Ch 12 Homework. Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly. 1.

Size: px
Start display at page:

Download "Ch 12 Homework. Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly. 1."

Transcription

1 Ch 12 Homework Name: Homework problems are from the Serway & Vuille 10 th edition. Follow the instructions and show your work clearly. 1. (Problem 1) An ideal gas is enclosed in a cylinder with a movable piston on top of it. The piston has a mass of 8000 g and an area of 5.00 cm 2 and is free to slide up and down, keeping the pressure of the gas constant. (a) Draw a diagram of the cylinder and label all the physical quantities using variables you choose. (b) How much work is done on the gas as the temperature of mol of the gas is raised from 20.0 C to 300 C? (c) What kind of thermal process is the part (b)?

2 (d) What does the sign of your answer to part (b) indicate? 2. (Problem 5) A gas expands from I to F along the three paths indicated in the figure below. Calculate the work done on the gas along paths (a) IAF, (b) IF, and (c) IBF. (a) Calculate the work done on the gas along paths IAF.

3 (b) Calculate the work done on the gas along paths IAF. (c) Calculate the work done on the gas along paths IAF.

4 3. (Problem12) A cylinder of volume m 3 contains 10.0 mol of neon gas at 20.0 C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? (b) Find the internal energy of the gas. (c) Suppose the gas expands at constant pressure to a volume of m 3. How much work is done on the gas? (d) What is the temperature of the gas at the new volume? (e) Find the internal energy of the gas when its volume is 1.000m 3.

5 (f) Compute the change in the internal energy during the expansion. (g) Compute. (h) Must thermal energy be transferred to the gas during the constant pressure expansion or be taken away? (i) Compute Q, the thermal energy transfer. (j) What symbolic relationship between Q, U, and W is suggested by the values obtained?

6 4. (Problem 19) An ideal gas is compressed from a volume of V i =4.00 L to a volume of V f = 3.00 L while in thermal contact with a heat reservoir at T = 295 K as in the figure above. During the compression process, the piston moves down a distance of d = m under the action of an average external force of F = 25.0 kn. (a) Find the work done on the gas. (b) Find the change in internal energy of the gas. (c) Find the thermal energy exchanged between the gas and the reservoir.

7 (d) If the gas is thermally insulated so no thermal energy could be exchanged, what would happen to the temperature of the gas during the compression? 5. (Problem 29) A gas increases in pressure from 2.00 atm to 6.00 atm at a constant volume of 1.00 m 3 and then expands at constant pressure to a volume of 3.00 m 3 before returning to its initial state as shown in the figure below. How much work is done in one cycle? (a) How much work is done by the gas as the gas increases in pressure from 2.00 atm to 6.00 atm at a constant volume of 1.00 m 3?

8 (b) How much work is done by the gas as the gas expands at constant pressure 6.00 atm to a volume of 3.00 m 3? (c) How much work is done by the gas as the gas return to its initial state as shown in the figure above? (d) How much work is done in one cycle? (e) Work done in one cycle equals the area enclosed by the triangle in the figure above. Calculate the areas of the triangle and compare the result with the answer in the part (d).

9 6. (Problem 32) A heat engine is being designed to have a Carnot efficiency of 65% when operating between two heat reservoirs. (a) If the temperature of the cold reservoir is 20 C, what must be the temperature of the hot reservoir? (b) Can the actual efficiency of the engine be equals to 65%? Explain your answer. 7. (Problem 45) A Styrofoam cup holding 125 g of hot water at C cools to room temperature, 20.0 C. What is the change in entropy of the room? (Neglect the specific heat of the cup and any change in temperature of the room)

10 8. (Problem 56) A weightlifter has a basal metabolic rate of 80.0 W. As he is working out, his metabolic rate increases by about 650 W. (a) How many hours does it take him to work off a 450-Calorie bagel if he stays in bed all day? (1 Calorie = 4186 J) (Hint: Power = Energy used/ time) (b) How long does it take him if he s working out? (c) Calculate the amount of mechanical work necessary to lift a 120-kg barbell 2.00 m. (Hint: work = Force distance)

11 (d) He drops the barbell to the floor and lifts it repeatedly. How many times per minute must he repeat this process to do an amount of mechanical work equivalent to his metabolic rate increase of 650 W during exercise? (e) Could he actually do repetition at the rate found in part (d) at the given metabolic level? Explain.

