Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow

Size: px
Start display at page:

Download "Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow"

Transcription

1 Georgia Institute of Technology School of Earth and Atmospheric Sciences EAS 4641, Spring 2007 Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow Purpose of Lab 3: 1) To gain a basic understanding of air pumping and air flow measurements 2) More insight into measurement errors, error propagation, and instrument calibrations In practically all situations in atmospheric air quality monitoring, a known quantity of air is extracted from the atmosphere through an inlet, conducted to the detector through a sampling line, and then analyzed for constituents of interest. Among other things, this requires 1) a pump to move the air and 2) a way to monitor or determine the amount of air sampled (e.g., a flow meter). The schematic below shows a typical arrangement of components. In this laboratory we will focus mainly on the measurement of flow. In Lab 4 we will look at sample inlet and transmission issues, and the subsequent labs will deal with detection and ambient measurements. Inlet Sample Transmission line Detector Flow Meter or Flow Control Vacuum Pump Air Movers can be classified into three basic groups: volumetric displacement, centrifugal acceleration, and momentum transfer. Volumetric displacement usually involves an air-tight chamber in which the internal volume is changed by mechanical means. These are generally referred to as pumps. In a diaphragm pump a flexible wall in a chamber is oscillated, and through a series of valves air is drawn into the chamber when the chamber is expanded and forced out when the chamber is compressed. A piston pump is similar to diaphragm except that a piston sliding in a cylinder is used instead of the diaphragm. Bellows can also be used instead of a diaphragm or piston. Piston and bellows pumps are capable of developing higher vacuum and positive pressures than diaphragm pumps. For these pumps, the low frequency of the chamber volume oscillation often makes a pulse dampening system necessary to smooth out pressure variability. Rotary vane pumps are used extensively and are composed of a rotor with vanes mounted off-center in a cylindrical chamber. Rapid rotation of the rotor and the lack of valves 1

2 produce a smooth vacuum or pressure. A commonly employed rotary vane pump uses non-lubricated carbon vanes held against the cylinder walls by centrifugal force. The pressure side of these pumps must be filtered since vane wear produces larger concentrations of aerosol particles that should not be inhaled and must be isolated from sample air. Similar concerns pertain to oil mist from lubricated pumps. A schematic of an oil lubricated rotary vane pump is given below. The second basic method is centrifugal acceleration. These are often referred to as blowers when the airflow is radial, and called fans when the flow is axial (fans are not used in air quality work). Blowers are typically used in applications where high flow rates and low differential pressures are required, whereas pumps are used in situations of low flow rates and high differential pressures. The type of air mover used for a specific application will depend on the pressure differential the pump must maintain at a specified flow rate. Pump performance curves showing differential pressure versus flow rate is typically reported for specific pumps. 1. Oil Mist Eliminator,2. Exhaust, 3. Gas Ballast (RA),4. Inlet, 5. Inlet Screen, 6. Anti-Suckback Valve, 7. Vane, 8. Rotor, 9. Main Oil Feed Line, 10. Spin-On Oil Filter, 11. Oil Sight Glass, 12. Exhaust Valve (RA), 13. Oil Return Valve (RA), 14. Oil Return Line (RC) Flow Meters To determine concentrations of atmospheric constituents, a known quantity of air must be analyzed. Typically, this requires a measurement of a flow rate (i.e., how much air was sampled over a period of time). Flow meters can be divided into two types, mass and volumetric, and the corresponding flow rates given on a mass or volumetric basis. Measurements of trace gases typically involve mass flow rates, whereas aerosol measurements are most often done on a volumetric basis. Volumetric flow rate (e.g. unit, cm 3 /s) depends on the gas T and P. However, concentrations are often reported at some reference condition, i.e., standard T and P (20 C, 1 atm). One can convert between different states by the ideal gas law. That is Q s = Q a P a /P s T s /T a where s = standard conditions; a = ambient conditions The concentration will then be: C s = C a (Q a /Q s ) 2

3 Mass flow meters (e.g. unit, g/cm 3 ) and mass flow controllers are ubiquitous and more readily available then volumetric meters and flow controllers. Using mass flow rates trace gas concentrations are reported as mixing ratios (e.g., ppbv, pptv, etc see any chemistry or atm. chemistry text for more info on mixing ratios). Flow rate Measurement Methods. (Reference: Aerosol Measurement; Principles Techniques and Applications, Editor Willeke and Baron, Chapter 22) Also see Appendix Methods to measure flow rates include: Pitot tube (measures velocity that can be converted to a flow rate) Hot wire or film anemometer (velocity measurement) Obstruction Meters o Venturi or orifice meter (measure DP across calibrated resistance) o Critical orifice (used to maintain constant volumetric flow) o Rotameter (variable area) Laminar flow meter (useful since can transmit particles/gases efficiently) Positive displacement meters o soap bubble o piston, which includes gas meters Mass flow meter A note of caution when measuring volumetric flow rates; care must be taken as to where the flow meter is placed since volumetric flow depends on P. Typically a volumetric flow meter is situated so that one side of the flow meter is at ambient P. In this way the measurement is of the flow rate at ambient conditions. Details on Some Specific Flow Meters (See web page file: Appendix 1 Meas of Flows.pdf for more details) Positive displacement meters are primary standards because their calibrations can be determined by direct physical measurement. The simplest and most accurate of these meters use a water surface (spirometer), or a soap bubble film (bubble flow meter) to produce a sealed chamber with variable volume. In these instruments water vapor is typically added to the gas since after exiting the meter the sample air has increased in RH, reaching roughly 100%. Often a saturator is placed in front of the wet meter to produce a 100% RH air stream entering the meter. This eliminates uncertainties due to continued addition of water vapor within the meter. Assuming the meter is measuring a flow of saturated air, the ideal gas law can be employed to calculate the actual dry-air flow rate. Laminar Flow meters are commonly employed in aerosol science since the flow meter is simply a straight narrow-bore tube that will efficiently transports particles (minimal wall losses). Thus a laminar flow meter can be used to monitor a sample flow upstream of the detector and the air to be sampled can be passed through the meter. The device is based on measuring the pressure drop through a known length of tube under fully developed laminar flow conditions. Under so-called Hagen Poiseuille flow pressure drop is directly proportional to volumetric flow rate. For circular tubes, laminar flow requires a 3

