# Example: Calculate the density of methane at 50 psig and 32 ⁰F. H.W. In previous example calculate the density of methane in gm/m 3.

Save this PDF as:

Size: px
Start display at page:

Download "Example: Calculate the density of methane at 50 psig and 32 ⁰F. H.W. In previous example calculate the density of methane in gm/m 3."

## Transcription

1 Gas density Because the density of a substance is defined as mass per unit volume, the density of gas (ρ g ), at given temperature and pressure can be derived as follows: If P in psia, T in ⁰R and R = ρ in Ib/ft 3. If P in Pa., T in ⁰K and R = ρ in gm/m 3. Example: Calculate the density of methane at 50 psig and 32 ⁰F. Solution: H.W. In previous example calculate the density of methane in gm/m 3. 1 atm = 14.7 psia 1 atm = Pa. psia = psig ⁰C = 5/9 ( ⁰F 32) ⁰K = ⁰C +273 ⁰R = ⁰F

2 Specific gravity The specific gravity is defined as the ratio of the gas density to that ofthe air. Both densities are measured or expressed at the same pressure and temperature. Commonly, the standard pressure Psc and standard temperature Tsc are used in defining the gas specific gravity: Assuming that the behavior of both the gas mixture and the air is described by the ideal gas equation, the specific gravity can then be expressed as: where = gas specific gravity. M air =apparent molecular weight of the air = M a =apparent molecular weight of the gas. Example 1: A gas well is producing gas with a specific gravity of 0.65 at a rate of 1.1 MMscf/day. The average reservoir pressure and temperature are 1,500 psi and 150 F. Calculate: a. Gas density at reservoir conditions. b. Flow rate in lb/day. 2

3 Solution: a) a) Because 1 lb-mol of any gas occupies scf at standard conditions, then the daily number of moles that the gas well is producing can be calculated from: Example 2: A gas well is producing a natural gas with the following composition: Component Yi C1 0.7 C2 0.2 C CO Calculate apparent molecular weight (assuming ideal gas). 3

4 Solution: Component Y i M i Y i M i C C C CO = 21.6 = M a M a = Y i M i = (16*0.7) + (30*0.2) + (44*0.06) + (44*0.04) = 21.6 Real Gas Law. In dealing with gases at a very low pressure, the ideal gas relationship is a convenient and generally satisfactory tool. At higher pressures, the use of the ideal gas equation-of-state may lead to errors as great as 500%, as compared to errors of 2 3% at atmospheric pressure. Basically, the magnitude of deviations of real gases from the conditions of the ideal gas law increases with increasing pressure and temperature and varies widely with the composition of the gas. Real gases behave differently than ideal gases. The reason for this is that the perfect gas law was derived under the assumption that the volume of molecules is insignificant and that no molecular attraction or repulsion exists between them. This is not the case for real gases. Numerous equations-of-state have been developed in the attempt to correlate the pressure-volume-temperature variables for real gases with experimental data. In order to express a more exact relationship between the variables p, V, 4

5 and T, a correction factor called the gas compressibility factor, gas deviation factor, or simply the z-factor, must be introduced to account for the departure of gases from ideality. The gas compressibility factor z is a dimensionless quantity and is defined as the ratio of the actual volume of n-moles of gas at T and p to the ideal volume of the same number of moles at the same T and p: ( ) z = 1 for ideal gas. All gases behave as an ideal gases near the standard conditions. Z depends on P, T and composition of the gas. The figure below shows the gas deviation factors of two gases, one of 0.90 sp.gr. and the other of sp.gr. These curves show that the gas deviation factors drop from unity at low pressures to a minimum value near 2500 psia. They rise again to unity near 5000 psia and the value greater than unity at still higher pressures. In the range of 0 to 5000 psia, the z factor at the same temperature will be lower for the heavier gas, and for the same gas they will be lower at the lower temperature. 5

6 Example 1: for the mixture below determine z m at 1000 psi and 104 ⁰F. Component y i z i y i z i CH C 2 H C 3 H Z m = Note: if z i is not given in the question you can determine them using charts. Example 2 Calculate the volume of 1000 SCF (standard cubic feet) of gas at 1000 psi and 104 F for a gas of the following composition assuming : a) Real gas behavior b) Ideal gas behavior 6

7 Component CH C 2 H C 3 H Solution: Component CH C 2 H C 3 H At standard conditions: at reservoir conditions: n at standard conditions = n at reservoir conditions. 7