Process Nature of Process

Process Nature of Process AP Physics Free Response Practice Thermodynamics 1983B4. The pv-diagram above represents the states of an ideal gas during one cycle of operation of a reversible heat engine. The cycle consists of the

More information

Problems of Chapter 3

Problems of Chapter 3 Problems of Chapter 3 Section 3.1 Molecular Model of an Ideal Gas 3. A sealed cubical container 20 cm on a side contains three times Avogadro s number of molecules at a temperature of 20 C. Find the force

More information

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us Problems of Practices Of Basic and Applied Thermodynamics First Law of Thermodynamics Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India)

More information

Constant-Volume Process

Constant-Volume Process Constant-Volume Process A constant-volume process is called an isochoric process. Consider the gas in a closed, rigid container. Warming the gas with a flame will raise its pressure without changing its

More information

ASSIGNMENT 2 CHE 3473

ASSIGNMENT 2 CHE 3473 DUE: May 23 ASSIGNMENT 2 CHE 3473 #Problem 1: 3.3 #Problem 2: 3.4 #Problem 3: 3.5 #Problem 4: 3.6 #Problem 5: 3.7 #Problem 6: 3.8 #Problem 7: 3.11 #Problem 8: 3.15 #Problem 9: 3.22 #Problem 10: 3.32 #Problem

More information

ASSIGNMENT 2 CHE 3473

ASSIGNMENT 2 CHE 3473 DUE: May 21 ASSIGNMENT 2 CHE 3473 #Problem 1 Read Chapter 3. ALL OF IT. Time yourself and report the time. #Problem 2: 3.2 #Problem 3: 3.3 #Problem 4: 3.5 #Problem 5: 3.6 #Problem 6: 3.7 #Problem 7: 3.8

More information

PHYS 102 Quiz Problems Chapter 19 : Kinetic Theory of Gases Dr. M. F. Al-Kuhaili

PHYS 102 Quiz Problems Chapter 19 : Kinetic Theory of Gases Dr. M. F. Al-Kuhaili PHYS 102 Quiz Problems Chapter 19 : Kinetic Theory of Gases Dr. M. F. Al-Kuhaili 1. (TERM 001) Two moles of an ideal gas initially at 300 K and 0.40 atm are compressed isothermally to 1.2 atm. (a) Find

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

A B isothermal compression at a temperature of 300 K. The work done on the air is 104 J.

A B isothermal compression at a temperature of 300 K. The work done on the air is 104 J. Q1. In an ideal hot air engine, a fixed mass of air is continuously taken through the following four processes: A B isothermal compression at a temperature of 300 K. The work done on the air is 104 J.

More information

[2] After a certain time, the temperature of the water has decreased to below room temperature.

[2] After a certain time, the temperature of the water has decreased to below room temperature. 1 (a) Explain, in terms of molecules, why it is possible to compress a gas, but not a liquid. (b) Two containers made of insulating material contain the same volume of water at room temperature. The containers

More information

CHAPTER 31 IDEAL GAS LAWS

CHAPTER 31 IDEAL GAS LAWS CHAPTER 31 IDEAL GAS LAWS EXERCISE 144, Page 317 1. The pressure of a mass of gas is increased from 150 kpa to 750 kpa at constant temperature. Determine the final volume of the gas, if its initial volume

More information

Physics 7b Midterm Exam #1 Fall Name: Disc. Section SID

Physics 7b Midterm Exam #1 Fall Name: Disc. Section SID Physics 7b Midterm Exam #1 Fall 2004 Name: Disc. Section SID #1 #2 #3 #4 #5 Total M w of O 2 = 32 g/mol, k b =1.38x10-23 J/K, N A =6x10 23 The weight of a 1kg mass on the Earth s surface is 2.2pounds.

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

HW-1: Due by 5:00 pm EDT on Wednesday 13 June 2018 to GradeScope.

