Preliminary Cost Analysis MARYLAND. Cost Sources Vehicle-level Costing Heuristics Applications Learning Curves Program-Level Analysis

Size: px
Start display at page:

Download "Preliminary Cost Analysis MARYLAND. Cost Sources Vehicle-level Costing Heuristics Applications Learning Curves Program-Level Analysis"

Transcription

1 Cost Sources Vehicle-level Costing Heuristics Applications Learning Curves Program-Level Analysis 2003 David L. Akin - All rights reserved

2 Cost Analysis Direct Costs - directly related to designing, testing, building, and operating the system Indirect Costs - required to do business, but not directly associated with development or operations Management Profit Non-operational facilities Overhead

3 Direct Cost Breakdown Non-recurring costs - only incurred once in program, such as design Recurring costs - reoccur throughout the life of the program Per vehicle Per flight Per year

4 Nonrecurring Cost Sources Research Design Development Test and evaluation Facilities Tooling

5 Recurring Cost Sources Vehicle manufacturing Mission planning Pre-flight preparation and check-out Flight operations Post-flight inspection and refurbishment Range costs Consumables (e.g., propellants) Training

6 Refurbishment Cost associated with maintenance and upkeep on reusable vehicles between flights Refurbishment fraction f R - fraction of first unit production cost that is required for average post-flight refurbishment Airliner: ~0.001% Fighter jet: ~0.01% X-15: 3% Shuttle: 6-20% Major contributor to space flight costs

7 Vehicle-Level Cost Estimating Relations C ($M) = a [ m kg ] b i Spacecraft Type Nonrecurring a Nonrecurring b 1 st Unit Prod. a 1 st Unit Prod. b Launch Vehicle Stage Manned Spacecraft Unmanned Planetary Unmanned Earth Orbital Liquid Rocket Engine Scientific Instrument

8 Implications of CERs Launch Vehicles Nonrecurring $42K-$182K/kg inert mass 1st Unit $3600-$10.7K/kg inert mass Manned Spacecraft Nonrecurring $119K-$1.56M/kg inert mass 1st Unit $13K-$90K/kg inert mass

9 Costing Applied to Launch Vehicle Design Optimization Approach Minimize Gross Mass Minimize Inert Mass Minimize Nonrecurring Cost Single Stage to Orbit DV Distribution (m/sec) Gross Mass (kg) Inert Masses (kg) 134,800 2,937 10,780 13, ,000 2,066 11,123 13, ,000 1,666 11,762 13,428 NR Cost ($M99) ,400 18, kg payload, LOX/LH2 engines

10 The Learning Curve The effort (time, cost, etc.) to perform a test decreases with repetition Crawford formulation: doubling the production run results in consistent fractional reduction of effort 80% learning curve - 2nd unit costs 80% of 1st, 4th is 80% of 2nd, 8th is 80% of 4th C n = C 1 n p C n ª C 1 n p Average cost: 1 + p p = ( ) log(2) log C 2 C1

11 Cost and Learning Effects Total Program Payload Mass = 1,000,000 kg Nonrecurring Cost Recurring Cost Operations Costs Total Program Cost Payload Mass per Flight (kg)

12 Expendable/Reusable Trade Study Total Market to Orbit=1,000,000 kg Cost/kg of Payload ($) Expendables Reusables Payload Mass (kg)

13 Vehicle Inert Masses Project Diana Baseline LLO Case Boost Stage Descent Stage Ascent Stage TEI Stage 618 Crew Cabin Entry Systems Totals All masses in kg Space Systems Laboratory University of Maryland

14 Nonrecurring Costs Project Diana Baseline LLO Case Boost Stage Descent Stage Ascent Stage TEI Stage Crew Cabin Entry Systems Totals All costs in $M Space Systems Laboratory University of Maryland

15 Nonrecurring Cost Comparison Project Diana Nonrecurring Costs ($M) Entry Systems Crew Cabin TEI Stage Ascent Stage Descent Stage Boost Stage 0.0 Baseline Variation 2 Space Systems Laboratory University of Maryland

16 First Unit Production Costs Project Diana Baseline LLO Case Shuttle Launch Delta IVH Boost Stage Descent Stage Ascent Stage TEI Stage 11.9 Crew Cabin Totals All costs in $M Space Systems Laboratory University of Maryland

17 First Unit Cost Comparison Project Diana First Unit Recurring Costs ($M) Entry Systems Crew Cabin TEI Stage Ascent Stage Descent Stage Boost Stage Baseline LLO Case Space Systems Laboratory University of Maryland

18 Project Diana Mission Models Project Diana Single Mission Model One all-up lunar flight Single crew cabin, ascent/descent stages Three boost stages, four launch vehicles Apollo Comparison Model One orbital test flight (crew module, ascent/descent stages) One high orbital mission (above + one boost stage) One lunar orbital rehearsal mission Seven lunar landing missions Space Systems Laboratory University of Maryland

19 Single Mission Model Cost Summary Project Diana Baseline Case Nonrecurring First Unit Recurring Number Cost ($M) Cost ($M) Cost ($M) Totals Shuttle Launch Delta IVH Boost Stages Descent Stage Ascent Stage TEI Stage Crew Cabin Totals Space Systems Laboratory University of Maryland