8 a) For real gas behavior: b) For ideal gas behavior ( ): 8

### Gas viscosity ( ) Carr-Kobayashi-Burrows Correlation Method Lee-Gonzalez-Eakin Method. Carr-Kobayashi-Burrows Correlation Method

Gas viscosity The viscosity of a fluid is a measure of the internal fluid friction (resistance) to flow. If the friction between layers of the fluid is small, i.e., low viscosity, an applied shearing force

### PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

### Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

### Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

### CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

### Figure Vapor-liquid equilibrium for a binary mixture. The dashed lines show the equilibrium compositions.

Another way to view this problem is to say that the final volume contains V m 3 of alcohol at 5.93 kpa and 20 C V m 3 of air at 94.07 kpa and 20 C V m 3 of air plus alcohol at 100 kpa and 20 C Thus, the

### Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes:

Name: Unit 9 Packet: Gas Laws Introduction to Gas Laws Notes: Block: In chemistry, the relationships between gas physical properties are described as gas laws. Some of these properties are pressure, volume,

### Honors Chemistry Unit 7 Gas Laws Notes

Honors Chemistry Unit 7 Gas Laws Notes Kinetic Molecular Theory 1. List the five assumptions: Assumption Description Extra Info 1 Basically means: the particles themselves have compared to the space between

### Chapter 11. Recall: States of Matter. Properties of Gases. Gases

Chapter 11 Gases Recall: States of Matter Solids and Liquids: are closely related because in each case the particles are interacting with each other Gases: Properties of Gases Gases can be compressed Gases

### To convert to millimeters of mercury, we derive a unit factor related to the equivalent relationship 29.9 in. Hg = 760 mm Hg.

Example Exercise 11.1 Gas Pressure Conversion Meteorologists state that a falling barometer indicates an approaching storm. Given a barometric pressure of 27.5 in. Hg, express the pressure in each of the

### 13.1!"#\$#%"&'%()\$*+%,+-.\$+/*\$#

343%%%%%%%%%5)"./\$+%67%%%%%!"#\$# 13.1!"#\$#%"&'%()\$*+%,+-.\$+/*\$#!"#\$%&'(\$)*!"#\$%&'(\$)+ If you want to understand how gases behave such as why fresh air rushes into your lungs when certain chest muscles

### Name Chemistry Pre-AP

Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

### IT S A GAS

IT S A GAS IT S A GAS The Nature of Gases Gases have some interesting characteristics that have fascinated scientists for 300 years. The first gas to be studied was air & it was a long time before it was

### Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI

Thermodynamics ERT 206 Properties of Pure Substance HANNA ILYANI ZULHAIMI Outline: Pure Substance Phases of pure substance Phase change process of pure substance Saturation temperature and saturation pressure

### Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure.

Chapter 12 Section 1 Pressure A gas exerts pressure on its surroundings. Blow up a balloon. The gas we are most familiar with is the atmosphere, a mixture of mostly elemental nitrogen and oxygen. Pressure

### Kinetic-Molecular Theory

GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

### Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

### PROPERTIES OF GASES. [MH5; Ch 5, (only)]

PROPERTIES OF GASES [MH5; Ch 5, 5.1-5.5 (only)] FEATURES OF A GAS Molecules in a gas are a long way apart (under normal conditions). Molecules in a gas are in rapid motion in all directions. The forces

### The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion Five assumptions: 1. Most of the volume occupied dby a gas is empty space 2. Collisions between gas particles

### Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2

Chapter 6: Gases 6.1 Measurements on Gases MH5, Chapter 5.1 Let s look at a certain amount of gas, i.e. trapped inside a balloon. To completely describe the state of this gas one has to specify the following

### Chem 110 General Principles of Chemistry

CHEM110 Worksheet - Gases Chem 110 General Principles of Chemistry Chapter 9 Gases (pages 337-373) In this chapter we - first contrast gases with liquids and solids and then discuss gas pressure. - review

### Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation

Characteristics of Gases Chapter 10 Gases Pressure The Gas Laws The Ideal-Gas Equation Applications of the Ideal-Gas Equation Gas mixtures and partial pressures Kinetic-Molecular Theory Real Gases: Deviations

### You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

### (for tutoring, homework help, or help with online classes)

www.tutor-homework.com (for tutoring, homework help, or help with online classes) 1. Which statement is inconsistent with the kinetic theory of an ideal gas? 1. The forces of repulsion between gas molecules

### CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

### Gases NO CALCULATORS MAY BE USED FOR THESE QUESTIONS

NO CALCULATORS MAY BE USED FOR THESE QUESTIONS Questions 1-3 refer to the following gases at 0 C and 1 atm. (A) Ar (B) NO 2 (C) Xe (D) H 2 (E) N 2 1. Has an average atomic or molecular speed closest to

### Unit 8: Gases and States of Matter

Unit 8: Gases and States of Matter Gases Particles that have no definite shape or volume. They adapt to the shape and volume of their container. Ideal gases are imaginary gases that comply with all the

### 4.) There are no forces of attraction or repulsion between gas particles. This means that

KINETIC MOLECULAR (K-M) THEORY OF MATTER NOTES - based on the idea that particles of matter are always in motion - assumptions of the K-M Theory 1.) Gases consist of large numbers of tiny particles that

### Chapter 10: Gases. Characteristics of Gases

Chapter 10: Gases Learning Outcomes: Calculate pressure and convert between pressure units with an emphasis on torr and atmospheres. Calculate P, V, n, or T using the ideal-gas equation. Explain how the

### Reservoir Fluid Fundamentals COPYRIGHT. Dry Gas Fluid Basic Workflow Exercise Review

Pseudo-Critical Properties Reservoir Fluid Fundamentals Dry Gas Fluid Basic Workflow Exercise Review B C D E F 3 Separator Gas Specific Gravity 0.6300 [1/air] 0.6300 [1/air] 4 Separator Pressure 100.0

### PSI Chemistry: Gases Multiple Choice Review

PSI Chemistry: Gases Multiple Choice Review Name Kinetic Molecular Theory 1. According to the kinetic-molecular theory, particles of matterare in constant motion (A) have different shapes (B) have different

### Chapter 10. Physical Characteristics of Gases

Chapter 10 Physical Characteristics of Gases Kinetic Molecular Theory An understanding of the behavior of atoms that make up matter Ideal gas: an imaginary gas that perfectly fits all assumptions of the

### States of Matter. Q 7. Calculate the average of kinetic energy, in joules of the molecules in 8.0 g of methane at 27 o C. (IIT JEE Marks)

Q 1. States of Matter Calculate density of NH 3 at 30 o C and 5 atm pressure Q 2. (IIT JEE 1978 3 Marks) 3.7 g of a gas at 25 o C occupied the same volume as 0.184g of hydrogen at 17 o C and at the same

### Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter.

ROERIES OF GASES Gases are the least dense and most mobile of the three phases of matter. articles of matter in the gas phase are spaced far apart from one another and move rapidly and collide with each

### Chemistry 20 Unit 2 Gases FITB Notes. Topic A Characteristics of Gases

Chemistry 20 Unit 2 Gases FITB Notes General Outcome: Topic A Characteristics of Gases We use technologies that were designed with the knowledge of the visible characteristics ( ) of gases ex. SCUBA equipment,

### Chemistry HP Unit 6 Gases. Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases

Chemistry HP Unit 6 Gases Learning Targets (Your exam at the end of Unit 6 will assess the following:) 6. Gases 6-1. Define pressure using a mathematical equation. 6-2. Perform calculations involving pressure,

### EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor

EXPERIMENT 8 Ideal Gas Law: Molecular Weight of a Vapor Purpose: In this experiment you will use the ideal gas law to calculate the molecular weight of a volatile liquid compound by measuring the mass,

### Natural Gas Properties Analysis of Bangladesh: A Case Study of Titas Gas Field

SUST Journal of Science and Technology, Vol. 16, No.2, 2012; P:26-31 Natural Gas Properties Analysis of Bangladesh: A Case Study of Titas Gas Field (Submitted: April 13, 2011; Accepted for Publication:

### NOTES: Behavior of Gases

NOTES: Behavior of Gases Properties of Gases Gases have weight Gases take up space Gases exert pressure Gases fill their containers Gases are mostly empty space The molecules in a gas are separate, very

### To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure

Standard Molar Volume To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure At STP, one mole of any gas has a volume of: 22.4 L = (This is a cube

### GAS MIXTURES. Department of Mechanical Engineering

Chapter 13 GAS MIXTURES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Develop rules for determining nonreacting gas mixture properties from knowledge of mixture

### Chapter 5. Pressure. Atmospheric Pressure. Gases. Force Pressure = Area

Chapter 5 Gases Water for many homes is supplied by a well The pump removes air from the pipe, decreasing the air pressure in the pipe The pressure then pushes the water up the pipe Pressure Atmospheric