4 Reynolds Number less than ~ Laminar flow meters can typically only measure flow rates up to approximately 2 L/min A critical orifice is a small circular restriction placed in a tube to maintain a constant flow when upstream conditions are constant. If the absolute pressure downstream of an orifice is less than 0.53 times the upstream pressure the flow in the orifice throat will be sonic and further reduction in pressure does not change the flow rate. These devices are useful for taking constant flow rate samples with a vacuum pump. (E.g., often used in integrated filter measurements). Flow Controllers: A flow controller combines a flow measurement with a metering valve. A feed back loop is used to maintain a constant user preset flow rate by automatic adjustment of the valve. Mass flow controllers are common and used extensively in trace gas measurement systems. 4

5 MORE DETAILS ON UNCERTAINTIES ANALYSIS Propagation of Errors. In general, determining a physical quantity requires making measurements, and determining the value of that quantity by using some expression that includes a variety of measured variables. To obtain an estimate of the uncertainty in the final quantity, the uncertainties associated with all the measurements must be combined. Example, consider a condensation particle counter (also referred to as a condensation nucleus (CN) counter). If the CN counter measures 9833 particles per 1 sec sampling air at 1 l/min. Say the instruments timer is accurate to ±0.001 sec and flow rate accurate to within 2% (DQ /Q=0.02, or DQ= 0.02 L/min). What accuracy should be report with the measured concentration? Method 1: Exact Solution; it can be shown that the final error due to the combined independent and random errors of individual measurements is (with negligible approximation, a 1 st order Taylor series expanded about 0: Dy = Dx 1 df/dx 1 + Dx 2 df/dx 2 + Dx 3 df/dx 3 + Dx 4 df/dx 4 + (partial derivatives), If the errors are independent, then one can expect some cancellation between errors, and the total error will be less. Thus, it is likely better to use a quadrature sum in the above equation. For our example, first without quadrature sum; CN = C/(Q t), and DCN = DC 1/(Qt) + DQ Ct/(Qt) 2 + Dt CQ/(Qt) 2 Where, CN is the particle concentration, C the counts, Q the volumetric flow rate, t the sample time. Then, DCN = sqrt(9833)/(16.67 cm 3 /s * 1 s) + (0.33cm 3 /s)(9833)(1s)/(16.67 cm 3 /s * 1 s) 2 + (0.001s)(9833)(16.67 cm 3 /s)/ (16.67 cm 3 /s * 1 s) 2 DCN = [1/cm 3 ] = /cm 3 and the concentration is 590±18 Using quadrature sum: DCN = sqrt[ ] = (less than above). Method 2. A simpler approach is to use propagation of relative errors, In this case, when adding or subtracting; add the errors Multiplying and dividing add relative errors. This is the most common situation (often the fractional errors are squared then summed, i.e., quadrature sum) Our example; (DCN/CN) 2 = (DC/C) 2 + (DQ/Q) 2 + (Dt/t) 2 (DCN/CN) 2 = (0.01) 2 + (0.02) 2 + (0.001) 2 = 5.03 E- 4 or DCN/CN = and the answer is 590 ± 13. 5

6 Method 3. Use the range in the final answer as the uncertainty. Calculate the range by substituting in values that have the uncertainty added or subtracted to each measurement in a manner to give the max or min value. The resulting uncertainty (i.e., ±CN) is the difference in the max and min values (i.e., the range) divided by two. How To Evaluate Uncertainties associated with a measurement Reading scales (ruler, graduated cylinder etc) ~ 1/2 smallest graduation Use manufacturers stated precision Use ± smallest digit on digital readout (i.e., stop watch) {this is really not good because reaction time is greatest cause of uncertainty}. In situations of counting, relative uncertainty is 1/sqrt(counts) Repeat the measurement and use the range, or better, the standard deviation really we need a statistical analysis; (typically, the better the analysis the lower the uncertainty) No matter the method used, state your approach, i.e., how you estimated the uncertainty. In some cases there is no way to compare the measurement to a correct value, (i.e., measurements of particle chemical composition). Normally; one compares their measurement to a more accurate standard. If you have no accurate standard, you may have a very precise measurement but it could be far off from the correct answer. One needs a gold standard to test the accuracy of measurement Comparing Measurements or Measurements to Models Compare error bars, if overlap than Comparing numbers: Is there a difference? 7.5 there is no difference between measurements, or no discrepancy. Discrepancy is the difference in the 7 ± estimated quantity. If the discrepancy is larger than the combined margin of error than the 4 2 numbers do not agree. The 3 ± combined margin of error is the sum of the absolute uncertainties (recall that uncertainties are added for + or Difference: (7-3) ± ( ) 4 ± 1.5 Difference: (4-2) ± ( ) 2 ± 2.5 operations). A situation in which numbers are compared includes Yes, there is a difference No, there is not a difference comparing the mean ± std error (or can't tell from these data) from two different measurements. Alternatively, the two measurements could be plotted and a hypothesis test performed to see if the slope is different from zero. 6