20 Production for Apollo Case Project Diana Earth High Lunar Lunar Orbit Orbit Orbit Landing Totals Shuttle Launch Delta IVH Boost Stages Descent Stage Ascent Stage TEI Stage Crew Cabin Space Systems Laboratory University of Maryland

21 Apollo Mission Model Cost Summary Project Diana Baseline Case Nonrecurring First Unit Recurring Number Cost ($M) Cost ($M) Cost ($M) Totals Shuttle Launch Delta IVH Boost Stages Descent Stage Ascent Stage TEI Stage Crew Cabin Totals Space Systems Laboratory University of Maryland

22 Apollo Model Cost Comparisons Project Diana Total Program Cost ($M) Entry Systems Crew Cabin TEI Stage Ascent Stage Descent Stage Boost Stages Launch Vehicles 0 Baseline LLO Case Space Systems Laboratory University of Maryland

23 Web-Based Costing References NASA Cost Estimation Web Site Vehicle-Level Costing Models Inflation Adjustment Learning Curves

Altair Constellation Returns Humans to the Moon

Altair Constellation Returns Humans to the Moon Altair Cover Page Altair Constellation Returns Humans to the Moon Clinton Dorris Deputy Manager Altair Project Office Constellation EXPLORATION ROADMAP 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21

More information

Crew Systems Design Project Group A8. Chrissy Doeren Kip Hart Kiran Patel Alex Slafkosky

Crew Systems Design Project Group A8. Chrissy Doeren Kip Hart Kiran Patel Alex Slafkosky Crew Systems Design Project Group A8 Chrissy Doeren Kip Hart Kiran Patel Alex Slafkosky Project Overview Objective: design a crewed spacecraft for a low cost lunar mission Crew: 3-95th percentile men Duration:

More information

Space Simulation MARYLAND U N I V E R S I T Y O F. Space Simulation. ENAE 483/788D - Principles of Space Systems Design

Space Simulation MARYLAND U N I V E R S I T Y O F. Space Simulation. ENAE 483/788D - Principles of Space Systems Design Focus is on human-in-the-loop operational simulations, not component sims (e.g., thermal vacuum chambers) Microgravity Planetary surfaces Specialty simulations A vision and a challenge... 1 2012 David

More information

Space Simulation MARYLAND U N I V E R S I T Y O F. Space Simulation. ENAE 483/788D - Principles of Space Systems Design

Space Simulation MARYLAND U N I V E R S I T Y O F. Space Simulation. ENAE 483/788D - Principles of Space Systems Design Lecture #27 December 4, 2014 Focus of this lecture is on human-in-the-loop operational simulations, not component sims (e.g., thermal vacuum chambers) Microgravity Planetary surfaces Specialty simulations

More information

Human Factors and Habitability

Human Factors and Habitability Human Factors and Habitability Discussion of Midterm Required Crew Volumes Human Physiological Adaptation to 0G Workstation Design Restraint Design Ideal Cabin Layout Habitability in Partial Gravity Stowage

More information

Robotic On-Orbit Satellite Servicing: One Size Does Not Fit All

Robotic On-Orbit Satellite Servicing: One Size Does Not Fit All Robotic On-Orbit Satellite Servicing: One Size Does Not Fit All Dr. David L. Akin Dr. Craig R. Carignan Space Systems Laboratory On-Orbit Servicing Demand by Types Reboost Inspection Dexterous Servicing

More information

METNET Mission for Mars. MetNet. Atmospheric science network for Mars

METNET Mission for Mars. MetNet. Atmospheric science network for Mars MetNet Atmospheric science network for Mars A.-M. Harri (1), R. Pellinen (1), V. Linkin (2), K. Pichkadze (3), M. Uspensky (1), T. Siili (1), A. Lipatov (2), H. Savijärvi (4), V. Vorontsov (3), J.Semenov

More information

Loads, Structures, and Mechanisms. Team C5 Matthew Marcus Chris O'Hare Alex Slafkosky Scott Wingate

Loads, Structures, and Mechanisms. Team C5 Matthew Marcus Chris O'Hare Alex Slafkosky Scott Wingate Loads, Structures, and Mechanisms Matthew Marcus Chris O'Hare Alex Slafkosky Scott Wingate Presentation Overview Design requirements Initial crew capsule design choice Pressure vessel design Pressure loads

More information

Next Generation Life Support (NGLS): Variable Oxygen Regulator Element

Next Generation Life Support (NGLS): Variable Oxygen Regulator Element ABSTRACT The Variable Oxygen Regulator is a new technology to provide pressure control for the next generation space suit. Using a motor-driven actuator, this dual-stage regulator allows, for the first

More information

Fuel for the Fire. Name Student Activity. Open the TI-Nspire document Fuel for the Fire.tns.

Fuel for the Fire. Name Student Activity. Open the TI-Nspire document Fuel for the Fire.tns. Open the TI-Nspire document Fuel for the Fire.tns. You ve probably heard about Neil Armstrong and his first footstep on the moon but have you ever considered the fuel it took to get there? Fueling NASA

More information

4. Lunar Architecture

4. Lunar Architecture 4.1 Summary and Recommendations As defined by the Exploration Systems Architecture Study (ESAS), the lunar architecture is a combination of the lunar mission mode, the assignment of functionality to flight

More information

It s Time to Launch into Space!