HW-1: Due by 5:00 pm EDT on Wednesday 13 June 2018 to GradeScope. HW-1: Due by 5:00 pm EDT on Wednesday 13 June 2018 to GradeScope. The solar cell/solar panel shown above depict how a semiconductor can transform solar power into electrical power. Consider the solar panel

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

End of Chapter Exercises

End of Chapter Exercises End of Chapter Exercises Exercises 1 12 are conceptual questions that are designed to see if you have understood the main concepts of the chapter. 1. While on an airplane, you take a drink from your water

More information

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg. Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

More information

Quiz #1 Thermodynamics Spring, 2018 Closed Book, Open Appendices, Closed Notes, CLOSED CALCULATORS

Quiz #1 Thermodynamics Spring, 2018 Closed Book, Open Appendices, Closed Notes, CLOSED CALCULATORS Quiz #1 Closed Book, Open Appendices, Closed Notes, CLOSED CALCULATORS An astronaut has a mass of 161 lbm on the surface of the earth. Calculate his weight (in lbf) on planet Rigel 4 where g = 20.0 ft/s

More information

Gases. Unit 10. How do gases behave?

Gases. Unit 10. How do gases behave? Gases Unit 10 How do gases behave? Gases are perhaps the most mysterious of all of the phases of matter. For the most part gases are invisible to us, and it was once believed that in the air there is no

More information

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Refrigeration and Air-conditioning

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE. Refrigeration and Air-conditioning INDIAN INSTITUTE OF TECHNOLOGY ROORKEE NPTEL NPTEL ONLINE CERTIFICATION COURSE Refrigeration and Air-conditioning Lecture-07 Vapour Compression Cycle-1 with Prof. Ravi Kumar Department of Mechanical and

More information

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

More information

Chapter 14 Practice Problems

Chapter 14 Practice Problems Chapter 14 Practice Problems In problems that require the atomic masses (atomic weights) of atomic hydrogen, oxygen, nitrogen, and carbon, we will use the rounded values, 1, 16, 14, and 12, respectively.

More information

Unit 9: Gas Laws REGENTS CHEMISTRY

Unit 9: Gas Laws REGENTS CHEMISTRY Name: Unit 9: Gas Laws REGENTS CHEMISTRY 1 Name: Unit 9: Gas Laws The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

Trial version. Gas Compression and Expansion. How can you calculate the energy used or made available when the volume of a gas is changed?

Trial version. Gas Compression and Expansion. How can you calculate the energy used or made available when the volume of a gas is changed? Gas Compression and Expansion How can you calculate the energy used or made available when the volume of a gas is changed? Gas Compression and Expansion page: 1 of 10 Contents Initial Problem Statement

More information

BOYLE S LAW: Use Boyles Law to answer the following questions. Show all work and include units to receive full credit. Answers are in bold.

BOYLE S LAW: Use Boyles Law to answer the following questions. Show all work and include units to receive full credit. Answers are in bold. Gas Laws Practice Packet Name: Block: Date: BOYLE S LAW: Use Boyles Law to answer the following questions. Show all work and include units to receive full credit. Answers are in bold. 1. What is the mathematical

More information

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book.

Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections of your book. Unit 2 Kinetic Theory, Heat, and Thermodynamics: 2.A.1 Problems Temperature and Heat Sections 10.1 10.2 of your book. Convert the following to Celsius and Kelvin temperatures: 1. 80.0 o F Early E. C.:

More information

kpa := 1000 Pa p atm := 101 kpa := i is inside o is outside effects are small. R gas := M gas 1000 mol

kpa := 1000 Pa p atm := 101 kpa := i is inside o is outside effects are small. R gas := M gas 1000 mol Homework Problem 1 Tall buildings can develop a significant difference in pressure between the inside and the outside of the build lock entrances are used at the ground level so the pressure at the ground

More information

Activity 15 The First Law of the Thermodynamics F1003 Physics II ITESM Campus Aguascalientes January-May 2017 Dr. Juan-Manuel CAMPOS-SANDOVAL Name

Activity 15 The First Law of the Thermodynamics F1003 Physics II ITESM Campus Aguascalientes January-May 2017 Dr. Juan-Manuel CAMPOS-SANDOVAL Name Activity 15 The First Law of the Thermodynamics F1003 Physics II ITESM Campus Aguascalientes January-May 2017 Dr. Juan-Manuel CAMPOS-SANDOVAL Name MULTIPLE CHOICE. Choose the one alternative that best