7 Experiment No 3: Measurement of Flow In the following experiment you will calibrate methods used to measure volumetric and mass flow rates. An uncertainty analysis should be applied to all calibrations. Part 1. Calibration of a laminar flow meter with a bubble meter. Procedure: Set up the system as shown in Lab Figure 1. Adjust the valve to change the flow rate. You should do a total of about 5 different flows spanning the full range of the laminar flow meter s DP range. For each valve (flow setting) make approximately 5 or so repeated measurements with the bubble flow meter. For each, record the stop-watch elapsed time, bubble flow meter volume, and laminar flow meter DP. (Note, when using the bubble flow meter do not start timing at the 0 mark, but instead use the 0.1 L mark or higher). Also record the ambient T, RH (use stop watch), P (estimate), and any other parameters of interest. 3:34.00 Ambient T and P. Stop Watch Pressure Gauge DP Temperature Lab Figure 1. Bubble Flow Meter Laminar flow meter Note the direction. Install as shown, noting position of pressure taps valve Vacuum Pump (small GAST diaphragm pump) Part 2. Calibration of a Critical Orifice with a gas meter Set up the experiment shown in Lab Figure 2. Note this is a different vacuum pump than used in Part 1. Start with the valve totally closed and make a series (say 5 or so) repeated measurements with the gas meter and stop-watch at each valve setting. Record all pertinent data for each valve setting (e.g, volume, elapsed time, ambient pressure P 1 and pressure P 2. Make measurements for a total of 5 or so different valve settings. As you perform this experiment construct a graph of the absolute pressure ratio P 2 /P 1 vs Q. (Note, P 1 is the ambient pressure, use 1 atm). For the last data point, remove the valve and determine the flow rate 7

8 Pressure Gauge Flow Meter P 2 P 1 Temperature Valve Lab Figure L/m Critical Orifice Vacuum Pump (larger vane pump) Part 3. Calibration of a mass flow controller (MFC) Set up the experiment shown in Lab Figure 3. Cap both ends of the MFC and take a zero-flow voltage reading. Set MFC set point to 1/5 of full-scale (FS) range. (The full scale range is 5 V, and the flow controller s range is 0-2 L/min). Take 10 readings of measured volumetric flow rate Q a, ambient barometric pressure (assume 1 atm) and air temperature (P b, T a ) and water temperature (T w ) at saturator. Note arithmetic mean and standard deviation of Q a and corresponding average of P b, T a and T w and any small variations in analog Vdc setting. Set MFC set point to roughly 2/5, 3/5, 4/5, 5/5 of FS range, and repeat the above two steps for each setting. Control unit set point Analog signal Vdc P b, T a Ambient pressure and temperature Compressed N 2 tank Pressure regulator Shut-off valve MFC Volumetric flow measurement, e.g. soap-bubble-meter T w H 2 O temperature Saturator Lab Figure 3 8

9 Questions Part For the laminar flow meter calibration, make a calibration graph of Q versus DP, include error bars on data points and a linear regression fit with equal weights and show the fit parameters (intercept, slope, r, uncertainties in slope and intercept). Explain how the uncertainties were calculated. 2. Describe the curve. Is the shape as expected? Do your results agree with theory (see Appendix 1: Measurement of Flows) if the laminar flow meter inside diameter is inch and length inches. For example, is the flow laminar? What is the predicted ratio of flow rate to pressure drop? Part Make a graph of Q versus the pressure ratio (P 2 /P 1 ), include error bars and state how they were determined. 2. Is the orifice s behavior as expected, explain? If the orifice is used in an experiment to maintain a constant flow, how would you know if it is working properly (what would you monitor). Can you think of problems when using a critical orifice when measuring aerosols. 3. Assume a critical orifice with 0.4 mm diameter is fabricated for air sampling purposes and used downstream of a filter. The flow rate is measured to be 1L/min when the upstream pressure is close to the ambient pressure (760 mm Hg, 20 C). (See Appendix 1: Measurement of Flows for equations). a) What size of orifice must be fabricated if the sampling flow rate is 2 L/min and assuming the downstream pressure is still less than 0.53 the upstream pressure. b) What is the sampling flow rate when this orifice is used in Albuquerque, NM (ambient pressure is 625 mmhg)? c) When the filter is loaded and the pressure gauge upstream of the orifice is 10 cmh 2 O, what is the sample flow rate? Part Calculate the standard mass flow rate M s for dry air. You will have to first convert the volumetric measurements of N 2 (assume molecular weight of N 2 [28 g/mole] is same as dry air [28.9 g/mole]) to mass using the density of dry air calculated from the ideal gas law, with T a and P a. Then convert from ambient to standard conditions. M s = M a x (P a /P s ) x (T s /T a ) with P a = P a - P w P w = water sat. vapor T w (from tables) P s = mbar=760 Torr T s = K 9

10 2. Plot M s versus Vdc and do a linear regression with equal weights on all 6 data points (i.e. no-flow, 1, 2, 3, 4 and 5 Vdc). Estimate uncertainties of P and T measurements and incorporate into overall uncertainty estimate for M s. 3. Using the data collected above, recalculate the calibration curve if the gas to be controlled is Ar instead of dry air. 10

Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow

Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow Georgia Institute of Technology School of Earth and Atmospheric Sciences EAS 4641, Spring 2008 Lab 3 Introduction to Quantitative Analysis: Pumps and Measurements of Flow Purpose of Lab 3: 1) To gain a

More information

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary

LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary ADH 1/7/014 LOW PRESSURE EFFUSION OF GASES adapted by Luke Hanley and Mike Trenary This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Orifice Plates EXERCISE OBJECTIVE In this exercise, you will study how differential pressure flowmeters operate. You will describe the relationship between the flow rate and the pressure drop

More information

Laboratory Experiments No 1: Measuring the Number Distribution

Laboratory Experiments No 1: Measuring the Number Distribution Laboratory Experiments No 1: Measuring the Number Distribution Purpose: To test the operation of the DMA by comparing the calculated size to a monodisperse aerosol particle, and to use the DMA to measure