It s Time to Launch into Space! Launch Your CEV It s Time to Launch into Space! For years, NASA has been reusing launch components to send rockets and the Space Shuttle into space. For example, the solid rocket boosters (SRB s) on the

More information

Crew Systems Project ENAE 483 Fall Team A2: Douglas Astler Stephanie Bilyk Kevin Lee Grant McLaughlin Rajesh Yalamanchili

Crew Systems Project ENAE 483 Fall Team A2: Douglas Astler Stephanie Bilyk Kevin Lee Grant McLaughlin Rajesh Yalamanchili Crew Systems Project ENAE 483 Fall 2012 Team A2: Douglas Astler Stephanie Bilyk Kevin Lee Grant McLaughlin Rajesh Yalamanchili Presentation Overview Requirements and Assumptions Trade studies and life

More information

Advantages of Heritage Atlas Systems for Human Spaceflight

Advantages of Heritage Atlas Systems for Human Spaceflight Advantages of Heritage Atlas Systems for Human Spaceflight Pollard, L. J. 1 and Tribbett, E. J. 2 United Launch Alliance, Littleton, CO, 80112 The current Atlas V launch vehicle has been developed through

More information

IAC-06-D4.1.2 CORRELATIONS BETWEEN CEV AND PLANETARY SURFACE SYSTEMS ARCHITECTURE PLANNING Larry Bell

IAC-06-D4.1.2 CORRELATIONS BETWEEN CEV AND PLANETARY SURFACE SYSTEMS ARCHITECTURE PLANNING Larry Bell IAC-06-D4.1.2 CORRELATIONS BETWEEN CEV AND PLANETARY SURFACE SYSTEMS ARCHITECTURE PLANNING Larry Bell Sasakawa International Center for Space Architecture (SICSA), University of Houston, USA e-mail: lbell@uh.edu

More information

Assessing Compliance with United States Government Orbital Debris Mitigation Guidelines

Assessing Compliance with United States Government Orbital Debris Mitigation Guidelines Assessing Compliance with United States Government Orbital Debris Mitigation Guidelines R. L. Kelley 1, D. R. Jarkey 2 1. Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA 2. HX5 - Jacobs JETS

More information

CONVENTIONAL ROCKET PROPULSION NON-CONVENTIONAL PROPULSION SOLAR SAILS TETHERS ELECTRIC SAILS

CONVENTIONAL ROCKET PROPULSION NON-CONVENTIONAL PROPULSION SOLAR SAILS TETHERS ELECTRIC SAILS CONVENTIONAL ROCKET PROPULSION NON-CONVENTIONAL PROPULSION SOLAR SAILS TETHERS ELECTRIC SAILS THE REASON? DISTANCE!!! CONVENTIONAL ROCKET PROPULSION NON-CONVENTIONAL PROPULSION SOLAR SAILS TETHERS ELECTRIC

More information

Water Reclamation MARYLAND. Fundamentals of water reclamation Water reclamation. Solids disposal. Potable Hygiene Urine U N I V E R S I T Y O F

Water Reclamation MARYLAND. Fundamentals of water reclamation Water reclamation. Solids disposal. Potable Hygiene Urine U N I V E R S I T Y O F Fundamentals of water reclamation Water reclamation Potable Hygiene Urine Solids disposal 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu ISS Consumables Budget Consumable Design

More information

Risk Management Considerations of the SOFIA Aircraft

Risk Management Considerations of the SOFIA Aircraft Risk Management Considerations of the SOFIA Aircraft Michael V. Frank, Ph.D., P.E., CMC riskexpert@ieee.org Reliable, SFASafe, Affordable Technology SOFIA Project Overview Create a Stratospheric Observatory

More information

Lunar Capability Concept Review (LCCR)

Lunar Capability Concept Review (LCCR) Lunar Capability Concept Review (LCCR) Transportation Systems Only June 18 20, 2008 Report to the PSS LCCR Agenda Date Time Topic Presenter June 18 8:00 8:15 am Welcome / Introduction Hanley / Muirhead

More information

Presentation Contents

Presentation Contents OTOS Presentation Contents Mission Requirements Mission Operations Architecture Design Reference Missions Habitat Configuration CONOPS Life Support Contingency Accommodations Plans for Experimental Testing

More information

Science Museum Oklahoma presents Space Day Teacher s Resource Guide

Science Museum Oklahoma presents Space Day Teacher s Resource Guide Science Museum Oklahoma presents Space Day Teacher s Resource Guide Thank you for your participation in Space Day. Science Museum Oklahoma wants to ensure your students experience goes beyond the museum.