### AP TOPIC 6: Gases. Revised August General properties and kinetic theory

AP OPIC 6: Gases General properties and kinetic theory Gases are made up of particles that have (relatively) large amounts of energy. A gas has no definite shape or volume and will expand to fill as much

### Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn

AP Chemistry Chapter 5 Sections 5. 5.9 Note Organizer Pressure, The Gas Laws of Boyle, Charles, and Avogadro, The Ideal Gas Law, Gas Stoichiometry, Dalton s Law of Partial Pressure, The Kinetic olecular

### Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT:

AP Chemistry Ms. Ye Name Date Block Kinetic Molecular Theory Explains properties of gases, liquids, and solids in terms of energy using an ideal gas, an imaginary which fits all the assumptions of kinetic

### Chemistry 101 Chapter 5 GAS MIXTURES

GAS MIXTURES Consider mixing equal volumes of 3 different gases, all at the same temperature and pressure in a container of the same size. 1 L He 1 L N 2 1 L O 2 1 L mixture t = 0 0 C t = 0 0 C t = 0 0

### Chemistry Chapter 10 Test

Chemistry Chapter 10 Test True/False Indicate whether the sentence or statement is true or false. 1. KMT stands for Kinetic Mole Theory. 2. One of the assumptions in the KMT is that the particles are spread

### Chemistry A Molecular Approach. Fourth Edition. Chapter 5. Gases. Copyright 2017, 2014, 2011 Pearson Education, Inc. All Rights Reserved

Chemistry A Molecular Approach Fourth Edition Chapter 5 Gases Supersonic Skydiving and the Risk of Decompression Gas Gases are composed of particles that are moving around very fast in their container(s).

### Expand to fill their containers, are highly compressible, have extremely low densities.

Chem150 week6 Handout 1 Gases Characteristics of Gases: Unlike liquids and solids, they Expand to fill their containers, are highly compressible, have extremely low densities. Pressure is the amount of

### Behavior of Gases Chapter 12 Assignment & Problem Set

Behavior of Gases Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. Behavior of Gases 2 Study Guide: Things You Must Know Vocabulary (know the definition

### Kinetic Molecular Theory Gases. Behavior of gases. Postulate two. Postulate one. Postulate three. Postulate four

Kinetic Molecular Theory Gases Gas particles are so small that their individual volume can be considered to be negligible Gas particles are in constant motion and the collisions of the particles with the

### Notes: Gas Laws (text Ch. 11)

Name Per. Notes: Gas Laws (text Ch. 11) NOTE: This set of class notes is not complete. We will be filling in information in class. If you are absent, it is your responsibility to get missing information

### Name /74. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ch 11 Gases STUDY GUIDE Accelerated Chemistry SCANTRON Name /74 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements

### Problems of Chapter 3

Problems of Chapter 3 Section 3.1 Molecular Model of an Ideal Gas 3. A sealed cubical container 20 cm on a side contains three times Avogadro s number of molecules at a temperature of 20 C. Find the force

### Gas Laws. Directions: Describe what contribution each of the Scientist below made to the Gas Laws and include there gas law equation.

Gas Laws Name Date Block Introduction One of the most amazing things about gases is that, despite wide differences in chemical properties, all the gases more or less obey the gas laws. The gas laws deal

### UNIT 10 - GASES. Notes & Worksheets - Honors

Ideal Gas Equation 1 WKSHT 1.) What is the pressure exerted by 2.0 moles of an ideal gas when it occupies a volume of 12.0 L at 373 K? 2.) A flashbulb of volume 2.6 cm 3 contains O 2 gas at a pressure

### In the name of Allah

In the name of Allah Physical chemistry- 2 nd state semester 1 Petroleum and petrochemical engineering. Lecture No. 1 General Introduction In Physical Chemistry 16-10-2016 Assistance prof. Dr. Luma Majeed

### 8. Now plot on the following grid the values of T (K) and V from the table above, and connect the points.

Charles s Law According to Charles s law, the volume of a fixed mass of gas varies directly with its Kelvin temperature if its pressure is constant. The following table contains Celsius temperature and

### Chapter 5. Nov 6 1:02 PM

Chapter 5 Nov 6 1:02 PM Expand to fill their containers Fluid motion (they flow) Have low densities (1/1000 the density of equivalent liquids or solids) Compressible Can Effuse and Diffuse Effuse: The

### Measurement of the Best Z-Factor Correlation Using Gas Well Inflow Performance Data in Niger-Delta

Measurement of the Best Z-Factor Correlation Using Gas Well Inflow Performance Data in Niger-Delta Okoro Emeka Emmanuel 1, Dike Honfre 2, Igwilo Kevin C. 1 and Mamudu Angela 1 School of Petroleum Engineering,

