability to perform a required function [IEV ] While a failure is an event that occurs at a specific point in time, a fault is a state that will last for a shorter or longer period. In most cases, an item will have a fault after a hardware failure has occurred and we say that the item is in a failed state. Design and installation errors may also prevent the item from performing its required function. The item has a fault that is not preceded by any hardware failure and we call this fault a systematic fault. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 6 / 29

7 Error Error: Discrepancy between a computed, observed, or measured value or condition and the true, specified, or theoretically correct value or condition. [IEC ]. An error is present when the performance of a function deviates from the target performance (i.e., the theoretically correct performance), but still satisfies the performance requirement. An error will often, but not always, develop into a failure. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 7 / 29

8 Relationship failure, fault and error A failure may originate from an error. When the failure occurs, the item enters a fault state. Performance Actual performance Error Failure (event) Fault (state) Target value Acceptable deviation Time Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 8 / 29

9 Failure Mode definition Failure mode: The way a failure is observed on a failed item. [IEC ] A failure mode is the way in which an item could fail to perform its required function. An item can fail in many different ways a failure mode is a description of a possible state of the item after it has failed. Pump Performance requirement: The pump must provide an output between 100 and 110 liters per minute. Associated failure modes may be: No output Too low output Too high output Too much fluctuation in output Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 9 / 29

10 Failure Mode attributes A failure mode is always related to a required function and the associated performance requirement. A failure mode is description of a fault (i.e., a state) and not of a failure (i.e., an event). A more correct term would therefore be fault mode 2 Some data sources list, for example, corrosion as a failure mode. This is wrong. Corrosion is a failure mechanism and may be a cause of a failure mode. It is, however, not a description of a lost function. 2 This term is used in IEC 60300, but failure mode is so common that a change of the term might confuse the users. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 10 / 29

11 Classification of Failures Failures may be classified according to their: Causes: To avoid future occurrences and make judgments about repair Effects: To rank between critical and not so critical failures Detectability: To distinguish failures that may be revealed automatically (and shortly after their occurrence) and those that may be hidden until special effort is taken, such as proof tests. And several other criteria. Special category: Common-cause failures (CCFs) Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 11 / 29

12 Failure Classification in IEC IEC classify failures according to their: Causes: Effects: Random (hardware) faults Systematic faults (including software faults) Safe failures Dangerous failures Detectability: Detected - revealed by online diagnostics Undetected - revealed by functional tests or upon a real demand for activation Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 12 / 29

13 Random and systematic faults Random (hardware) faults: Failures resulting from the natural degradation (i.e. degradation within the design envelope) mechanisms of the item. Some additional random failure causes may be added: e.g, some types of human errors (ref. ISO-TR 12489) Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 13 / 29

14 Random and systematic faults Systematic faults (non-physical causes): Faults that can be related to a particular cause other than natural degradation and foreseen stressors. Systematic faults may be due to errors made during specification, design, operation and maintenance phases of the lifecycle. Each systematic failure may be regarded as one of a kind: can normally be eliminated by a modification, either of the design or manufacturing process, the testing and operating procedures, the training of the operators or documentation. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 14 / 29

15 Safe and dangerous faults Safe (S) failure: The item may operate without any demand (PDS method handbook) Faiure which does not have the potential to put the safety-related system in a hazardous or fail-to function state (IEC 61508, part 4). or a Dangerous (D) failure: The item does not operate upon a demand (PDS method handbook) Failure which has the potential to put the safety-related system in a hazardous or fail-to function state (IEC 61508, part 4). Non-critical failure (or no-part/no-effect faults): Failures where the main functions of the item are not affected (adapted from IEC ). Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 15 / 29

16 Detected and undetected faults Safe and dangerous failures may be classified further as either detected (by diagnostics) or undetected (not detected by diagnostics): Safe undetected (SU): A spurious closure of a valve usually falls into this category Safe detected (SD): A non-critical alarm from a sensor may fall into this category Dangerous detected (DD): A critical alarm from a detector, such as out of range or loss of signal, may fall into this category. As long as the fault is not corrected, the item will remain unable to carry out the function. Dangerous undetected (DU): A failure that is hidden and which will prevent the execution of a safety-critical failure. A shutdown valve that is stuck in open position may be such an example. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 16 / 29

17 Other failure classifications: PDS method The PDS method ( distinguishes between: Critical failures Dangerous failures: detected and undetected Safe detected and safe undetected (spurious) failures Non-critical failures Total λ Critical λ Crit Undetected Detected λ DU λ SU λ DD λ SD Taken into account for SFF calculations λ NONC Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 17 / 29

18 Other failure classifications: PDS method Failure Random hardware failure Systematic failure Aging failure - random failures due to natural (and foreseen) stressors Software failure - Inadequate specificaton - Programming error - Error during software update Installation failure - Gas detector capsulating left on after commisioning - Valve installed in wrong direction - Incorrect sensor location Operational failure - Valve left in wrong position - Sensor calibration failure - Detector in bypass mode Source: PDS method handbook (2009) Design related failure - Inadequate specificaton - Inadequate implementation Excessive stress failure - Excessive vibration - Unforeseen sand prod. - Too high temperature Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 18 / 29

19 Examples of Systematic Faults Systematic faults may be: Software faults: Programming errors, compilation errors, inadequate testing, unforeseen application conditions, change of system parameters, etc. Design related faults: Faults (other than software faults) introduced during the design phase of the equipment. It may be a fault in the system specification itself, a fault in the manufacturing process and/or in the quality assurance of the item. Installation faults: Faults introduced during the last phases prior to operation, i.e., during installation or commissioning. If detected, such faults are typically removed during the first months of operation and such faults are therefore often excluded from data bases. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 19 / 29

20 Examples of Systematic Faults Systematic faults may be (continued): Excessive stress: Failures that occur from stresses beyond the design specification are placed upon the component. The excessive stresses may be caused either by external causes or by internal influences from the medium. Operational errors: Initiated by human errors during operation or maintenance/testing Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 20 / 29