More information

Feasibility of Developing a Refrigerant-Based Propulsion System for Small Spacecraft

Feasibility of Developing a Refrigerant-Based Propulsion System for Small Spacecraft Feasibility of Developing a Refrigerant-Based Propulsion System for Small Spacecraft Carl Seubert, et al. Small Satellite Conference August 14 th 2007 Outline Background Propulsion system requirements

More information

The Quarter Pounder A Vehicle to Launch Quarter Pound Payloads to Low Earth Orbit

The Quarter Pounder A Vehicle to Launch Quarter Pound Payloads to Low Earth Orbit The Quarter Pounder A Vehicle to Launch Quarter Pound Payloads to Low Earth Orbit Ed LeBouthillier 1 Contents Introduction... 3 Requirements... 4 Orbital Altitudes... 4 Orbital Velocities... 4 Summary...4

More information

2017 LOCKHEED MARTIN CORPORATION. ALL RIGHTS RESERVED

2017 LOCKHEED MARTIN CORPORATION. ALL RIGHTS RESERVED 1 Lockheed Martin (LM) Space Systems Software Product Line Focused organization (LM1000) Deep Space Heritage Avionics/SW leveraged for LM1000 product line solution Combined Commercial and Civil Space Organizations

More information

The Gryphon: A Flexible Lunar Lander Design to Support a Semi-Permanent Lunar Outpost

The Gryphon: A Flexible Lunar Lander Design to Support a Semi-Permanent Lunar Outpost AIAA SPACE 2007 Conference & Exposition 18-20 September 2007, Long Beach, California AIAA 2007-6169 The Gryphon: A Flexible Lunar Lander Design to Support a Semi-Permanent Lunar Outpost Dale Arney 1, Joseph

More information

USA Space Debris Environment, Operations, and Policy Updates

USA Space Debris Environment, Operations, and Policy Updates USA Space Debris Environment, Operations, and Policy Updates Presentation to the 49 th Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space United Nations

More information

Adaptation and Optimization of the RIT-µX miniaturized Ion Propulsion System for Small Satellites

Adaptation and Optimization of the RIT-µX miniaturized Ion Propulsion System for Small Satellites Adaptation and Optimization of the RIT-µX miniaturized Ion Propulsion System for Small Satellites Hans J. Leiter, Christian Altmann, Ralf Kukies and Jan-Patrick Porst 22 April 2015, Berlin (D) document

More information

Human Factors and Habitability MARYLAND

Human Factors and Habitability MARYLAND Human Factors and Habitability Discussion of Midterm and future project work Required Crew Volumes Human Physiological Adaptation to 0G Workstation Design Restraint Design Ideal Cabin Layout Habitability

More information

RESULTS SUMMARY. APU risk reduction post STS-9 (re-design) Orbiter flight software using OI-7

RESULTS SUMMARY. APU risk reduction post STS-9 (re-design) Orbiter flight software using OI-7 RESULTS SUMMARY Page 8 SSME risk increase due to higher power level APU risk reduction post STS-9 process improvement Orbiter flight software using OI-2!"! 1:9 1:10 1:10 APU risk reduction post STS-9 re-design

More information

Related Careers: Aircraft Instrument Repairer Aircraft Designer Aircraft Engineer Aircraft Electronics Specialist Aircraft Mechanic Pilot US Military

Related Careers: Aircraft Instrument Repairer Aircraft Designer Aircraft Engineer Aircraft Electronics Specialist Aircraft Mechanic Pilot US Military Airplane Design and Flight Fascination with Flight Objective: 1. You will be able to define the basic terms related to airplane flight. 2. You will test fly your airplane and make adjustments to improve

More information

Solar Sails for Exploration of the Interstellar Medium January 2015

Solar Sails for Exploration of the Interstellar Medium January 2015 Solar Sails for Exploration of the Interstellar Medium January 2015 www.nasa.gov The Sails We Need* Size: 75,000 m 2 to 250,000 m 2 Areal density: ~ 1 gram/m 2 Able to survive close solar deployment (0.1

More information

Physics-based Entry, Descent and Landing Risk Model

Physics-based Entry, Descent and Landing Risk Model Physics-based Entry, Descent and Landing Risk Model Ken Gee*a, Loc Huynhb, and Ted Manninga a b NASA Ames Research Center, Moffett Field, USA Science and Technology Corporation, Moffett Field, USA Abstract:

More information

Preliminary Design Review

Preliminary Design Review Crew Systems and Life Support Establishing a Recurring Human Presence on the Moon Preliminary Design Review Overview Preliminary Design Review of Crew Systems / Life Support aboard low-cost lunar lander

More information

The Mars Science Laboratory Flight Software A Platform for Science and Mobility

The Mars Science Laboratory Flight Software A Platform for Science and Mobility The Mars Science Laboratory Flight Software A Platform for Science and Mobility Dr. Kathryn Anne Weiss, MSL FSW Jet Propulsion Laboratory, California Institute of Technology 2012 California Institute of

More information

History of Space Shuttle:

History of Space Shuttle: History of Space Shuttle: Near the end of the Apollo space program, NASA officials were looking at the future of the American space program. At that time, the rockets used to place astronauts and equipment

More information

HiSST: International Conference on High-Speed Vehicle Science Technology November 2018, Moscow, Russia

HiSST: International Conference on High-Speed Vehicle Science Technology November 2018, Moscow, Russia HiSST: International Conference on High-Speed Vehicle Science Technology 26 29 November 218, Moscow, Russia L. Bussler 1, J. Wilken, S. Stappert, M. Sippel, I. Dietlein, E. Dumont Abstract Two-stage vertical