More information

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes

Lab Dates. CRHS Academic Chemistry Unit 11 Gas Laws Notes Name Period CRHS Academic Chemistry Unit 11 Gas Laws Notes Quiz Date Lab Dates Exam Date Notes, Homework, Exam Reviews and Their KEYS located on CRHS Academic Chemistry Website: https://cincochem.pbworks.com

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

CHEM 1211 Gases-Part 1 Worksheet 4-2. Name(s):

CHEM 1211 Gases-Part 1 Worksheet 4-2. Name(s): CHEM 1211 Gases-Part 1 Worksheet 4-2 Name(s): Pressure [1] The atmospheric pressure at the summit of Mt. McKinley is 581 mmhg on a certain day. What is the pressure in atmospheres, in atmospheres and in

More information

Properties of Fluids SPH4C

Properties of Fluids SPH4C Properties of Fluids SPH4C Fluids Liquids and gases are both fluids: a fluid is any substance that flows and takes the shape of its container. Fluids Liquids and gases are both fluids: a fluid is any substance

More information

Practice Packet Unit 8: Gases

Practice Packet Unit 8: Gases Regents Chemistry: Mr. Palermo Practice Packet Unit 8: Gases Vocabulary: Lesson 1: Lesson 2: Lesson 3: Study Guide: 1 Vocabulary For each word, provide a short but specific definition from YOUR OWN BRAIN!

More information

Problem. Equipment Required:

Problem. Equipment Required: REN 2110: Heat Engine Experiment Problem You will be using the piston/cylinder to investigate the work output of a heat engine. You will lift a mass by expanding a gas and will compute mechanical work,

More information

KNOWN: Mass, pressure, temperature, and specific volume of water vapor.

KNOWN: Mass, pressure, temperature, and specific volume of water vapor. .0 The specific volume of 5 kg of water vapor at.5 MPa, 440 o C is 0.60 m /kg. Determine (a) the volume, in m, occupied by the water vapor, (b) the amount of water vapor present, in gram moles, and (c)

More information

Gas Laws. 1. Gases are said to exert pressure. Provide a molecular-level explanation for this. Copyright Cengage Learning. All rights reserved.

Gas Laws. 1. Gases are said to exert pressure. Provide a molecular-level explanation for this. Copyright Cengage Learning. All rights reserved. Chapter 5 Gas Laws Gas Laws 1. Gases are said to exert pressure. Provide a molecular-level explanation for this. 5 2 Gas Laws 2. How does a barometer measure atmospheric pressure? If the atmospheric pressure

More information

How is pressure handled when we have a mixture of gases?

How is pressure handled when we have a mixture of gases? Name Chem 161, Section: Group Number: ALE 23. Mixtures of Gases (Reference: Chapter 5 in Silberberg 5 th edition) How is pressure handled when we have a mixture of gases? The Model: Collecting Gas Over

More information

Example: Calculate the density of methane at 50 psig and 32 ⁰F. H.W. In previous example calculate the density of methane in gm/m 3.

Example: Calculate the density of methane at 50 psig and 32 ⁰F. H.W. In previous example calculate the density of methane in gm/m 3. Gas density Because the density of a substance is defined as mass per unit volume, the density of gas (ρ g ), at given temperature and pressure can be derived as follows: If P in psia, T in ⁰R and R =

More information

My Website:

My Website: PH202 Recitation Week 06 Problem Set Winter 2015 Ryan Scheirer Email: scheirer@onid.orst.edu My Website: http://people.oregonstate.edu/~scheirer/ph202_rec.html Problem 01 If you double the speed of molecules

More information

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY STCW 95 CHIEF

More information

SPH 4C Unit 4 Hydraulics and Pneumatic Systems

SPH 4C Unit 4 Hydraulics and Pneumatic Systems SPH 4C Unit 4 Hydraulics and Pneumatic Systems Properties of Fluids and Pressure Learning Goal: I can explain the properties of fluids and identify associated units. Definitions: Fluid: A substance that

More information

ME 200 Thermodynamics I Spring 2010 (Last) (First) Thermo Number: CIRCLE YOUR LECTURE BELOW

ME 200 Thermodynamics I Spring 2010 (Last) (First) Thermo Number: CIRCLE YOUR LECTURE BELOW ME 200 Thermodynamics I Name: Spring 2010 Thermo Number: CIRCLE YOUR LECTURE BELOW Div. 1 8:30 am Div. 2 10:30 am Div. 3 12:30 pm Naik Tree Clark Div. 4 1:30 pm Kim Div. 5 3:30 pm Mathison EXAM 2 INSTRUCTIONS

More information

Boyle s Law Practice Problems Name:

Boyle s Law Practice Problems Name: Boyle s Law Practice Problems Name: 1. If a gas at 25.0 C occupies 3.60 L at a pressure of 1.00 atm, what will be its volume at a pressure of 2.50 atm? 2. 500.0 ml of a gas is collected at 745.0 mm Hg.