21 Failure Classification Illustration Causes Effects Design errors Human interaction errors Systematic fault Safe Dangerous Usually not quantified* Detected Undetected Detected Undetected Environmental stresses Normal degradation *See ISO TR Random hardware failures Safe Dangerous l SD l SU l DD l DU Detected Undetected Detected Undetected *) Some systematic failures may be included in historical databases. Some systematic failures may also be catered for in the CCF rate. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 21 / 29

22 PDS method vs. in IEC Failure Dangerous (D) Safe (S) IEC Dangerous detected (DD) Dangerous undetected (DD) Safe (spurious) No part No effect PDS Dangerous detected (DD) Dangerous undetected (DD) Safe undetected (spurious) Safe detected Non-critical (NONC) Dangerous (D) Safe (S) Failure Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 22 / 29

23 Failure classification in OREDA Critical, degraded, and incipient (further explained on a separate slide) Failure mechanisms: Pre-defined categories of immidiate failure causes defined for each maintainable item Boundary conditions, maintainable items: Maintainable items: Repairable items and subsystems for which failures are recorded and data are presented Boundary conditions: Assumptions made about maintainable item, including boundaries for what to consider as part of the maintainable item and what is not. Ref: ISO and OREDA handbooks Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 23 / 29

24 Failure classification in OREDA Critical failure: A failure of an item that causes immidiate cessation of its ability to perform a required function. In this case, its ability comprises two elements: Loss of ability to function on demand (safety-related) Loss of ability to maintain production (production-availability related) This means that critical failures usually include what IEC defines as DU, DD, and SU failures. Degraded failure: A partial failure where the item has a degraded performance, but is still able to perform i s essential functions Incipient failure: Also a partial failure, but its degradation is barely noticable and can be regarded as a very early symptom of a degradation under development Ref: ISO and OREDA handbooks Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 24 / 29

25 Definition of CCF Common cause failure: A dependent failure in which two or more component fault states exist simultaneously or within a short time interval, and are a direct result of a shared cause. Example: Two pressure transmitters in a SIF have failed due to a calibration error. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 25 / 29

26 What does reliability data include? Reliability data supplied by manufacturers are often based on random hardware faults alone, while data sources based on industry experience may include both. It is sometimes argued that systematic faults should be excluded from the input data used for reliability quantification, as they do not (necessarily) share the properties of random hardware faults. A random hardware fault may re-occur, while a systematic fault (ideally) is removed forever once it has been corrected. Many standards on reliability analysis therefore limit reliability quantification to random hardware faults, and rely on procedures, testing, reviews, proper training, and so on to avoid systematic faults. Reflection In what way may the statements above impact the confidence in the results from the reliability calculations? Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 26 / 29

27 Failure Classification based on IEC Consider a shutdown valve: Failure mode Fail to close (FTC) Leakage in closed position (LCP) Premature (spurious) closure (PC) Fail to open (FTO) Leakage to environment (LTE) Classification DU DU SU SU SD Remark: Valves have usually limited diagnostic features, as opposed to sensors/transmitters and logic solvers. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 27 / 29

28 FMEDA - a variant of FMECA An Failure modes, Effects, and Diagnostic Analysis (FMEDA) is an extension of an FMECA that is tailured-made for a SIS. FMEDA as a method was developed by the company Exida Is in principle, very similar to an FMECA, and a FMECA-like table is used Focus is placed on (and columns in the table are allocated to) the classification of each failure mode into DU, DD, SU or SD Failiure rates can be estimated for each failure category with basis in the classification and the overall failure rate of the item Also proof test coverage may be considered The approach can supplement manufacturers calculations of failure rates, and specific measures like the safe failure fraction (SFF) and diagnostic coverage factor (DC) More information is available from the book Safety instrumented systems verification, by William M. Goble and Harry Cheddie. Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 28 / 29

29 Possible extensions Example Reference: Goble, W.M. and Brombacher, A. Using a failure modes, effects and diagnosis analysis (FMEDA) to mesure diagnostic coverage in programmable electronic systems. DOI: /S (99) (Journal of Reliability Engineering and System Safety) Mary Ann Lundteigen (RAMS Group) Reliability of Safety-Critical Systems (Version 1.1) 29 / 29

Reliability of Safety-Critical Systems Chapter 4. Testing and Maintenance

Reliability of Safety-Critical Systems Chapter 4. Testing and Maintenance Reliability of Safety-Critical Systems Chapter 4. Testing and Maintenance Mary Ann Lundteigen and Marvin Rausand mary.a.lundteigen@ntnu.no RAMS Group Department of Production and Quality Engineering NTNU

More information

Reliability of Safety-Critical Systems Chapter 10. Common-Cause Failures - part 1

Reliability of Safety-Critical Systems Chapter 10. Common-Cause Failures - part 1 Reliability of Safety-Critical Systems Chapter 10. Common-Cause Failures - part 1 Mary Ann Lundteigen and Marvin Rausand mary.a.lundteigen@ntnu.no &marvin.rausand@ntnu.no RAMS Group Department of Production

More information

Reliability of Safety-Critical Systems 5.1 Reliability Quantification with FTs

Reliability of Safety-Critical Systems 5.1 Reliability Quantification with FTs Reliability of Safety-Critical Systems 5.1 Reliability Quantification with FTs Mary Ann Lundteigen and Marvin Rausand mary.a.lundteigen@ntnu.no &marvin.rausand@ntnu.no RAMS Group Department of Production

More information

Solenoid Valves used in Safety Instrumented Systems

Solenoid Valves used in Safety Instrumented Systems I&M V9629R1 Solenoid Valves used in Safety Instrumented Systems Operating Manual in accordance with IEC 61508 ASCO Valves Page 1 of 7 Table of Contents 1 Introduction...3 1.1 Terms and Abbreviations...3

More information

Pneumatic QEV. SIL Safety Manual SIL SM Compiled By : G. Elliott, Date: 8/19/2015. Innovative and Reliable Valve & Pump Solutions