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

Exercise 4-2. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps

Exercise 4-2. Centrifugal Pumps EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Pumps Exercise 4-2 Centrifugal Pumps EXERCISE OBJECTIVE Familiarize yourself with the basics of liquid pumps, specifically with the basics of centrifugal pumps. DISCUSSION OUTLINE The Discussion of this exercise

More information

Pressure Measurement

Pressure Measurement Pressure Measurement Manometers Sensors, Transducers Ashish J. Modi Lecturer, Dept. of Mech.Engg., Shri S.V.M. inst. Of Technology, Bharuch Pressure Pressure is a force per unit area exerted by a fluid

More information

Kinetic-Molecular Theory

Kinetic-Molecular Theory GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

More information

Gas Flow Calibration Basics

Gas Flow Calibration Basics Basics - May, 2012 Gas Flow Calibration Basics Gas Flow Calibration Basics - May, 2012 Prepared By: Edward Morrell VP of Engineering - Bios Gas & Flow & Calibration Flow is the Quantity of material transported

More information

Level MEASUREMENT 1/2016

Level MEASUREMENT 1/2016 Level MEASUREMENT 1/2016 AGENDA 2 A. Introduction B. Float method C. Displacer method D. Hydrostatic pressure method E. Capacitance method G. Ultrasonic method H. Radar method I. Laser method J. Level

More information

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump.

The Discussion of this exercise covers the following points: Pumps Basic operation of a liquid pump Types of liquid pumps The centrifugal pump. Exercise 2-3 Centrifugal Pumps EXERCISE OBJECTIVE In this exercise, you will become familiar with the operation of a centrifugal pump and read its performance chart. You will also observe the effect that

More information

Chapter 10: Gases. Characteristics of Gases

Chapter 10: Gases. Characteristics of Gases Chapter 10: Gases Learning Outcomes: Calculate pressure and convert between pressure units with an emphasis on torr and atmospheres. Calculate P, V, n, or T using the ideal-gas equation. Explain how the

More information

Another convenient term is gauge pressure, which is a pressure measured above barometric pressure.

Another convenient term is gauge pressure, which is a pressure measured above barometric pressure. VACUUM Theory and Applications Vacuum may be defined as the complete emptiness of a given volume. It is impossible to obtain a perfect vacuum, but it is possible to obtain a level of vacuum, defined as

More information

Cover Page for Lab Report Group Portion. Head Losses in Pipes

Cover Page for Lab Report Group Portion. Head Losses in Pipes Cover Page for Lab Report Group Portion Head Losses in Pipes Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 February 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section

More information

Lab 1. Adiabatic and reversible compression of a gas

Lab 1. Adiabatic and reversible compression of a gas Lab 1. Adiabatic and reversible compression of a gas Introduction The initial and final states of an adiabatic and reversible volume change of an ideal gas can be determined by the First Law of Thermodynamics

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE

INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE TELEDYNE HASTINGS TECHNICAL PAPERS INSTRUMENTS A THERMAL MASS FLOW SENSOR USING A CONSTANT DIFFERENTIAL TEMPERATURE ABOVE THE AMBIENT GAS TEMPERATURE Proceedings of FEDSM 98 1998 ASME Fluids Engineering

More information

Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

More information

Introductory Lab: Vacuum Methods

Introductory Lab: Vacuum Methods Introductory Lab: Vacuum Methods Experiments in Modern Physics (P451) In this lab you will become familiar with the various components of the lab vacuum system. There are many books on this topic one of

More information

TWO PHASE FLOW METER UTILIZING A SLOTTED PLATE. Acadiana Flow Measurement Society

TWO PHASE FLOW METER UTILIZING A SLOTTED PLATE. Acadiana Flow Measurement Society TWO PHASE FLOW METER UTILIZING A SLOTTED PLATE Acadiana Flow Measurement Society Gerald L. Morrison Presented by: Mechanical Engineering Department Daniel J. Rudroff 323 Texas A&M University Flowline Meters

More information

MEMORANDUM. Investigation of Variability of Bourdon Gauge Sets in the Chemical Engineering Transport Laboratory

MEMORANDUM. Investigation of Variability of Bourdon Gauge Sets in the Chemical Engineering Transport Laboratory 1 MEMORANDUM TO: FROM: Prof. Davis Hubbard Prof. Faith A. Morrison DATE: 22 April 2014 RE: Investigation of Variability of Bourdon Gauge Sets in the Chemical Engineering Transport Laboratory Introduction

More information

CHAPTER 3 : AIR COMPRESSOR

CHAPTER 3 : AIR COMPRESSOR CHAPTER 3 : AIR COMPRESSOR Robotic & Automation Department FACULTY OF MANUFACTURING ENGINEERING, UTeM Learning Objectives Identify types of compressors available Calculate air capacity rating of compressor

More information

CORESTA RECOMMENDED METHOD N 6

CORESTA RECOMMENDED METHOD N 6 CORESTA RECOMMENDED METHOD N 6 DETERMINATION OF VENTILATION DEFINITIONS AND MEASUREMENT PRINCIPLES (2015 Revision September 2016) 1. SCOPE This CORESTA Recommended Method specifies a method for the determination

More information

FPG8601 Force Balanced Piston Gauge

FPG8601 Force Balanced Piston Gauge FPG8601 Force Balanced Piston Gauge Reference Level Calibration System for very low pressure Pressure range: 0 to 15 kpa gauge, absolute and absolute differential Standard resolution: 0.010 Pa, high resolution

More information

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

The Helium Leak Detector

The Helium Leak Detector The Helium Leak Detector Helium Leak Detector Main Components The main components of a helium leak detector are: 1. The analyzed, which enables to separate the tracer gas from other gases inside leak detector.