More information

A Low Power Approach to Small Satellite Propulsion

A Low Power Approach to Small Satellite Propulsion A Low Power Approach to Small Satellite Propulsion Joe Cardin Director of Engineering VACCO Industries 0350 Vacco Street, South El Monte, CA 9733 JCardin@VACCOcom (626) 450-6435 Larry E Mosher Senior Professional

More information

IAC-17- D Evaluation of Future Ariane Reusable VTOL Booster stages

IAC-17- D Evaluation of Future Ariane Reusable VTOL Booster stages IAC-17- D2.4.3 Evaluation of Future Ariane Reusable VTOL Booster stages Etienne Dumont a *, Sven Stappert a, Tobias Ecker b, Jascha Wilken a, Sebastian Karl b, Sven Krummen a, Martin Sippel a a Department

More information

Active Control of Vapor Pressurization (VaPak) Systems

Active Control of Vapor Pressurization (VaPak) Systems Active Control of Vapor Pressurization (VaPak) Systems Ralph Ewig, PhD Holder Consulting Group, Renton, WA 98059, USA Vapor pressurized (VaPak) propellant feed systems hold great promise for the development

More information

(a) Calculate the speed of the sphere as it passes through the lowest point of its path.

(a) Calculate the speed of the sphere as it passes through the lowest point of its path. 1991 Q33 A sphere of mass 3 kg on the end of a wire is released from rest and swings through a vertical distance of 0.4 m. (Neglect air friction.) (a) Calculate the speed of the sphere as it passes through

More information

#6 Lesson Emergency Rescue Vehicles Engineering Design Assessment

#6 Lesson Emergency Rescue Vehicles Engineering Design Assessment #6 Lesson Emergency Rescue Vehicles Engineering Design Assessment The engineering design process has its own built in assessment phase as the students create their inventions, test them and improve them.

More information

Team Members. Surrey Space Centre (SSC): Study lead, payloads, ADCS (with Prof. Bong Wie), SK platform, sail technologies

Team Members. Surrey Space Centre (SSC): Study lead, payloads, ADCS (with Prof. Bong Wie), SK platform, sail technologies A Solar Kite Mission to Study the Earth's Magneto-tail Dr. Vaios Lappas C. Underwood, Luis M. Gomes, B. Wie C. McInnes, L. Tarabini, K. Wallace + 18th AIAA/USU Small Satellite Conference 18 AIAA/USU Small

More information

Aero Club. Introduction to Flight

Aero Club. Introduction to Flight Aero Club Presents Introduction to RC Modeling Module 1 Introduction to Flight Centre For Innovation IIT Madras Page2 Table of Contents Introduction:... 3 How planes fly How is lift generated?... 3 Forces

More information

Between the Market and the Moon Requirements for Lunar Tourism

Between the Market and the Moon Requirements for Lunar Tourism Between the Market and the Moon Requirements for Lunar Tourism Eric Dahlstrom InternationalSpace.com Emeline Paat-Dahlstrom Space Adventures, Ltd. 20 September 2005 International Lunar Conference Toronto,

More information

Four forces on an airplane

Four forces on an airplane Four forces on an airplane By NASA.gov on 10.12.16 Word Count 824 Level MAX TOP: An airplane pictured on June 30, 2016. Courtesy of Pexels. BOTTOM: Four forces on an airplane. Courtesy of NASA. A force

More information

Space Suits: An Evolution of Protection

Space Suits: An Evolution of Protection Space Suits: An Evolution of Protection Throughout the history of space exploration, back through to the very first sparks of imagination, space suits have been a way to protect our bodies from the dangers

More information

AIAA PROPELLANT TANK WITH SURFACE TENSION PMD FOR TIGHT CENTER-OF-MASS PROPELLANT CONTROL

AIAA PROPELLANT TANK WITH SURFACE TENSION PMD FOR TIGHT CENTER-OF-MASS PROPELLANT CONTROL AIAA 2008-4942 PROPELLANT TANK WITH SURFACE TENSION PMD FOR TIGHT CENTER-OF-MASS PROPELLANT CONTROL Walter Tam and Ian Ballinger ATK Space - Commerce and Don E. Jaekle, Jr. PMD Technology ABSTRACT A propellant

More information

College of Engineering

College of Engineering College of Engineering Department of Mechanical and Aerospace Engineering MAE-250, Section 001 Introduction to Aerospace Engineering Final Project Bottle Rocket Written By: Jesse Hansen Connor Petersen

More information

Kennedy Space Center, FL, 32899, USA. Stennis Space Center, MS, 39529, USA

Kennedy Space Center, FL, 32899, USA. Stennis Space Center, MS, 39529, USA GLASS BUBBLES INSULATION FOR LIQUID HYDROGEN STORAGE TANKS J. P. Sass 1, W. W. St.Cyr 2, T. M. Barrett 3, R. G. Baumgartner 4, J. W. Lott 2, and J. E. Fesmire 1 1 NASA Kennedy Space Center Kennedy Space

More information

External Tank- Drag Reduction Methods and Flow Analysis

External Tank- Drag Reduction Methods and Flow Analysis External Tank- Drag Reduction Methods and Flow Analysis Shaik Mohammed Anis M.Tech Student, MLR Institute of Technology, Hyderabad, India. G. Parthasarathy Associate Professor, MLR Institute of Technology,