Pneumatic QEV. SIL Safety Manual SIL SM Compiled By : G. Elliott, Date: 8/19/2015. Innovative and Reliable Valve & Pump Solutions SIL SM.0010 1 Pneumatic QEV Compiled By : G. Elliott, Date: 8/19/2015 Contents Terminology Definitions......3 Acronyms & Abbreviations..4 1. Introduction 5 1.1 Scope 5 1.2 Relevant Standards 5 1.3 Other

More information

FP15 Interface Valve. SIL Safety Manual. SIL SM.018 Rev 1. Compiled By : G. Elliott, Date: 30/10/2017. Innovative and Reliable Valve & Pump Solutions

FP15 Interface Valve. SIL Safety Manual. SIL SM.018 Rev 1. Compiled By : G. Elliott, Date: 30/10/2017. Innovative and Reliable Valve & Pump Solutions SIL SM.018 Rev 1 FP15 Interface Valve Compiled By : G. Elliott, Date: 30/10/2017 FP15/L1 FP15/H1 Contents Terminology Definitions......3 Acronyms & Abbreviations...4 1. Introduction...5 1.1 Scope.. 5 1.2

More information

Eutectic Plug Valve. SIL Safety Manual. SIL SM.015 Rev 0. Compiled By : G. Elliott, Date: 19/10/2016. Innovative and Reliable Valve & Pump Solutions

Eutectic Plug Valve. SIL Safety Manual. SIL SM.015 Rev 0. Compiled By : G. Elliott, Date: 19/10/2016. Innovative and Reliable Valve & Pump Solutions SIL SM.015 Rev 0 Eutectic Plug Valve Compiled By : G. Elliott, Date: 19/10/2016 Contents Terminology Definitions......3 Acronyms & Abbreviations...4 1. Introduction..5 1.1 Scope 5 1.2 Relevant Standards

More information

Solenoid Valves For Gas Service FP02G & FP05G

Solenoid Valves For Gas Service FP02G & FP05G SIL Safety Manual SM.0002 Rev 02 Solenoid Valves For Gas Service FP02G & FP05G Compiled By : G. Elliott, Date: 31/10/2017 Reviewed By : Peter Kyrycz Date: 31/10/2017 Contents Terminology Definitions......3

More information

Safety Manual VEGAVIB series 60

Safety Manual VEGAVIB series 60 Safety Manual VEGAVIB series 60 Contactless electronic switch Document ID: 32002 Contents Contents 1 Functional safety... 3 1.1 General information... 3 1.2 Planning... 4 1.3 Adjustment instructions...

More information

Bespoke Hydraulic Manifold Assembly

Bespoke Hydraulic Manifold Assembly SIL SM.0003 1 Bespoke Hydraulic Manifold Assembly Compiled By : G. Elliott, Date: 12/17/2015 Contents Terminology Definitions......3 Acronyms & Abbreviations..4 1. Introduction 5 1.1 Scope 5 1.2 Relevant

More information

Safety Manual VEGAVIB series 60

Safety Manual VEGAVIB series 60 Safety Manual VEGAVIB series 60 NAMUR Document ID: 32005 Contents Contents 1 Functional safety... 3 1.1 General information... 3 1.2 Planning... 4 1.3 Adjustment instructions... 6 1.4 Setup... 6 1.5 Reaction

More information

DeZURIK. KGC Cast Knife Gate Valve. Safety Manual

DeZURIK. KGC Cast Knife Gate Valve. Safety Manual KGC Cast Knife Gate Valve Safety Manual Manual D11036 August 29, 2014 Table of Contents 1 Introduction... 3 1.1 Terms... 3 1.2 Abbreviations... 4 1.3 Product Support... 4 1.4 Related Literature... 4 1.5

More information

SPR - Pneumatic Spool Valve

SPR - Pneumatic Spool Valve SIL SM.008 Rev 7 SPR - Pneumatic Spool Valve Compiled By : G. Elliott, Date: 31/08/17 Contents Terminology Definitions:... 3 Acronyms & Abbreviations:... 4 1.0 Introduction... 5 1.1 Purpose & Scope...

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Abc. X Series Ball Valve Company: Abc. Inc. Sellersville, PA USA Contract Number: Q11/12-345 Report No.: Abc 11/12-345 R001 Version V1, Revision

More information

Reliability Analysis Including External Failures for Low Demand Marine Systems

Reliability Analysis Including External Failures for Low Demand Marine Systems Reliability Analysis Including External Failures for Low Demand Marine Systems KIM HyungJu a*, HAUGEN Stein a, and UTNE Ingrid Bouwer b a Department of Production and Quality Engineering NTNU, Trondheim,

More information

Safety Manual OPTISWITCH series relay (DPDT)

Safety Manual OPTISWITCH series relay (DPDT) Safety Manual OPTISWITCH series 5000 - relay (DPDT) 1 Content Content 1 Functional safety 1.1 In general................................ 3 1.2 Planning................................. 5 1.3 Adjustment

More information

Hydraulic (Subsea) Shuttle Valves

Hydraulic (Subsea) Shuttle Valves SIL SM.009 0 Hydraulic (Subsea) Shuttle Valves Compiled By : G. Elliott, Date: 11/3/2014 Contents Terminology Definitions......3 Acronyms & Abbreviations..4 1. Introduction 5 1.1 Scope 5 1.2 Relevant Standards

More information

Every things under control High-Integrity Pressure Protection System (HIPPS)

Every things under control High-Integrity Pressure Protection System (HIPPS) Every things under control www.adico.co info@adico.co Table Of Contents 1. Introduction... 2 2. Standards... 3 3. HIPPS vs Emergency Shut Down... 4 4. Safety Requirement Specification... 4 5. Device Integrity

More information

DeZURIK Double Block & Bleed (DBB) Knife Gate Valve Safety Manual

DeZURIK Double Block & Bleed (DBB) Knife Gate Valve Safety Manual Double Block & Bleed (DBB) Knife Gate Valve Safety Manual Manual D11044 September, 2015 Table of Contents 1 Introduction... 3 1.1 Terms... 3 1.2 Abbreviations... 4 1.3 Product Support... 4 1.4 Related