More information

ATM 322 Basic Pneumatics H.W.6 Modules 5 7

ATM 322 Basic Pneumatics H.W.6 Modules 5 7 ATM 322 Basic Pneumatics H.W.6 Modules 5 7 Name: Answer Key Mark: Question I: Write (T) for True and (F) for false sentences. A) For the time dependant process control; Step enabling conditions are generated

More information

Chapter 4, Problem 30.

Chapter 4, Problem 30. Chapter 4, Problem 30. A well-insulated rigid tank contains 5 kg of a saturated liquid vapor mixture of water at l00 kpa. Initially, three-quarters of the mass is in the liquid phase. An electric resistor

More information

Chapter 11 The Behavior of Gases

Chapter 11 The Behavior of Gases Chapter 11 The Behavior of Gases 1 Section 11.1 The Properties of Gases Objectives: Explain why gases are easier to compress than solids or liquids are. Describe the three factors that affect gas pressure

More information

CHEM 3351 Physical Chemistry I, Fall 2017

CHEM 3351 Physical Chemistry I, Fall 2017 CHEM 3351 Physical Chemistry I, Fall 2017 Problem set 1 Due 9/15/2017 (Friday) 1. An automobile tire was inflated to a pressure of 24 lb in -2 (1.00 atm = 14.7 lb in -2 ) on a winter s day when the temperature

More information

ENGG. THERMODYNAMICS

ENGG. THERMODYNAMICS ENGG. THERMODYNAMICS Unit-1 [8 hrs] Introduction To Thermodynamics: Basic concepts of Thermodynamics, Closed & Open Systems, Forms of energy, Properties of a system, State and Equilibrium, Processes and

More information

Question 1: Question 2: Question 3:

Question 1: Question 2: Question 3: Question 1: A container of oxygen (O 2 ) gas and an identical container with neon (Ne) gas are each heated from 273K to 300K (at constant volume), and it is found that the same amount of energy is required

More information

Chapter 11. Recall: States of Matter. Properties of Gases. Gases

Chapter 11. Recall: States of Matter. Properties of Gases. Gases Chapter 11 Gases Recall: States of Matter Solids and Liquids: are closely related because in each case the particles are interacting with each other Gases: Properties of Gases Gases can be compressed Gases

More information

THE BEHAVIOR OF GASES

THE BEHAVIOR OF GASES 14 THE BEHAVIOR OF GASES SECTION 14.1 PROPERTIES OF GASES (pages 413 417) This section uses kinetic theory to explain the properties of gases. This section also explains how gas pressure is affected by

More information

Gas Laws. Directions: Describe what contribution each of the Scientist below made to the Gas Laws and include there gas law equation.

Gas Laws. Directions: Describe what contribution each of the Scientist below made to the Gas Laws and include there gas law equation. Gas Laws Name Date Block Introduction One of the most amazing things about gases is that, despite wide differences in chemical properties, all the gases more or less obey the gas laws. The gas laws deal

More information

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases.

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Chapter 8 Gases Practice Problems Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Summary: In a gas, particles are so far

More information

Fig. 3.1 (not to scale)

Fig. 3.1 (not to scale) 1 Fig. 3.1 shows an early water-powered device used to raise a heavy load. The heavy load rests on piston B. cylinder A cylinder B water load piston A piston B connecting rod connecting rod pivot beam

More information

Chapter 2: Pure Substances a) Phase Change, Property Tables and Diagrams

Chapter 2: Pure Substances a) Phase Change, Property Tables and Diagrams Chapter 2: Pure Substances a) Phase Change, Property Tables and Diagrams In this chapter we consider the property values and relationships of a pure substance (such as water) which can exist in three phases

More information

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam.