More information

Fluid Machinery Introduction to the laboratory measurements

Fluid Machinery Introduction to the laboratory measurements Fluid Machinery Introduction to the laboratory measurements Csaba H s (csaba.hos@hds.bme.hu) Ferenc Hegedus (hegedusf@hds.bme.hu) February 21, 2014 1 Requirements related to the measurement part of the

More information

The University of Hong Kong Department of Physics Experimental Physics Laboratory

The University of Hong Kong Department of Physics Experimental Physics Laboratory The University of Hong Kong Department of Physics Experimental Physics Laboratory PHYS2260 Heat and Waves 2260-1 LABORATORY MANUAL Experiment 1: Adiabatic Gas Law Part A. Ideal Gas Law Equipment Required:

More information

Gas Measurement Fundamentals Certification. Curriculum

Gas Measurement Fundamentals Certification. Curriculum Gas Certification Institute, LLC P.O. Box 131525 Houston, Texas 77219-1525 281-598-7200 Phone 281-598-7199 Fax contact@gascertification.com www.gascertification.com Curriculum Copyright 2007-2012 Gas Certification

More information

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.

8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points. Charles s Law According to Charles s law, the volume of a fixed mass of gas varies directly with its Kelvin temperature if its pressure is constant. The following table contains Celsius temperature and

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

Cover Page for Lab Report Group Portion. Drag on Spheres

Cover Page for Lab Report Group Portion. Drag on Spheres Cover Page for Lab Report Group Portion Drag on Spheres Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 29 September 2017 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

Flow in a shock tube

Flow in a shock tube Flow in a shock tube April 30, 05 Summary In the lab the shock Mach number as well as the Mach number downstream the moving shock are determined for different pressure ratios between the high and low pressure

More information

COMPAFLOW. Compressed Air. Volumetric flow. Gas. Mass flow. Steam. Net volumetric flow. Liquid

COMPAFLOW. Compressed Air. Volumetric flow. Gas. Mass flow. Steam. Net volumetric flow. Liquid Volumetric flow Compressed Air Mass flow Gas Net volumetric flow Steam Liquid Universal compact orifice flow meter combines a compact orifice flow sensor and sotiphicated converter One-piece flow sensor,

More information

TI 176B Flow Rate Audit Calculations

TI 176B Flow Rate Audit Calculations TI 176B Flow Rate Audit Calculations TABLE OF CONTENTS TABLE OF FIGURES... 1 LIST OF TABLES... 1 1.0 PURPOSE AND APPLICABILITY... 2 2.0 RESPONSIBILITIES... 2 2.1 Field Specialist... 2 2.2 Field Technician...

More information

Constant Pressure Inlet (CCN) Operator Manual

Constant Pressure Inlet (CCN) Operator Manual Constant Pressure Inlet (CCN) Operator Manual DOC-0125 Revision J 2545 Central Avenue Boulder, CO 80301-5727 USA C O P Y R I G H T 2 0 1 1 D R O P L E T M E A S U R E M E N T T E C H N O L O G I E S, I

More information

CHAPTER 16 %UHDWKLQJ*DV0L[LQJ3URFHGXUHV

CHAPTER 16 %UHDWKLQJ*DV0L[LQJ3URFHGXUHV CHAPTER 16 %UHDWKLQJ*DV0L[LQJ3URFHGXUHV 16-1 INTRODUCTION 16-1.1 Purpose. The purpose of this chapter is to familiarize divers with the techniques used to mix divers breathing gas. 16-1.2 Scope. This chapter

More information

Flowmeter Shootout Part II: Traditional Technologies

Flowmeter Shootout Part II: Traditional Technologies Flowmeter Shootout Part II: Traditional Technologies How to Choose Among Turbine, Positive Displacement, Thermal, Variable Area, and Open Channel Using Paradigm Cases By Jesse Yoder February 22, 2001 This

More information

Gerald D. Anderson. Education Technical Specialist

Gerald D. Anderson. Education Technical Specialist Gerald D. Anderson Education Technical Specialist The factors which influence selection of equipment for a liquid level control loop interact significantly. Analyses of these factors and their interactions

More information

AFC. SDPROC and AFC Analog Mass Flow Controller ANALOG MASS FLOW CONTROLLERS. Principles of Operation. Design Features

AFC. SDPROC and AFC Analog Mass Flow Controller ANALOG MASS FLOW CONTROLLERS. Principles of Operation. Design Features ANALOG MASS FLOW CONTROLLERS Model AF mass fl ow controllers are designed to indicate fl ow rates and control set fl ow rates of gases. Each of these units incorporates an advanced straight tube sensor

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Vacuum Systems and Cryogenics for Integrated Circuit Fabrication Technology 01

Vacuum Systems and Cryogenics for Integrated Circuit Fabrication Technology 01 INAOE. Tonantzintla, Mexico. 2010-06-23. June 23 rd, 2010 Vacuum Systems and Cryogenics for Integrated Circuit Fabrication Technology 01 Joel Molina INAOE Microelectronics Group jmolina@inaoep.mx 1 Vacuum

More information

This educational seminar discusses creating, measuring, and troubleshooting Rough Vacuum.

This educational seminar discusses creating, measuring, and troubleshooting Rough Vacuum. This educational seminar discusses creating, measuring, and troubleshooting Rough Vacuum. Specifically, today s talk will cover: Brief review of Vacuum Fundamentals Applications Using Rough Vacuum Rough

More information

Integral type Differential pressure flowmeter VNT Series

Integral type Differential pressure flowmeter VNT Series Integral type Differential pressure flowmeter VNT Series OUTLINE VH series Wafer-Cone differential pressure flowmeter and high precision differential pressure transmitter are integrated into one flowmeter.