More information

DeZURIK. KSV Knife Gate Valve. Safety Manual

DeZURIK. KSV Knife Gate Valve. Safety Manual KSV Knife Gate Valve Safety Manual Manual D11035 August 29, 2014 Table of Contents 1 Introduction... 3 1.1 Terms... 3 1.2 Abbreviations... 4 1.3 Product Support... 4 1.4 Related Literature... 4 1.5 Reference

More information

RESILIENT SEATED BUTTERFLY VALVES FUNCTIONAL SAFETY MANUAL

RESILIENT SEATED BUTTERFLY VALVES FUNCTIONAL SAFETY MANUAL Per IEC 61508 and IEC 61511 Standards BRAY.COM Table of Contents 1.0 Introduction.................................................... 1 1.1 Terms and Abbreviations...........................................

More information

This manual provides necessary requirements for meeting the IEC or IEC functional safety standards.

This manual provides necessary requirements for meeting the IEC or IEC functional safety standards. Instruction Manual Supplement Safety manual for Fisher Vee-Ball Series Purpose This safety manual provides information necessary to design, install, verify and maintain a Safety Instrumented Function (SIF)

More information

Safety manual for Fisher GX Control Valve and Actuator

Safety manual for Fisher GX Control Valve and Actuator Instruction Manual Supplement GX Valve and Actuator Safety manual for Fisher GX Control Valve and Actuator Purpose This safety manual provides information necessary to design, install, verify and maintain

More information

Safety Manual. Process pressure transmitter IPT-1* 4 20 ma/hart. Process pressure transmitter IPT-1*

Safety Manual. Process pressure transmitter IPT-1* 4 20 ma/hart. Process pressure transmitter IPT-1* Safety Manual Process pressure transmitter IPT-1* 4 20 ma/hart Process pressure transmitter IPT-1* Contents Contents 1 Functional safety 1.1 General information... 3 1.2 Planning... 4 1.3 Instrument parameter

More information

Section 1: Multiple Choice

Section 1: Multiple Choice CFSP Process Applications Section 1: Multiple Choice EXAMPLE Candidate Exam Number (No Name): Please write down your name in the above provided space. Only one answer is correct. Please circle only the

More information

TRI LOK SAFETY MANUAL TRI LOK TRIPLE OFFSET BUTTERFLY VALVE. The High Performance Company

TRI LOK SAFETY MANUAL TRI LOK TRIPLE OFFSET BUTTERFLY VALVE. The High Performance Company TRI LOK TRI LOK TRIPLE OFFSET BUTTERFLY VALVE SAFETY MANUAL The High Performance Company Table of Contents 1.0 Introduction...1 1.1 Terms and Abbreviations... 1 1.2 Acronyms... 1 1.3 Product Support...

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Contact elements Type 8082 and Type 8208 with or without 8602 actuator Customer: R. STAHL Schaltgeräte GmbH Waldenburg Germany Contract No.: Stahl

More information

Failure Modes, Effects and Diagnostic Analysis. Rosemount Inc. Chanhassen, MN USA

Failure Modes, Effects and Diagnostic Analysis. Rosemount Inc. Chanhassen, MN USA Failure Modes, Effects and Diagnostic Analysis Project: 3095MV Mass Flow Transmitter Customer: Rosemount Inc. Chanhassen, MN USA Contract No.: Q04/04-09 Report No.: Ros 04/04-09 R001 Version V1, Revision

More information

AUTHOR(S) CLIENT(S) Multiclient - PDS Forum CLASS. THIS PAGE ISBN PROJECT NO. NO. OF PAGES/APPENDICES

AUTHOR(S) CLIENT(S) Multiclient - PDS Forum CLASS. THIS PAGE ISBN PROJECT NO. NO. OF PAGES/APPENDICES TITLE SINTEF REPORT SINTEF Technology and Society Safety Research Address: NO-7465 Trondheim, NORWAY Location: S P Andersens veg 5 NO-7031 Trondheim Telephone: +47 73 59 27 56 Fax: +47 73 59 28 96 Enterprise

More information

Neles ValvGuard VG9000H Rev 2.0. Safety Manual

Neles ValvGuard VG9000H Rev 2.0. Safety Manual Neles ValvGuard VG9000H Rev 2.0 Safety Manual 10SM VG9000H en 11/2016 2 Neles ValvGuard VG9000H Rev 2.0 Safety Manual Table of Contents 1 General information...3 1.1 Purpose of the document... 3 1.2 Description

More information

Failure Modes, Effects and Diagnostic Analysis. Rosemount Inc. Chanhassen, Minnesota USA

Failure Modes, Effects and Diagnostic Analysis. Rosemount Inc. Chanhassen, Minnesota USA Failure Modes, Effects and Diagnostic Analysis Project: 3051C Pressure Transmitter Customer: Rosemount Inc. Chanhassen, Minnesota USA Contract No.: Ros 03/10-11 Report No.: Ros 03/10-11 R001 Version V1,

More information

Understanding the How, Why, and What of a Safety Integrity Level (SIL)

Understanding the How, Why, and What of a Safety Integrity Level (SIL) Understanding the How, Why, and What of a Safety Integrity Level (SIL) Audio is provided via internet. Please enable your speaker (in all places) and mute your microphone. Understanding the How, Why, and

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Temperature transmitter PR5337 / PR6337 / PR7501 with 4..20 ma output Customer: PR electronics A/S Rønde Denmark Contract No.: PR electronics A/S

More information

SIL explained. Understanding the use of valve actuators in SIL rated safety instrumented systems ACTUATION

SIL explained. Understanding the use of valve actuators in SIL rated safety instrumented systems ACTUATION SIL explained Understanding the use of valve actuators in SIL rated safety instrumented systems The requirement for Safety Integrity Level (SIL) equipment can be complicated and confusing. In this document,