More information

Project Endurance: Six 90-day Missions on the Lunar Surface

Project Endurance: Six 90-day Missions on the Lunar Surface Project Endurance: Six 90-day Missions on the Lunar Surface University of Maryland, College Park Department of Aerospace Engineering, Undergraduate Program Theresa Battaglia, James Clark, Michael Collins,

More information

Reliability and Crew Safety Assessment for a Solid Rocket Booster/J-2S Launcher

Reliability and Crew Safety Assessment for a Solid Rocket Booster/J-2S Launcher Reliability and Crew Safety Assessment for a Solid Rocket Booster/J-2S Launcher Joseph Fragola, Science Applications International Corporation J.D. Baum, Science Applications International Corporation

More information

7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization September 2-4, 1998 / St. Louis, MO

7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization September 2-4, 1998 / St. Louis, MO AIAA 98-4713 Multidisciplinary Design Optimization Techniques For Branching Trajectories L. A. Ledsinger J. R. Olds Space Systems Design Lab Georgia Institute of Technology Atlanta, GA 7th AIAA/USAF/NASA/ISSMO

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION Wind tunnel is a large tube with air moving inside which is used to copy the actions of an object in flight. In wind tunnel air moves around an object, so the object seems like really

More information

Neutral Buoyancy Laboratory: Astronauts from the Pool to Spacewalks Kurt Otten, BSEE

Neutral Buoyancy Laboratory: Astronauts from the Pool to Spacewalks Kurt Otten, BSEE Denver, CO October 18-20, 2017 Neutral Buoyancy Laboratory: Astronauts from the Pool to Spacewalks Kurt Otten, BSEE Kurt Otten is the Operations Manager for NASA s Neutral Buoyancy Laboratory (NBL) in

More information

Design and Numerical Flow Analysis of Expansion Deflection Nozzle

Design and Numerical Flow Analysis of Expansion Deflection Nozzle Design and Numerical Flow Analysis of Expansion Deflection Nozzle Shaik Abdul Muwaaz 1, Nazumuddin Shaik 2 Post Graduate Student, Assistant Professor 1 Shaik Abdul Muwaaz, Aerospace Department, Nimra Institute

More information

Fundamentals of Decompression

Fundamentals of Decompression History Tissue models Haldane Workman Bühlmann Physics of bubbles Spacecraft cabin atmospheres 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu First Class Assignment Four topics

More information

Lessons learnt. Vega Workshop VEGA. Stefano BIANCHI ASI Headquarters, April 1st Stefano Bianchi Vega Programme Manager Slide 1

Lessons learnt. Vega Workshop VEGA. Stefano BIANCHI ASI Headquarters, April 1st Stefano Bianchi Vega Programme Manager Slide 1 VEGA Lessons learnt Vega Workshop Stefano BIANCHI ASI Headquarters, April 1st 2015 ESA UNCLASSIFIED For Official Use Stefano Bianchi Vega Programme Manager Slide 1 VEGA within the European Launchers family

More information

DEPOT LEVEL MAINTENANCE OF THE PROPELLANT HANDLERS ENSEMBLE

DEPOT LEVEL MAINTENANCE OF THE PROPELLANT HANDLERS ENSEMBLE DEPOT LEVEL MAINTENANCE OF THE PROPELLANT HANDLERS ENSEMBLE DENNIS J. DUDZINSKI LIFE SUPPORT MANAGER WYLE LABORATORIES (321) 853-9333 dennis.dudzinski@jbosc.ksc.nasa.gov Maintenance Perform all levels

More information

Crew Systems Analysis for 10-Day Round-Trip to Moon

Crew Systems Analysis for 10-Day Round-Trip to Moon Crew Systems Analysis for 10-Day Round-Trip to Moon Ben Abresch Matt Marcus Sean Robert Nick Zarbo 10/18/2012 Mission Requirements 10 day nominal trip 3 contingency days Crew systems mass

More information

Avionics System Project. Team D3 Dylan Carter, Jesse Cummings, Kenneth Murphy, Rajesh Yalamanchili

Avionics System Project. Team D3 Dylan Carter, Jesse Cummings, Kenneth Murphy, Rajesh Yalamanchili Avionics System Project Team D3 Dylan Carter, Jesse Cummings, Kenneth Murphy, Rajesh Yalamanchili Link Budgets for Communication Communication needs during the mission are divided into distinct phases,

More information

Created by Glenn Gibson Air and Aerodynamics Flight Note Pack

Created by Glenn Gibson Air and Aerodynamics Flight Note Pack Air and Aerodynamics Flight Note Pack Essential Questions of Aerodynamics The students should be able to answer the following questions: 1. Why does air exert pressure on objects in our atmosphere? 2.