More information

The HumiPyc ( Model 2) - Gas Pycnometer; Density, Moisture, Permeation Analyzer; Filter Integrity Tester; RH sensor Calibrator

The HumiPyc ( Model 2) - Gas Pycnometer; Density, Moisture, Permeation Analyzer; Filter Integrity Tester; RH sensor Calibrator The HumiPyc ( Model 2) - Gas Pycnometer; Density, Moisture, Permeation Analyzer; Filter Integrity Tester; RH sensor Calibrator Designed, built, and supported by InstruQuest Inc. Universal pycnometer, no

More information

States of Matter Review

States of Matter Review States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

More information

Fundamentals of Compressed Air Systems. Pre-Workshop Assignment

Fundamentals of Compressed Air Systems. Pre-Workshop Assignment Page 1 In order to ensure that the Compressed Air Challenge Fundamentals of Compressed Air Systems Training is most useful to you, it will be important for you to bring information about your plant s compressed

More information

Leak Checking Large Vacuum Chambers

Leak Checking Large Vacuum Chambers Leak Checking Large Vacuum Chambers Technical Overview Vacuum Technologies Introduction Understanding the pump-down characteristics of a large vacuum vessel is critical for determining whether the vacuum

More information

Lab 1c Isentropic Blow-down Process and Discharge Coefficient

Lab 1c Isentropic Blow-down Process and Discharge Coefficient 058:080 Experimental Engineering Lab 1c Isentropic Blow-down Process and Discharge Coefficient OBJECTIVES - To study the transient discharge of a rigid pressurized tank; To determine the discharge coefficients

More information

Applying Hooke s Law to Multiple Bungee Cords. Introduction

Applying Hooke s Law to Multiple Bungee Cords. Introduction Applying Hooke s Law to Multiple Bungee Cords Introduction Hooke s Law declares that the force exerted on a spring is proportional to the amount of stretch or compression on the spring, is always directed

More information

Process Dynamics, Operations, and Control Lecture Notes - 20

Process Dynamics, Operations, and Control Lecture Notes - 20 Lesson 0. Control valves 0.0 Context Controller output is a signal that varies between 0 and 100%. Putting this signal to use requires a final control element, a device that responds to the controller

More information

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases World of Chemistry Notes for Students [Chapter 3, page ] Chapter 3 Gases ) Sec 3.8 Kinetic Theory of Gases and the Nature of Gases The Kinetic Theory of Matter says that the tiny particles in all forms

More information

Analogue and Digital Mass Flow Meters and Controllers for Gases MASS-STREAM

Analogue and Digital Mass Flow Meters and Controllers for Gases MASS-STREAM Analogue and Digital Mass Flow Meters and Controllers for Gases MASS-STREAM M+W Instruments Your partner Key Facts M+W Instruments was founded in 1988 and has always specialised in thermal mass flow meters

More information

The HumiPyc - Model 1 - Gas Pycnometer; Density, Moisture, Permeation Analyzer; RH sensor Calibrator

The HumiPyc - Model 1 - Gas Pycnometer; Density, Moisture, Permeation Analyzer; RH sensor Calibrator The HumiPyc - Model 1 - Gas Pycnometer; Density, Moisture, Permeation Analyzer; RH sensor Calibrator Designed, built, and supported by InstruQuest Inc. Temperature controlled, multi-technique volumetric

More information

GLOSSARY OF TERMS. Adiabatic Compression Compression process when all heat of compression is retained in the gas being compressed.

GLOSSARY OF TERMS. Adiabatic Compression Compression process when all heat of compression is retained in the gas being compressed. GLOSSARY OF TERMS Absolute pressure Total pressure measured from absolute zero i.e. a perfect vacuum. As a practical matter, gauge pressure plus atmospheric pressure. Absolute temperature Temperature measured

More information

Introduction of Vacuum Science & Technology. Diffusion pumps used on the Calutron mass spectrometers during the Manhattan Project.

Introduction of Vacuum Science & Technology. Diffusion pumps used on the Calutron mass spectrometers during the Manhattan Project. Introduction of Vacuum Science & Technology Diffusion pumps used on the Calutron mass spectrometers during the Manhattan Project. 1 What is a vacuum? 760 mm Hg Vacuum ATM A vacuum is defined as less than

More information

GASES. Unit #8. AP Chemistry

GASES. Unit #8. AP Chemistry GASES Unit #8 AP Chemistry I. Characteristics of Gases A. Gas Characteristics: 1. Fills its container a. no definite shape b. no definite vol. 2. Easily mixes w/ other gases 3. Exerts pressure on its surroundings

More information

Equation 1: F spring = kx. Where F is the force of the spring, k is the spring constant and x is the displacement of the spring. Equation 2: F = mg

Equation 1: F spring = kx. Where F is the force of the spring, k is the spring constant and x is the displacement of the spring. Equation 2: F = mg 1 Introduction Relationship between Spring Constant and Length of Bungee Cord In this experiment, we aimed to model the behavior of the bungee cord that will be used in the Bungee Challenge. Specifically,

More information

Gases and Pressure. Main Ideas

Gases and Pressure. Main Ideas Gases and Pressure Key Terms pressure millimeters of mercury partial pressure newton atmosphere of pressure Dalton s law of partial pressures barometer pascal In the chapter States of Matter, you read

More information

ONSITE PROVING OF GAS METERS. Daniel J. Rudroff WFMS Inc West Bellfort Sugar Land, Texas. Introduction

ONSITE PROVING OF GAS METERS. Daniel J. Rudroff WFMS Inc West Bellfort Sugar Land, Texas. Introduction ONSITE PROVING OF GAS METERS Daniel J. Rudroff WFMS Inc. 13901 West Bellfort Sugar Land, Texas Introduction With the increased use of Natural Gas as a fuel, and higher natural gas prices buyers and sellers

More information

Lab # 03: Visualization of Shock Waves by using Schlieren Technique

Lab # 03: Visualization of Shock Waves by using Schlieren Technique AerE545 Lab # 03: Visualization of Shock Waves by using Schlieren Technique Objectives: 1. To get hands-on experiences about Schlieren technique for flow visualization. 2. To learn how to do the optics