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: 3051S SIS Pressure Transmitter, with Safety Feature Board, Software Revision 3.0 Customer: Rosemount Inc. Chanhassen, MN USA Contract No.: Ros 02/11-07

More information

Achieving Compliance in Hardware Fault Tolerance

Achieving Compliance in Hardware Fault Tolerance Mirek Generowicz FS Senior Expert (TÜV Rheinland #183/12) Engineering Manager, I&E Systems Pty Ltd Abstract The functional safety standards ISA S84/IEC 61511 (1 st Edition, 2003) and IEC 61508 both set

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Isolating repeater 9164 Customer: R. STAHL Schaltgeräte GmbH Waldenburg Germany Contract No.: STAHL 16/08-032 Report No.: STAHL 16/08-032 R032 Version

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Solenoid Valves SNMF 532 024 ** ** and SMF 52 024 ** ** Customer: ACG Automation Center Germany GmbH & Co. KG Tettnang Germany Contract No.: ACG

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Solenoid Drivers KFD2-SL2-(Ex)1.LK.vvcc KFD2-SL2-(Ex)*(.B).vvcc Customer: Pepperl+Fuchs GmbH Mannheim Germany Contract No.: P+F 06/09-23 Report No.:

More information

The Key Variables Needed for PFDavg Calculation

The Key Variables Needed for PFDavg Calculation Iwan van Beurden, CFSE Dr. William M. Goble, CFSE exida Sellersville, PA 18960, USA wgoble@exida.com July 2015 Update 1.2 September 2016 Abstract In performance based functional safety standards, safety

More information

Ultima. X Series Gas Monitor

Ultima. X Series Gas Monitor Ultima X Series Gas Monitor Safety Manual SIL 2 Certified " The Ultima X Series Gas Monitor is qualified as an SIL 2 device under IEC 61508 and must be installed, used, and maintained in accordance with

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Emerson s Rosemount 2051 Pressure Transmitter with 4-20mA HART Device Label SW 1.0.0-1.4.x Company: Rosemount Inc. Shakopee, MN USA Contract No.:

More information

Neles trunnion mounted ball valve Series D Rev. 2. Safety Manual

Neles trunnion mounted ball valve Series D Rev. 2. Safety Manual Neles trunnion mounted ball valve Series D Rev. 2 Safety Manual 10SM D en 1/2017 2 Neles trunnion mounted ball valve, Series D Table of Contents 1 Introduction...3 2 Structure of the D series trunnion

More information

SIL Safety Manual. ULTRAMAT 6 Gas Analyzer for the Determination of IR-Absorbing Gases. Supplement to instruction manual ULTRAMAT 6 and OXYMAT 6

SIL Safety Manual. ULTRAMAT 6 Gas Analyzer for the Determination of IR-Absorbing Gases. Supplement to instruction manual ULTRAMAT 6 and OXYMAT 6 ULTRAMAT 6 Gas Analyzer for the Determination of IR-Absorbing Gases SIL Safety Manual Supplement to instruction manual ULTRAMAT 6 and OXYMAT 6 ULTRAMAT 6F 7MB2111, 7MB2117, 7MB2112, 7MB2118 ULTRAMAT 6E

More information

Section 1: Multiple Choice Explained EXAMPLE

Section 1: Multiple Choice Explained EXAMPLE CFSP Process Applications Section 1: Multiple Choice Explained EXAMPLE Candidate Exam Number (No Name): Please write down your name in the above provided space. Only one answer is correct. Please circle

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Ground Monitoring Device 71**/5, 81**/5, 82**/5 Company: R. STAHL Schaltgeräte GmbH Waldenburg Germany Contract No.: STAHL 11/07-089 Report No.:

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Surge Protective Devices D9324S Customer: G.M. International s.r.l Villasanta Italy Contract No.: GM 16/02-055 Report No.: GM 16/02-055 R005 Version

More information

Implementing IEC Standards for Safety Instrumented Systems

Implementing IEC Standards for Safety Instrumented Systems Implementing IEC Standards for Safety Instrumented Systems ABHAY THODGE TUV Certificate: PFSE-06-607 INVENSYS OPERATIONS MANAGEMENT What is a Safety Instrumented System (SIS)? An SIS is designed to: respond

More information

Safety Manual VEGASWING 61, 63. NAMUR With SIL qualification. Document ID: 52084

Safety Manual VEGASWING 61, 63. NAMUR With SIL qualification. Document ID: 52084 Safety Manual VEGASWING 61, 63 NAMUR With SIL qualification Document ID: 52084 Contents Contents 1 Document language 2 Scope 2.1 Instrument version... 4 2.2 Area of application... 4 2.3 SIL conformity...

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Digital Output Module Valve DOMV 9478/22-08-51 Company: R. STAHL Schaltgeräte GmbH Waldenburg Germany Contract No.: STAHL 11/01-104 Report No.: STAHL

More information

Vibrating Switches SITRANS LVL 200S, LVL 200E. Safety Manual. NAMUR With SIL qualification

Vibrating Switches SITRANS LVL 200S, LVL 200E. Safety Manual. NAMUR With SIL qualification Vibrating Switches SITRANS LVL 200S, LVL 200E NAMUR With SIL qualification Safety Manual Contents 1 Document language 2 Scope 2.1 Instrument version... 4 2.2 Area of application... 4 2.3 SIL conformity...