More information

Artificial Intelligence for the EChO Mission Scheduler

Artificial Intelligence for the EChO Mission Scheduler Artificial Intelligence for the EChO Mission Scheduler Álvaro García Piquer Ignasi Ribas Josep Colomé Institute of Space Sciences (CSIC/IEEC), Barcelona, Spain SCIOPS 2013 September 10 13, 2013 Introduction

More information

Propulsion Challenges 2014

Propulsion Challenges 2014 Propulsion Challenges 2014 Solenoid Valve for < 1000 Space qualified valves are the dominant cost in a low cost propulsion system. Can an existing valve from another industry be used? Open 28V / Hold 5V

More information

ME 239: Rocket Propulsion. Forces Acting on a Vehicle in an Atmosphere (Follows Section 4.2) J. M. Meyers, PhD

ME 239: Rocket Propulsion. Forces Acting on a Vehicle in an Atmosphere (Follows Section 4.2) J. M. Meyers, PhD ME 239: Rocket Propulsion Forces Acting on a Vehicle in an Atmosphere (Follows Section 4.2) J. M. Meyers, PhD 1 Commonly acting forces on a vehicle flying in a planetary atmosphere: Thrust Aerodynamic

More information

Multiple Shift Test Operations for Long Endurance Unmanned Aircraft. Paul Sierpinski MQ-4C Triton Test Director May 14, 2014

Multiple Shift Test Operations for Long Endurance Unmanned Aircraft. Paul Sierpinski MQ-4C Triton Test Director May 14, 2014 Multiple Shift Test Operations for Long Endurance Unmanned Aircraft Paul Sierpinski MQ-4C Triton Test Director May 14, 2014 Triton at a Glance Land Based Mission Control 360 degree sensor field of regard

More information

EVA OFFICE EXTRAVEHICULAR ACTIVITY (EVA) AIRLOCKS AND ALTERNATIVE INGRESS/EGRESS METHODS DOCUMENT

EVA OFFICE EXTRAVEHICULAR ACTIVITY (EVA) AIRLOCKS AND ALTERNATIVE INGRESS/EGRESS METHODS DOCUMENT National Aeronautics and Space Administration EVA-EXP-0031 BASELINE EFFECTIVE DATE: 04/18/2018 EVA OFFICE EXTRAVEHICULAR ACTIVITY (EVA) AIRLOCKS AND ALTERNATIVE INGRESS/EGRESS METHODS DOCUMENT Release

More information

Role of Simulation Assisted Risk Assessment in Abort Trigger Recommendations

Role of Simulation Assisted Risk Assessment in Abort Trigger Recommendations Role of Simulation Assisted Risk Assessment in Abort Trigger Recommendations T. Manning a*, S. Lawrence a, D. Mathias a, H. Nejad b, K. Gee a, B. Ramamurthy c, and P. Gage d a NASA Ames Research Center,

More information

Stage 2 Stem Project Term 2, Rocket Design. By Willow, Malia and Sofia

Stage 2 Stem Project Term 2, Rocket Design. By Willow, Malia and Sofia Stage 2 Stem Project Term 2, 2018 Rocket Design By Willow, Malia and Sofia Design Brief: Our college is celebrating its 25th birthday and we are wanting to take a photo of all students on the oval. The

More information

ICES HISTORY PANEL SPACE SUIT DEVELOPMENT

ICES HISTORY PANEL SPACE SUIT DEVELOPMENT ICES HISTORY PANEL SPACE SUIT DEVELOPMENT Mercury Gemini Apollo James McBarron II July 9, 2007 1 SPACE SUIT DEVELOPMENT AGENDA LITTLE KNOWN DETAILS ABOUT - SPACE SUIT & CONTRACTOR SELECTION - SOME LESSONS

More information

AIAA Optimized Solutions for the Kistler K-1 Branching Trajectory Using MDO Techniques

AIAA Optimized Solutions for the Kistler K-1 Branching Trajectory Using MDO Techniques Optimized Solutions for the Kistler K-1 Branching Trajectory Using MDO Techniques L. A. Ledsinger J. R. Olds Space Systems Design Laboratory Georgia Institute of Technology Atlanta, GA 8 th AIAA/USAF/NASA/ISSMO

More information

IAC-17-D The historic flight 32 of Falcon 9

IAC-17-D The historic flight 32 of Falcon 9 IAC-17-D2.4.4 Systematic Assessment of Reusable First-Stage Return Options Martin Sippel, Sven Stappert, Leonid Bussler, Etienne Dumont Martin.Sippel@dlr.de Tel. +49-421-24421145 Space Launcher Systems

More information

Explosion of the Space Shuttle Challenger

Explosion of the Space Shuttle Challenger Explosion of the Space Shuttle Challenger [January 28, 1986, USA] by Masayuki Nakao (Tokyo University, Institute of Engineering Innovation) As people all over the world watched on TV, NASA s space shuttle

More information

Anti-g-Garment Development and Testing

Anti-g-Garment Development and Testing Anti-g-Garment Development and Testing 1) Anti-g-Garment. Introduction and Use in space flights. A g-suit, or anti-g suit, is a flight suit worn by pilots and astronauts who are subject to high levels

More information

Load Responsive Multilayer Insulation Performance Testing

Load Responsive Multilayer Insulation Performance Testing Load Responsive Multilayer Insulation Performance Testing S. Dye 1, A. Kopelove 1, and G. L. Mills 2 1 Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 USA 2 Ball Aerospace & Technologies

More information

Roger D. Launius National Air and Space Museum Smithsonian Institution Washington, D.C.