More information

bespoke In general health and rehabilitation Breath-by-breath multi-functional respiratory gas analyser In human performance

bespoke In general health and rehabilitation Breath-by-breath multi-functional respiratory gas analyser In human performance Introduction Expired Gas Analysis or indirect calorimetry, can be used to measure ventilation and the fractions of oxygen and carbon dioxide in expired air. From these measurements, the body's oxygen consumption

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

CHEM 355 EXPERIMENT 7. Viscosity of gases: Estimation of molecular diameter

CHEM 355 EXPERIMENT 7. Viscosity of gases: Estimation of molecular diameter CHEM 355 EXPERIMENT 7 Viscosity of gases: Estimation of molecular diameter Expressed most simply, the viscosity of a fluid (liquid or gas) relates to its resistance to flow. The viscosity of a gas is determined

More information

Mass Flowmeters. Mass Flowmeters for Gases

Mass Flowmeters. Mass Flowmeters for Gases Mass Flowmeters Mass Flowmeters for Gases Fast, Accurate, Low Pressure Drop for critical measurement applications! Flow (Std l/min) Response to a step change in flowrate 300 200 100 4 Milliseconds 63%

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

More information

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them. Chapter 5 Gases Gas Gases are composed of particles that are moving around very fast in their container(s). These particles moves in straight lines until they collides with either the container wall or

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

Fundamentals of Turboexpanders Basic Theory and Design

Fundamentals of Turboexpanders Basic Theory and Design Fundamentals of Turboexpanders Basic Theory and Design Edited Date: September 16, 2015 Presented By: Mr. James Simms Simms Machinery International, Inc. 2357 A Street Santa Maria, CA 93455 U.S.A. About

More information

F&J SPECIALTY PRODUCTS The nucleus of quality air monitoring programs

F&J SPECIALTY PRODUCTS The nucleus of quality air monitoring programs F&J SPECIALTY PRODUCTS The nucleus of quality air monitoring programs AIR FLOW CALIBRATORS FOR MOST AIR MONITORING PROGRAMS World Calibrator PC Version World Calibrator VFD Version Compact Digital Calibrator

More information

A. What are the three states of matter chemists work with?

A. What are the three states of matter chemists work with? Chapter 10 and 12 The Behavior of Gases Chapter 10 The States of Matter A. What are the three states of matter chemists work with? Section 10.1 Pg 267 B. We will explain the behavior of gases using the

More information

Application Note AN-107

Application Note AN-107 SPEC Sensor TM Characterization & Calibration Considerations Scope This document is provided to describe the considerations needed to characterize, calibrate, verify and validate the measurement performance

More information

Lab Problems. Lab Problems for Chapter Fluid Characterization by Use of a Stormer Viscometer L-1

Lab Problems. Lab Problems for Chapter Fluid Characterization by Use of a Stormer Viscometer L-1 Lab Problems This section contains end-of-the-chapter problems that involve data obtained from various simple laboratory experiments. These lab problems for any chapter can be obtained by clicking on the

More information

TH-1800-T TRX-700-CNG Converter

TH-1800-T TRX-700-CNG Converter TH-1800-T TRX-700-CNG Converter low detector The CNG fuel gas flowmeter is so accurate as to meet a demand of measuring the CNG directly by making the most use of our well-established mini-thermal flowmeter

More information

TEST SPECIFICATION NYT-909-C

TEST SPECIFICATION NYT-909-C 748 Starbuck Ave, Watertown, NY 13601 Phone: +1-315-786-5200 Engineering Fax: +1-315-786-5673 TEST SPECIFICATION NYT-909-C CODE OF TESTS FOR TESTING "AB" TEST RACK P/N 702546 & 702612 ISSUE NO. 5 1.0 THE

More information

H o w t o U s e a R e g u l a t o r t o R e d u c e T i m e D e l a y i n a n A n a l y t i c a l S y s t e m

H o w t o U s e a R e g u l a t o r t o R e d u c e T i m e D e l a y i n a n A n a l y t i c a l S y s t e m H o w t o U s e a R e g u l a t o r t o R e d u c e T i m e D e l a y i n a n A n a l y t i c a l S y s t e m By Doug Nordstrom and Mike Adkins Swagelok Company Process measurements are instantaneous but

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

Device Description. Operating Information. CP Q (eq. 1) GT. Technical Bulletin TB-0607-CFP Hawkeye Industries Critical Flow Prover

Device Description. Operating Information. CP Q (eq. 1) GT. Technical Bulletin TB-0607-CFP Hawkeye Industries Critical Flow Prover A compressible fluid traveling at subsonic velocity through a duct of constant cross section will increase velocity when passing through a region of reduced cross-sectional area (in this case, an orifice)

More information

Experiment 8: Minor Losses

Experiment 8: Minor Losses Experiment 8: Minor Losses Purpose: To determine the loss factors for flow through a range of pipe fittings including bends, a contraction, an enlargement and a gate-valve. Introduction: Energy losses

More information

Quiz name: Chapter 13 Test Review - Fluids

Quiz name: Chapter 13 Test Review - Fluids Name: Quiz name: Chapter 13 Test Review - Fluids Date: 1. All fluids are A gases B liquids C gasses or liquids D non-metallic E transparent 2. 1 Pa is A 1 N/m B 1 m/n C 1 kg/(m s) D 1 kg/(m s 2 ) E 1 N/m

More information

RADIATION PROCEDURES MANUAL Procedure Cover Sheet

RADIATION PROCEDURES MANUAL Procedure Cover Sheet RADIATION PROCEDURES MANUAL Procedure Cover Sheet Procedure Title: Calibration of Eberline Portable Particulate Noble Gas Monitor Procedure Number: TSO-08-13-REV 1 Effective Date: July 1, 2008 Approved

More information

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams.