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Primary Elements Company: Rosemount Inc. (an Emerson Process Management company) Chanhassen, MN USA Contract Number: Q13/04-008 Report No.: ROS 13/04-008

More information

Understanding safety life cycles

Understanding safety life cycles Understanding safety life cycles IEC/EN 61508 is the basis for the specification, design, and operation of safety instrumented systems (SIS) Fast Forward: IEC/EN 61508 standards need to be implemented

More information

Explaining the Differences in Mechanical Failure Rates: exida FMEDA Predictions and OREDA Estimations

Explaining the Differences in Mechanical Failure Rates: exida FMEDA Predictions and OREDA Estimations Explaining the Differences in Mechanical Failure Rates: exida FMEDA Predictions and OREDA Estimations Julia V. Bukowski, PhD Department of Electrical & Computer Engineering Villanova University Loren Stewart,

More information

High performance disc valves Series Type BA, BK, BW, BM, BN, BO, BE, BH Rev Safety Manual

High performance disc valves Series Type BA, BK, BW, BM, BN, BO, BE, BH Rev Safety Manual High performance disc valves Series Type BA, BK, BW, BM, BN, BO, BE, BH Rev. 2.0 Safety Manual 10SM B Disc en 4/2018 2 High performance disc valves Series, Type BA, BK, BW, BM, BN, BO, BE, BH, Rev. 2.0

More information

High Integrity Pressure Protection Systems HIPPS

High Integrity Pressure Protection Systems HIPPS High Integrity Pressure Protection Systems HIPPS HIPPS > High Integrity Pressure Protection Systems WHAT IS A HIPPS The High Integrity Pressure Protection Systems (HIPPS) is a mechanical and electrical

More information

Failure Modes, Effects and Diagnostic Analysis

Failure Modes, Effects and Diagnostic Analysis Failure Modes, Effects and Diagnostic Analysis Project: Variable area flow meter RAMC Customer: Rota Yokogawa GmbH & Co. KG Wehr Germany Contract No.: Rota Yokogawa 05/04-20 Report No.: Rota Yokogawa 05/04-20

More information

Jamesbury Pneumatic Rack and Pinion Actuator

Jamesbury Pneumatic Rack and Pinion Actuator Jamesbury Pneumatic Rack and Pinion Actuator Valv-Powr Series VPVL Rev. 3.0 Safety Manual 10SM VPVL en 5/2017 2 Jamesbury Pneumatic Rack and Pinion Actuator, Valv-Powr Series VPVL, Rev 3.0, Safety Manual

More information

Rosemount 2130 Level Switch

Rosemount 2130 Level Switch Rosemount 2130 Level Switch Functional Safety Manual Manual Supplement Reference Manual Contents Contents 1Section 1: Introduction 1.1 Scope and purpose of the safety manual.............................................

More information

SIL Safety Manual for Fisherr ED, ES, ET, EZ, HP, or HPA Valves with 657 / 667 Actuator

SIL Safety Manual for Fisherr ED, ES, ET, EZ, HP, or HPA Valves with 657 / 667 Actuator SIL Safety Manual ED, ES, ET, EZ, HP, HPA Valves w/ 657/667 Actuator SIL Safety Manual for Fisherr ED, ES, ET, EZ, HP, or HPA Valves with 657 / 667 Actuator Purpose This safety manual provides information

More information

L&T Valves Limited SAFETY INTEGRITY LEVEL (SIL) VERIFICATION FOR HIGH INTEGRITY PRESSURE PROTECTION SYSTEM (HIPPS) Report No.

L&T Valves Limited SAFETY INTEGRITY LEVEL (SIL) VERIFICATION FOR HIGH INTEGRITY PRESSURE PROTECTION SYSTEM (HIPPS) Report No. L&T Valves Limited TAMIL NADU SAFETY INTEGRITY LEVEL (SIL) VERIFICATION FOR HIGH INTEGRITY PRESSURE PROTECTION SYSTEM (HIPPS) MAY 2016 Report No. 8113245702-100-01 Submitted to L&T Valves Ltd. Report by

More information

Safety Critical Systems

Safety Critical Systems Safety Critical Systems Mostly from: Douglass, Doing Hard Time, developing Real-Time Systems with UML, Objects, Frameworks And Patterns, Addison-Wesley. ISBN 0-201-49837-5 1 Definitions channel a set of

More information

Commissioning and safety manual

Commissioning and safety manual Commissioning and safety manual CNL35L DNL35L SIL2 LOREME 12, rue des Potiers d'etain Actipole BORNY - B.P. 35014-57071 METZ CEDEX 3 Phone 03.87.76.32.51 - Telefax 03.87.76.32.52 Contact: Commercial@Loreme.fr

More information

EL-O-Matic E and P Series Pneumatic Actuator SIL Safety Manual

EL-O-Matic E and P Series Pneumatic Actuator SIL Safety Manual SIL Safety Manual DOC.SILM.EEP.EN Rev. 0 April 2017 EL-O-Matic E and P Series Pneumatic Actuator SIL Safety Manual schaal 1:1 EL Matic TM EL-O-Matic E and P Series DOC.SILM.EEP.EN Rev. 0 Table of Contents

More information

THE IMPROVEMENT OF SIL CALCULATION METHODOLOGY. Jinhyung Park 1 II. THE SIL CALCULATION METHODOLOGY ON IEC61508 AND SOME ARGUMENT

THE IMPROVEMENT OF SIL CALCULATION METHODOLOGY. Jinhyung Park 1 II. THE SIL CALCULATION METHODOLOGY ON IEC61508 AND SOME ARGUMENT THE IMPROVEMENT OF SIL CALCULATION METHODOLOGY Jinhyung Park 1 1 Yokogawa Electric Korea: 21, Seonyu-ro45-gil Yeongdeungpo-gu, Seoul, 07209, Jinhyung.park@kr.yokogawa.com Safety Integrity Level (SIL) is

More information

REASSESSING FAILURE RATES

REASSESSING FAILURE RATES REASSESSING FAILURE RATES M. Generowicz, MIET, MIEAust, TÜV Rheinland FS Senior Expert A. Hertel, AMIChemE I&E Systems Pty Ltd SUMMARY In the context of process industries, automated safety functions are

More information

New Thinking in Control Reliability

New Thinking in Control Reliability Doug Nix, A.Sc.T. Compliance InSight Consulting Inc. New Thinking in Control Reliability Or Your Next Big Headache www.machinerysafety101.com (519) 729-5704 Control Reliability Burning Questions from the

More information

Continuous Gas Analysis. ULTRAMAT 6, OXYMAT 6 Safety Manual. Introduction 1. General description of functional safety 2