### Chapter 14-Gases. Dr. Walker

Chapter 14-Gases Dr. Walker State of Matter Gases are one of the four states of matter along with solids, liquids, and plasma Conversion to Gases From liquids Evaporation Example: Boiling water From solids

### COPYRIGHT. Reservoir Fluid Core. Single Phase, Single Component Systems. By the end of this lesson, you will be able to:

Single Phase, Single Component Systems Learning Objectives Reservoir Fluid Core Single Phase, Single Component Systems By the end of this lesson, you will be able to: Define terms used to describe the

### CHM 111 Unit 5 Sample Questions

Name: Class: Date: As you work these problems, consider and explain: A. What type of question is it? B. How do you know what type of question it is? C. What information are you looking for? D. What information

### The Application of Temperature and/or Pressure Correction Factors in Gas Measurement

The Application of Temperature and/or Pressure Correction Factors in Gas Measurement COMBINED BOYLE S CHARLES GAS LAWS To convert measured volume at metered pressure and temperature to selling volume at

### Unit 9: Gas Laws REGENTS CHEMISTRY

Name: Unit 9: Gas Laws REGENTS CHEMISTRY 1 Name: Unit 9: Gas Laws The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

### GASES. Unit #8. AP Chemistry

GASES Unit #8 AP Chemistry I. Characteristics of Gases A. Gas Characteristics: 1. Fills its container a. no definite shape b. no definite vol. 2. Easily mixes w/ other gases 3. Exerts pressure on its surroundings

### The Behavior of gases. Section 14.1: Properties of Gases

The Behavior of gases Section 14.1: Properties of Gases Why do soccer balls explode if you over pump them? What is meant by the term compressibility? Compressibility is a measure of how much the volume

### Classes at: - Topic: Gaseous State

PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Topic:

### Gas Law Review. Honors Chem.

Gas Law Review Honors Chem. Question 1: KMT 1: What does KMT stand for? 2: Gas particles have no or. 3: Gas particles are not to or by each other. 4: measures the average kinetic energy of gas particles.

### temperature and pressure unchanging

Gas Laws Review I. Variables Used to Describe a Gas A. Pressure (P) kpa, atm, mmhg (torr) -Pressure=force exerted per unit area (force/area) -Generated by collisions within container walls (more collisions=more

### Judith Herzfeld 1996,1998. These exercises are provided here for classroom and study use only. All other uses are copyright protected.

Judith Herzfeld 1996,1998 These exercises are provided here for classroom and study use only. All other uses are copyright protected. 2.7-110 A yardstick laid on a table with a few inches hanging over

### 1. Write down the ideal gas law and define all its variable and parameters. 2. Calculate the values and units of the ideal gas law constant R.

Ideal Gases Objectives:. Write dow the ideal gas law ad defie all its variable ad parameters.. Calculate the values ad uits of the ideal gas law costat R. 3. Calculate the value of oe variable,, T, or,

### Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Chapter 5 Gases Gas Gases are composed of particles that are moving around very fast in their container(s). These particles moves in straight lines until they collides with either the container wall or

### Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very

Properties of Gases Gases have Gases Gases exert Gases fill their containers Behavior of Gases Gases are mostly The molecules in a gas are separate, very small and very Kinetic Theory of Matter: Gas molecules

### Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c).

Section 8: Gases The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 8.01 Simple Gas Laws Chemistry (9)(A) 8.02 Ideal Gas Law Chemistry

### 4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot?

Name Period HW 1 Worksheet (Goals 1-4) - Kinetic Molecular Theory 1. Describe how gases, liquids, and solids compare using the following table. Solids Liquids Gases Volume (definite or indefinite) Molecular

### 1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg

Score 1. [Chang7 5.P.013.] Convert 295 mmhg to kpa. kpa Convert 2.0 kpa to mmhg. mmhg 2. [Chang7 5.P.019.] The volume of a gas is 5.80 L, measured at 1.00 atm. What is the pressure of the gas in mmhg if

### Name: Chapter 13: Gases

Name: Chapter 13: Gases Gases and gas behavior is one of the most important and most fun things to learn during your year in chemistry. Here are all of the gas notes and worksheets in two packets. We will

### Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003

Dr. Rogers Chapter 5 Homework Chem 111 Fall 2003 From textbook: 7-33 odd, 37-45 odd, 55, 59, 61 1. Which gaseous molecules (choose one species) effuse slowest? A. SO 2 (g) B. Ar(g) C. NO(g) D. Ne(g) E.

### Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

CHAPTER 11 REVIEW Gases SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Pressure =. For a constant force, when the surface area is tripled the pressure is (a) doubled. (b)

### Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure =

Chapter 13 Gas Laws Chapter 13 Gases and Pressure Pressure and Force Pressure is the force per unit area on a surface. Pressure = Force Area Chapter 13 Gases and Pressure Gases in the Atmosphere The atmosphere

### Chapter 14 Practice Problems

Chapter 14 Practice Problems In problems that require the atomic masses (atomic weights) of atomic hydrogen, oxygen, nitrogen, and carbon, we will use the rounded values, 1, 16, 14, and 12, respectively.

### Unit 8: Kinetic Theory Homework Packet (90 points)

Name: Key Period: By the end of Unit 8, you should be able to: Kinetic Theory Chapter 13-14 4. Define kinetic theory of gases including collisions 5. Define pressure, including atmospheric pressure, vapor

### Ch. 14 The Behavior of Gases

Ch. 14 The Behavior of Gases 14.1 PROPERTIES OF GASES Compressibility Compressibility: a measure of how much the volume of matter decreases under pressure Gases are easily compressed because of the spaces

### Gilbert Kirss Foster. Chapter 10. Properties of Gases The Air We Breathe

Gilbert Kirss Foster Chapter 10 Properties of Gases The Air We Breathe Chapter Outline 10.1 The Properties of Gases 10.2 Effusion and the Kinetic Molecular Theory of Gases 10.3 Atmospheric Pressure 10.4

### Kinetic Molecular Theory

Kinetic Molecular Theory Name Period Unit 7 HW 1 Worksheet (Goals 1 & 2) 1. Describe how gases, liquids, and solids compare using the following table. Volume (definite or indefinite) Molecular Motion (high,

### CHEM 3351 Physical Chemistry I, Fall 2017

CHEM 3351 Physical Chemistry I, Fall 2017 Problem set 1 Due 9/15/2017 (Friday) 1. An automobile tire was inflated to a pressure of 24 lb in -2 (1.00 atm = 14.7 lb in -2 ) on a winter s day when the temperature

### Chapter 12. The Gaseous State of Matter

Chapter 12 The Gaseous State of Matter The air in a hot air balloon expands When it is heated. Some of the air escapes from the top of the balloon, lowering the air density inside the balloon, making the

### Chemistry Chapter 11 Test Review

Chemistry Chapter 11 Test Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Pressure is the force per unit a. volume. c. length. b. surface area.

### THE BEHAVIOR OF GASES

14 THE BEHAVIOR OF GASES SECTION 14.1 PROPERTIES OF GASES (pages 413 417) This section uses kinetic theory to explain the properties of gases. This section also explains how gas pressure is affected by

### CHEMISTRY - CLUTCH CH.5 - GASES.

!! www.clutchprep.com CONCEPT: UNITS OF PRESSURE Pressure is defined as the force exerted per unit of surface area. Pressure = Force Area The SI unit for Pressure is the, which has the units of. The SI

### Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

### Moles, mixtures, and densities Properties of gases Stephen Lower (2011)

Moles, mixtures, and densities Properties of gases Stephen Lower (2011) Although all gases closely follow the ideal gas law PV = nrtunder appropriate conditions, each gas is also a unique chemical substance

### LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

### KNOWN: Mass, pressure, temperature, and specific volume of water vapor.

.0 The specific volume of 5 kg of water vapor at.5 MPa, 440 o C is 0.60 m /kg. Determine (a) the volume, in m, occupied by the water vapor, (b) the amount of water vapor present, in gram moles, and (c)

### A. What are the three states of matter chemists work with?

Chapter 10 and 12 The Behavior of Gases Chapter 10 The States of Matter A. What are the three states of matter chemists work with? Section 10.1 Pg 267 B. We will explain the behavior of gases using the

### Kinetic-Molecular Theory of Matter

Gases Properties of Gases Gas Pressure Gases What gases are important for each of the following: O 2, CO 2 and/or He? A. B. C. D. 1 2 Gases What gases are important for each of the following: O 2, CO 2

### Gases. Unit 10. How do gases behave?

Gases Unit 10 How do gases behave? Gases are perhaps the most mysterious of all of the phases of matter. For the most part gases are invisible to us, and it was once believed that in the air there is no