Heat Engine. Reading: Appropriate sections for first, second law of thermodynamics, and PV diagrams. Heat Engine Equipment: Capstone, 2 large glass beakers (one for ice water, the other for boiling water), temperature sensor, pressure sensor, rotary motion sensor, meter stick, calipers, set of weights,

More information

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8.

Additional Reading General, Organic and Biological Chemistry, by Timberlake, chapter 8. Gas Laws EXPERIMENTAL TASK Determine the mathematical relationship between the volume of a gas sample and its absolute temperature, using experimental data; and to determine the mathematical relationship

More information

CHEMISTRY - CLUTCH CH.5 - GASES.

CHEMISTRY - CLUTCH CH.5 - GASES. !! www.clutchprep.com CONCEPT: UNITS OF PRESSURE Pressure is defined as the force exerted per unit of surface area. Pressure = Force Area The SI unit for Pressure is the, which has the units of. The SI

More information

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] Chapter 10 Gases We have talked a little about gases in Chapter 3 and we dealt briefly with them in our stoichiometric calculations in

More information

PHYS 101 Previous Exam Problems

PHYS 101 Previous Exam Problems PHYS 101 Previous Exam Problems CHAPTER 14 Fluids Fluids at rest pressure vs. depth Pascal s principle Archimedes s principle Buoynat forces Fluids in motion: Continuity & Bernoulli equations 1. How deep

More information

EXERCISE 2: THE VACUUM SYSTEM

EXERCISE 2: THE VACUUM SYSTEM EXERCISE 2: THE VACUUM SYSTEM Because vacuum system techniques are important to all of experimental physics, every undergraduate student should have had some experience in them. This exercise ensures that

More information

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller

CHEMICAL ENGINEERING LABORATORY CHEG 239W. Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller CHEMICAL ENGINEERING LABORATORY CHEG 239W Control of a Steam-Heated Mixing Tank with a Pneumatic Process Controller Objective The experiment involves tuning a commercial process controller for temperature

More information

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation Characteristics of Gases Chapter 10 Gases Pressure The Gas Laws The Ideal-Gas Equation Applications of the Ideal-Gas Equation Gas mixtures and partial pressures Kinetic-Molecular Theory Real Gases: Deviations

More information

X-Flow Mass Flow Controller 授权代理 : 北京品超思瑞科技学院公司

X-Flow Mass Flow Controller 授权代理 : 北京品超思瑞科技学院公司 X-Flow Mass Flow Controller 2 Highlights Parker Hannifin Precision Fluidics Division is excited to introduce X-Flow, a new easy to use general purpose mass flow controller for your instrument, lab, or

More information

Revision 2013 Vacuum Technology 1-3 day Good Vacuum Practice 1 Day Course Outline

Revision 2013 Vacuum Technology 1-3 day Good Vacuum Practice 1 Day Course Outline Revision 2013 Vacuum Technology 1-3 day Good Vacuum Practice 1 Day Course Outline This training course outline is intended to cover the following: Introduction to vacuum Measurement Lubricated rotary pumps

More information

Gas flow calibrations performed at the National Metrology Institute of South Africa (NMISA)

Gas flow calibrations performed at the National Metrology Institute of South Africa (NMISA) Int. J. Metrol. Qual. Eng. 5, 303 (2014) c EDP Sciences 2014 DOI: 10.1051/ijmqe/2014012 Gas flow calibrations performed at the National Metrology Institute of South Africa (NMISA) D. Jonker and E.P. Tarnow

More information

800 Series Mass Flow Meters and Controllers. High Performance Mass Flow Meters and Controllers

800 Series Mass Flow Meters and Controllers. High Performance Mass Flow Meters and Controllers 800 Series Mass Flow Meters and Controllers High Performance Mass Flow Meters and Controllers WHY MASS FLOW? In most processes it is mass, not volume, which is the critical variable. Volumetric flow measurements

More information

DEVICES FOR FIELD DETERMINATION OF WATER VAPOR IN NATURAL GAS Betsy Murphy MNM Enterprises 801 N. Riverside Drive Fort Worth, Texas 76111

DEVICES FOR FIELD DETERMINATION OF WATER VAPOR IN NATURAL GAS Betsy Murphy MNM Enterprises 801 N. Riverside Drive Fort Worth, Texas 76111 INTRODUCTION Water vapor in natural gas has more than a substantial effect on the quality of the gas stream. Without quality measurement of water vapor the gas is basically not saleable. Contracts are

More information

Title: Standard Operating Procedure for Measurement of Ethylene (C 2 H 4 ) in Ambient Air by Reduced Gas Detection (RGD)

Title: Standard Operating Procedure for Measurement of Ethylene (C 2 H 4 ) in Ambient Air by Reduced Gas Detection (RGD) Procedure No: SOP-026 Revision No: 1.0 January 24, 2011 Page No.: 1 of 10 1. INTRODUCTION AND SCOPE To obtain timely data for the purpose of air quality assessment, air quality trend reporting and to meet

More information

THE FUNDAMENTALS OF THE AIR SAMPLER CALIBRATION-VERIFICATION PROCESS

THE FUNDAMENTALS OF THE AIR SAMPLER CALIBRATION-VERIFICATION PROCESS THE FUNDAMENTALS OF THE AIR SAMPLER CALIBRATION-VERIFICATION PROCESS Frank M. Gavila F&J SPECIALTY PRODUCTS, INC. 404 Cypress Road Ocala, Florida, USA 3447 fandj@fjspecialty.com INTRODUCTION The calibration

More information

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii

Experiment. THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law. By Dale A. Hammond, PhD, Brigham Young University Hawaii Experiment THE RELATIONSHIP BETWEEN VOLUME AND TEMPERATURE, i.e.,charles Law By Dale A. Hammond, PhD, Brigham Young University Hawaii The objectives of this experiment are to... LEARNING OBJECTIVES introduce

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information