Continuous Gas Analysis. ULTRAMAT 6, OXYMAT 6 Safety Manual. Introduction 1. General description of functional safety 2 Introduction 1 General description of functional safety 2 Continuous Gas Analysis ULTRAMAT 6, OXYMAT 6 Device-specific safety instructions 3 List of abbreviations A Operating Instructions Supplement to

More information

Functional safety. Functional safety of Programmable systems, devices & components: Requirements from global & national standards

Functional safety. Functional safety of Programmable systems, devices & components: Requirements from global & national standards Functional safety Functional safety of Programmable systems, devices & components: Requirements from global & national standards Matthias R. Heinze Vice President Engineering TUV Rheinland of N.A. Email

More information

PL estimation acc. to EN ISO

PL estimation acc. to EN ISO PL estimation acc. to EN ISO 3849- Example calculation for an application MAC Safety / Armin Wenigenrath, January 2007 Select the suitable standard for your application Reminder: The standards and the

More information

Special Documentation Proline Promass 80, 83

Special Documentation Proline Promass 80, 83 SD00077D/06/EN/14.14 71272498 Products Solutions Services Special Documentation Proline Promass 80, 83 Functional safety manual Coriolis mass flow measuring system with 4 20 ma output signal Application

More information

H250 M9 Supplementary instructions

H250 M9 Supplementary instructions H250 M9 Supplementary instructions Variable area flowmeter Safety manual acc. to IEC 61508:2010 KROHNE CONTENTS H250 M9 1 Introduction 3 1.1 Fields of application... 3 1.2 User benefits... 3 1.3 Relevant

More information

Session One: A Practical Approach to Managing Safety Critical Equipment and Systems in Process Plants

Session One: A Practical Approach to Managing Safety Critical Equipment and Systems in Process Plants Session One: A Practical Approach to Managing Safety Critical Equipment and Systems in Process Plants Tahir Rafique Lead Electrical and Instruments Engineer: Qenos Botany Site Douglas Lloyd Senior Electrical

More information

Safety-critical systems: Basic definitions

Safety-critical systems: Basic definitions Safety-critical systems: Basic definitions Ákos Horváth Based on István Majzik s slides Dept. of Measurement and Information Systems Budapest University of Technology and Economics Department of Measurement

More information

Session: 14 SIL or PL? What is the difference?

Session: 14 SIL or PL? What is the difference? Session: 14 SIL or PL? What is the difference? Stewart Robinson MIET MInstMC Consultant Engineer, Pilz Automation Technology UK Ltd. EN ISO 13849-1 and EN 6061 Having two different standards for safety

More information

Valve Communication Solutions. Safety instrumented systems

Valve Communication Solutions. Safety instrumented systems Safety instrumented systems Safety Instrumented System (SIS) is implemented as part of a risk reduction strategy. The primary focus is to prevent catastrophic accidents resulting from abnormal operation.

More information

Proof Testing A key performance indicator for designers and end users of Safety Instrumented Systems

Proof Testing A key performance indicator for designers and end users of Safety Instrumented Systems Proof Testing A key performance indicator for designers and end users of Safety Instrumented Systems EUR ING David Green BEng(hons) CEng MIET MInstMC RFSE Ron Bell OBE BSc CEng FIET Engineering Safety

More information

DETERMINATION OF SAFETY REQUIREMENTS FOR SAFETY- RELATED PROTECTION AND CONTROL SYSTEMS - IEC 61508

DETERMINATION OF SAFETY REQUIREMENTS FOR SAFETY- RELATED PROTECTION AND CONTROL SYSTEMS - IEC 61508 DETERMINATION OF SAFETY REQUIREMENTS FOR SAFETY- RELATED PROTECTION AND CONTROL SYSTEMS - IEC 61508 Simon J Brown Technology Division, Health & Safety Executive, Bootle, Merseyside L20 3QZ, UK Crown Copyright

More information

Using what we have. Sherman Eagles SoftwareCPR.

Using what we have. Sherman Eagles SoftwareCPR. Using what we have Sherman Eagles SoftwareCPR seagles@softwarecpr.com 2 A question to think about Is there a difference between a medical device safety case and any non-medical device safety case? Are

More information

PROCESS AUTOMATION SIL. Manual Safety Integrity Level. Edition 2005 IEC 61508/61511

PROCESS AUTOMATION SIL. Manual Safety Integrity Level. Edition 2005 IEC 61508/61511 PROCESS AUTOMATION Manual Safety Integrity Level SIL Edition 2005 IEC 61508/61511 With regard to the supply of products, the current issue of the following document is applicable: The General Terms of

More information

A study on the relation between safety analysis process and system engineering process of train control system

A study on the relation between safety analysis process and system engineering process of train control system A study on the relation between safety analysis process and system engineering process of train control system Abstract - In this paper, the relationship between system engineering lifecycle and safety

More information

Safety Integrity Verification and Validation of a High Integrity Pressure Protection System (HIPPS) to IEC 61511

Safety Integrity Verification and Validation of a High Integrity Pressure Protection System (HIPPS) to IEC 61511 Safety Integrity Verification and Validation of a High Integrity Pressure Protection System (HIPPS) to IEC 61511 Abstract Author: Colin Easton ProSalus Limited ~ Independent Safety Consultants A key requirement

More information

YT-3300 / 3301 / 3302 / 3303 / 3350 / 3400 /

YT-3300 / 3301 / 3302 / 3303 / 3350 / 3400 / Smart positioner YT-3300 / 3301 / 3302 / 3303 / 3350 / 3400 / 3410 / 3450 Series SIL Safety Instruction. Supplement to product manual July. 2015 YTC Ver 1.06 1 Table of contents 1 Introduction... 3 1.1

More information

Advanced Test Equipment Rentals ATEC (2832) OMS 600

Advanced Test Equipment Rentals ATEC (2832) OMS 600 Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) OMS 600 Continuous partial discharge monitoring system for power generators and electrical motors Condition monitoring

More information

Analysis of Instrumentation Failure Data

Analysis of Instrumentation Failure Data Analysis of Instrumentation Failure Data A structured approach Standards Certification Education & Training Publishing Conferences & Exhibits Matthew F. (Matt) Murphy Senior Consultant, DuPont Engineering

More information

Rosemount 2120 Level Switch

Rosemount 2120 Level Switch Rosemount 2120 Level Switch Functional Safety Manual Manual Supplement Manual Supplement Contents Contents 1Section 1: Introduction 1.1 Scope and purpose of the safety manual.............................................