DO NOT, under any circumstances, throw this away! This packet MUST be saved for the final exam. Name: Period: Unit 2 Packet Energy and States of Matter Unit 2 Packet Contents Sheet (This Paper!) Unit 2 Objectives Notes: Kinetic Molecular Theory of Gases- 3 pgs (with Behavior of Gases Reading, and

More information

Final Gas Law Review

Final Gas Law Review Name: ate: 1 t which temperature is the vapor pressure of ethanol equal to 80 kpa?. 48. 73. 80. 101 4 Gas Molecular Mass (g/mol) 2 4 17 20 The table shown lists four gases and their molecular mass. Which

More information

B. As the gas particles move and strike a surface, they push on that surface 1. If we could measure the total amount of force exerted by gas

B. As the gas particles move and strike a surface, they push on that surface 1. If we could measure the total amount of force exerted by gas Chapter 5: Gases I. The Structure of a Gas A. Gases are composed of particles that are flying around very fast in their container(s). 1. The particles travel in straight lines until they encounter either

More information

HEAT ENGINE/ GAS LAW APPARATUS

HEAT ENGINE/ GAS LAW APPARATUS Instruction Manual and Experiment Guide for the PASCO scientific Model TD-8572 HEAT ENGINE/ GAS LAW APPARATUS 10101 Foothills Blvd. Roseville, CA 95678-9011 USA Phone (916) 786-3800 FAX (916) 786-8905

More information

SMALL PISTON HEAT ENGINE APPARATUS

SMALL PISTON HEAT ENGINE APPARATUS Instruction Manual and Experiment Guide for the PASCO scientific Model TD-8592 012-08375A SMALL PISTON HEAT ENGINE APPARATUS The exclamation point within an equilateral triangle is intended to alert the

More information

CHAPTER 14. The Behavior of Gases Properties of Gases. Factors Affecting Gas Pressure

CHAPTER 14. The Behavior of Gases Properties of Gases. Factors Affecting Gas Pressure CHAPTER 14 The Behavior of Gases 14.1 Properties of Gases Compressibility:the volume of matter decreasing under pressure. Gases are easily compressed due to the large amount of space between gas particles.

More information

13.1!"#$#%"&'%()$*+%,+-.$+/*$#

13.1!#$#%&'%()$*+%,+-.$+/*$# 343%%%%%%%%%5)"./$+%67%%%%%!"#$# 13.1!"#$#%"&'%()$*+%,+-.$+/*$#!"#$%&'($)*!"#$%&'($)+ If you want to understand how gases behave such as why fresh air rushes into your lungs when certain chest muscles

More information

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. A Law for Scuba Divers

Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy. A Law for Scuba Divers 1/6 2009/11/14 上午 11:12 Manage this Assignment: Chapter 18 Due: 12:00am on Saturday, July 3, 2010 Note: You will receive no credit for late submissions. To learn more, read your instructor's Grading Policy

More information

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

More information

9A Gas volume and pressure are indirectly proportional.

9A Gas volume and pressure are indirectly proportional. The Gas Laws Key Terms Boyle s law Charles s law combined gas law absolute zero Gay-Lussac s law Scientists have been studying physical properties of gases for hundreds of years In 1662, Robert Boyle discovered

More information

CRYOGENICS LIQUID NITROGEN AS A NON- POLLUTING FUEL

CRYOGENICS LIQUID NITROGEN AS A NON- POLLUTING FUEL CRYOGENICS LIQUID NITROGEN AS A NON- POLLUTING FUEL 1 INTRODUCTION: In 1997, the University of North Texas (UNT) and University of Washington (UW) independently developed liquid nitrogen powered vehicles

More information

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Ch 11 Gases STUDY GUIDE Accelerated Chemistry SCANTRON Name /74 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements

More information

Name Unit 9 Notes: Gas Laws Period. Complete throughout unit. Due on test day!

Name Unit 9 Notes: Gas Laws Period. Complete throughout unit. Due on test day! Name Unit 9 Notes: Gas Laws Period Skills: 1. Gases and Entropy 2. Distinguish between Ideal and Real gases 3. Understand KMT and Avogadro s Law 4. Identify and Solve Boyle s Law Problems 5. Identify and

More information

Kinetic-Molecular Theory

Kinetic-Molecular Theory GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

More information

Gas volume and pressure are indirectly proportional.