More information

A quantitative software testing method for hardware and software integrated systems in safety critical applications

A quantitative software testing method for hardware and software integrated systems in safety critical applications A quantitative software testing method for hardware and software integrated systems in safety critical applications Hai ang a, Lixuan Lu* a a University of Ontario Institute of echnology, Oshawa, ON, Canada

More information

PROCEDURE. April 20, TOP dated 11/1/88

PROCEDURE. April 20, TOP dated 11/1/88 Subject: Effective Date: page 1 of 2 Initiated by: Failure Modes and Effects Analysis April 20, 1999 Supersedes: TOP 22.019 dated 11/1/88 Head, Engineering and Technical Infrastructure Approved: Director

More information

DATA ITEM DESCRIPTION Title: Failure Modes, Effects, and Criticality Analysis Report

DATA ITEM DESCRIPTION Title: Failure Modes, Effects, and Criticality Analysis Report DATA ITEM DESCRIPTION Title: Failure Modes, Effects, and Criticality Analysis Report Number: Approval Date: 20160106 AMSC Number: N9616 Limitation: No DTIC Applicable: Yes GIDEP Applicable: Yes Defense

More information

Advanced LOPA Topics

Advanced LOPA Topics 11 Advanced LOPA Topics 11.1. Purpose The purpose of this chapter is to discuss more complex methods for using the LOPA technique. It is intended for analysts who are competent with applying the basic

More information

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications

2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic. Pressure Measurement Engineered solutions for all applications Application Description AG/266PILD-EN Rev. C 2600T Series Pressure Transmitters Plugged Impulse Line Detection Diagnostic Pressure Measurement Engineered solutions for all applications Increase plant productivity

More information

Partial Stroke Testing. A.F.M. Prins

Partial Stroke Testing. A.F.M. Prins Partial Stroke Testing A.F.M. Prins Partial Stroke Testing PST in a safety related system. As a supplier we have a responsibility to our clients. What do they want, and what do they really need? I like

More information

CHANGE HISTORY DISTRIBUTION LIST

CHANGE HISTORY DISTRIBUTION LIST Issue Date of Issue CR/DR Numbers CHANGE HISTORY No. of Pages Draft A Aug 2011 N/A 28 Draft Issue Pages Changed and Reasons for Change Sept 2011 N/A 28 Formal issue with client comments from draft issue

More information

Failure Modes, Effects, and Diagnostic Analysis of a Safety Device

Failure Modes, Effects, and Diagnostic Analysis of a Safety Device Elias Mabook Failure Modes, Effects, and Diagnostic Analysis of a Safety Device Helsinki Metropolia University of Applied Sciences Bachelor of Engineering Degree Programme in Electronics Bachelor s Thesis

More information

PREDICTING HEALTH OF FINAL CONTROL ELEMENT OF SAFETY INSTRUMENTED SYSTEM BY DIGITAL VALVE CONTROLLER

PREDICTING HEALTH OF FINAL CONTROL ELEMENT OF SAFETY INSTRUMENTED SYSTEM BY DIGITAL VALVE CONTROLLER PREDICTING HEALTH OF FINAL CONTROL ELEMENT OF SAFETY INSTRUMENTED SYSTEM BY DIGITAL VALVE CONTROLLER Riyaz Ali FIELDVUE Business Development Manager Fisher Controls Int'l., LLC. Marshalltown, IA 50158

More information

COMPLIANCE with IEC EN and IEC EN 61511

COMPLIANCE with IEC EN and IEC EN 61511 COMPLIANCE with IEC EN 61508 and IEC EN 61511 Certificate No.: C- IS-260811 01 CERTIFICATE OWNER: ORION S.p.A. VIA CABOTO, 8 I-34148 TRIESTE (Italy) WE HEREWITH CONFIRM THAT THE ANALYSIS DEVELOPED BY ORION;

More information

Transmitter mod. TR-A/V. SIL Safety Report

Transmitter mod. TR-A/V. SIL Safety Report Transmitter mod. TR-A/V SIL Safety Report SIL003/09 rev.1 del 09.03.2009 Pagina 1 di 7 1. Employ field The transmitters are dedicated to the vibration monitoring in plants where particular safety requirements

More information

Lecture 04 ( ) Hazard Analysis. Systeme hoher Qualität und Sicherheit Universität Bremen WS 2015/2016

Lecture 04 ( ) Hazard Analysis. Systeme hoher Qualität und Sicherheit Universität Bremen WS 2015/2016 Systeme hoher Qualität und Sicherheit Universität Bremen WS 2015/2016 Lecture 04 (02.11.2015) Hazard Analysis Christoph Lüth Jan Peleska Dieter Hutter Where are we? 01: Concepts of Quality 02: Legal Requirements:

More information

Accelerometer mod. TA18-S. SIL Safety Report

Accelerometer mod. TA18-S. SIL Safety Report Accelerometer mod. TA18-S SIL Safety Report SIL005/11 rev.1 of 03.02.2011 Page 1 of 7 1. Field of use The transducers are made to monitoring vibrations in systems that must meet particular technical safety

More information

YT-300 / 305 / 310 / 315 / 320 / 325 Series

YT-300 / 305 / 310 / 315 / 320 / 325 Series Volume Booster YT-300 / 305 / 310 / 315 / 320 / 325 Series SIL Safety Instruction. Supplement to product manual Apr. 2016 YTC Ver. 2.01 1 Table of contents 1 Introduction... 3 1.1 Purpose of this document...

More information