Gas volume and pressure are indirectly proportional. Section 2 The Gas Laws Key Terms Boyle s law Charles s law combined gas law absolute zero Gay-Lussac s law Scientists have been studying physical properties of gases for hundreds of years In 1662, Robert

More information

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE)

THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) THERMODYNAMICS, HEAT AND MASS TRANSFER TUTORIAL NO: 1 (SPECIFIC VOLUME, PRESSURE AND TEMPERATURE) 1. A vacuum gauge mounted on a condenser reads 66 cm Hg. What is the absolute pressure in the condenser

More information

Name Gas Law Date. Version 3

Name Gas Law Date. Version 3 Name Gas Law Date 1. A real gas behaves least like an ideal gas under the conditions of 1) low temperature and high pressure 2) high temperature and low pressure 3) high temperature and high pressure 4)

More information

Practice Packet Unit 8: Gases

Practice Packet Unit 8: Gases Name: Regents Chemistry: Practice Packet Unit 8: Gases www.chempride.weebly.com Vocabulary: Absolute Zero: Avogadro s Hypothesis: (Normal) Boiling Point: Direct Relationship: Evaporating: Gas: Ideal Gas:

More information

What happens to the mass and what happens to the weight of the liquid in the cup? decreases stays the same decreases stays the same

What happens to the mass and what happens to the weight of the liquid in the cup? decreases stays the same decreases stays the same 1 cup contains hot liquid. Some of the liquid evaporates. What happens to the mass and what happens to the weight of the liquid in the cup? mass stays the same stays the same weight stays the same stays

More information

Name: SOLUTIONS MIDTERM 2, Spring 2019

Name: SOLUTIONS MIDTERM 2, Spring 2019 Name: SOLUTIONS MIDTERM 2, Spring 2019 Solutions in bold. Print your name clearly above, and write and bubble in your student 800 number on the provided scantron. There are 20 equally-weighted problems

More information

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot?

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot? Name Period HW 1 Worksheet (Goals 1-4) - Kinetic Molecular Theory 1. Describe how gases, liquids, and solids compare using the following table. Solids Liquids Gases Volume (definite or indefinite) Molecular

More information

GAS MIXTURES. Department of Mechanical Engineering

GAS MIXTURES. Department of Mechanical Engineering Chapter 13 GAS MIXTURES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Develop rules for determining nonreacting gas mixture properties from knowledge of mixture

More information

Unit 24: Applications of Pneumatics and Hydraulics

Unit 24: Applications of Pneumatics and Hydraulics Unit 24: Applications of Pneumatics and Hydraulics Unit code: J/601/1496 QCF level: 4 Credit value: 15 OUTCOME 2 TUTORIAL 11 AIR COMPRESSORS AND DISTRIBUTION SYSTEM The material needed for outcome 2 is

More information

What is Boyle s law and how can it be demonstrated?

What is Boyle s law and how can it be demonstrated? Name: Relationship Between Gas Variables Gas Laws Simulation Introduction: Scientists in the late 1800 s noted relationships between various variables related to gases (pressure, volume, temperature),

More information

Chapter 9 Gases: Their Properties and Behavior

Chapter 9 Gases: Their Properties and Behavior Chapter 9 Gases: Their Properties and Behavior 國防醫學院生化學科王明芳老師 2011-11-15 & 2011-11-22 Chapter 9/1 Gases and Gas Pressure Gas mixtures are homogeneous and compressible. Air-the mixture of gases. Molecular

More information

Lecture Handout 5: Gases (Online Text Chapter 6)

Lecture Handout 5: Gases (Online Text Chapter 6) Lecture Handout 5: Gases (Online Text Chapter 6) I. The Structure of a Gas A. Gases are composed of particles that are flying around very fast in their container(s). 1. The particles travel in straight

More information

Boyle s Law Practice

Boyle s Law Practice Boyle s Law Practice Boyle s Law is an indirect relationship. Most of these problems can be done in your head without showing your work. 1. Herman has 30.0 L of helium gas trapped in a cylinder by a piston.

More information

Ideal gas law. Introduction

Ideal gas law. Introduction Ideal gas law Introduction We think of a gas as a collection of tiny particles in random, thermal motion. When they collide with the sides of a container, they exert a force on the container walls. The

More information

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

Enter your parameter set number (1-27)

Enter your parameter set number (1-27) 1- Helium balloons fly and balloons with air sink. Assume that we want to get a balloon that is just floating in the air, neither rising nor falling, when a small weight is placed hanging in the balloon.

More information

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. Atmospheric pressure is 760 mm Hg. 2. The SI unit of pressure is

More information

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

More information

mass of container full of air = g mass of container with extra air = g volume of air released = cm 3

mass of container full of air = g mass of container with extra air = g volume of air released = cm 3 1992 Q32 The air pressure inside the passenger cabin of an airliner is 9 x 10 4 Pa when the airliner is at its cruising height. The pressure of the outside atmosphere at this height is 4 x 10 4 Pa. Calculate

More information

Honors Chemistry Unit 7 Gas Laws Notes

Honors Chemistry Unit 7 Gas Laws Notes Honors Chemistry Unit 7 Gas Laws Notes Kinetic Molecular Theory 1. List the five assumptions: Assumption Description Extra Info 1 Basically means: the particles themselves have compared to the space between

More information

Exploring the Properties of Gases

Exploring the Properties of Gases Exploring the Properties of Gases LabQuest 30 The purpose of this investigation is to conduct a series of experiments, each of which illustrates a different gas law. You will be given a list of equipment

More information

of Carbon Dioxide (CO 2

of Carbon Dioxide (CO 2 CHAPTER 10 Phase Changes of Carbon Dioxide (CO 2 ) Objectives This experiment is an introduction to phase changes of pure substances and an introduction to some simple microtechniques for doing experiments

More information

Cryogenics The Basics. Lesson 2 D. Kashy

Cryogenics The Basics. Lesson 2 D. Kashy Cryogenics The Basics Lesson 2 D. Kashy Lecture 1 Review Lesson 1 - Objectives Looked at common liquids and gases to get a feeling for their properties Looked at Nitrogen and Helium Discussed Pressure

More information

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided.

NAME:... SCHOOL: LINEAR MOTION. Answer ALL questions in this paper in the spaces provided. NAME:.... SCHOOL: DATE:... LINEAR MOTION INSTRUCTIONS TO CANDIDATES Answer ALL questions in this paper in the spaces provided. 1. Two forces that act on a moving cyclist are the driving force and the resistive

More information

Introduction. Part one: Identify the Hydraulic Trainer Components

Introduction. Part one: Identify the Hydraulic Trainer Components The University Of Jordan School of Engineering Mechatronics Engineering Department Fluid Power Engineering Lab Experiments No.4 Introduction to Hydraulic Trainer Objective: Students will be able to identify

More information

Kinetic Model of Matter

Kinetic Model of Matter For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Kinetic Model of Matter Question Paper Level Subject Exam oard Unit Topic ooklet Time llowed: O Level Physics ambridge International

More information

CHEMISTRY - CLUTCH CH.5 - GASES.

CHEMISTRY - CLUTCH CH.5 - GASES. !! www.clutchprep.com CONCEPT: UNITS OF PRESSURE Pressure is defined as the force exerted per unit of surface area. Pressure = Force Area The SI unit for Pressure is the, which has the units of. The SI

More information

Each gas sample has the same A) density B) mass C) number of molecules D) number of atoms

Each gas sample has the same A) density B) mass C) number of molecules D) number of atoms 1. A real gas behaves most like an ideal gas at A) low pressure and high temperature B) average potential energy of its particles C) ionization energy of its particles D) activation energy of its particles

More information

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions. Another way to view this problem is to say that the final volume contains V m 3 of alcohol at 5.93 kpa and 20 C V m 3 of air at 94.07 kpa and 20 C V m 3 of air plus alcohol at 100 kpa and 20 C Thus, the

More information

Conceptual Physics Matter Liquids Gases

Conceptual Physics Matter Liquids Gases Conceptual Physics Matter Liquids Gases Lana Sheridan De Anza College July 25, 2017 Last time atomic structure forms of matter solids density elasticity liquids & pressure Overview liquids pressure surface

More information

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation Characteristics of Gases Chapter 10 Gases Pressure The Gas Laws The Ideal-Gas Equation Applications of the Ideal-Gas Equation Gas mixtures and partial pressures Kinetic-Molecular Theory Real Gases: Deviations

More information