Roger D. Launius National Air and Space Museum Smithsonian Institution Washington, D.C. Roger D. Launius National Air and Space Museum Smithsonian Institution Washington, D.C. December 19, 2012 Scientific Discovery and Understanding National Security Economic Competitiveness Human Destiny/Survival

More information

Wave Glider: Liege Colloquium. Colloquium April 27

Wave Glider: Liege Colloquium. Colloquium April 27 The The Wave Wave Glider: Glider: Enabling Enabling aa New New Approach Approach to to Persistent Persistent Ocean Ocean Observation Observation and and Research Research nd Liege 42 42nd Liege Colloquium

More information

WATER ROCK. Lawndart The rocket goes straight up and comes down nose first at high speed. Disadvantages

WATER ROCK. Lawndart The rocket goes straight up and comes down nose first at high speed. Disadvantages Water Rocket Recovery Index What is a recovery system? A recovery system is a feature of a rocket that allows it to come back to Earth with minimal damage. Introduction This guide is intended to serve

More information

Lifecycle Performance of Escape Systems

Lifecycle Performance of Escape Systems Lifecycle Performance of Escape Systems A look at laboratory vs field conditioning of aramid fiber based escape systems. By James Hunter, Cedric Smith, Ole Kils and Tyler Mayer for ITRS 2018 1.1 Introduction

More information

NanoRacks/Quad-M Rideshare Overview. Michael D. Johnson 10/12/2016

NanoRacks/Quad-M Rideshare Overview. Michael D. Johnson 10/12/2016 NanoRacks/Quad-M Rideshare Overview Michael D. Johnson 10/12/2016 Why NanoRacks/Quad-M Team? NRCSD Kaber Cygnus External Deployer NREP NR Airlock Dragon Trunk Deployer Centaur Aft Bulkhead Deployer Centaur

More information

Launch Vehicle Performance Estimation:

Launch Vehicle Performance Estimation: Launch Vehicle Performance Estimation: John Schilling john.schilling@alumni.usc.edu (661) 718-0955 3 December 2009 Precise determination of launch vehicle performance typically requires the use of three-

More information

LAUNCH IT. DESIGN CHALLENGE Design and build an air-powered rocket that can hit a target at least 5 feet away.

LAUNCH IT. DESIGN CHALLENGE Design and build an air-powered rocket that can hit a target at least 5 feet away. Grades 3 5, 6 8 10 60 minutes LAUNCH IT DESIGN CHALLENGE Design and build an air-powered rocket that can hit a target at least 5 feet away. MATERIALS Supplies and Equipment: Several pairs of scissors Balloon

More information

5.0 Neutral Buoyancy Test

5.0 Neutral Buoyancy Test 5.0 Neutral Buoyancy Test Montgolfier balloons use solar energy to heat the air inside the balloon. The balloon used for this project is made out of a lightweight, black material that absorbs the solar

More information

Preface...xxiii Introduction...xxv About the Editors...xxvii About the Contributors... xxxi

Preface...xxiii Introduction...xxv About the Editors...xxvii About the Contributors... xxxi Contents Preface...xxiii Introduction...xxv About the Editors...xxvii About the Contributors... xxxi CHAPTER 1 Introduction to Space Safety... 1 1.1 NASA and Safety... 2 1.2 Definition of Safety and Risk...

More information

CubeSat Balloon Drag Devices: Meeting the 25-Year De-Orbit Requirement

CubeSat Balloon Drag Devices: Meeting the 25-Year De-Orbit Requirement CubeSat Balloon Drag Devices: Meeting the 25-Year De-Orbit Requirement Jerry K. Fuller, David Hinkley, and Siegfried W. Janson The Aerospace Corporation Physical Science Laboratories August, 2010 The Aerospace

More information

Air. Air Activities Adventure Skill

Air. Air Activities Adventure Skill Air Activities Adventure Skill The Adventure Skills requirements are aligned with those of specific national certification bodies, where these exist. So, as a young person progresses with an Adventure

More information

Test Flights of the Revised ULDB Design

Test Flights of the Revised ULDB Design Test Flights of the Revised ULDB Design Michael S. Smith * Aerostar International, Inc., Sulphur Springs, TX 75482, USA Henry M. Cathey, Jr. Physical Science Laboratory, New Mexico State University, Wallops

More information

Weather Balloons and Accessories

Weather Balloons and Accessories Weather Balloons and Accessories www.hoskin.ca Supplying Testing & Monitoring Instruments Since 1946 About Hoskin For over seventy years, Hoskin Scientific has been a supplier of testing and monitoring

More information

Olympic torch blasts into space for 1st spacewalk 7 November 2013, by Laura Mills

Olympic torch blasts into space for 1st spacewalk 7 November 2013, by Laura Mills Olympic torch blasts into space for 1st spacewalk 7 November 2013, by Laura Mills In this image made from video provided by NASA, cosmonaut Fyodor Yurchikhin, International Space Station commander, holds

More information

Minutes. of the Annual Meeting of the FAI Astronautic Records Commission (ICARE)

Minutes. of the Annual Meeting of the FAI Astronautic Records Commission (ICARE) Minutes of the Annual Meeting of the FAI Astronautic Records Commission (ICARE) held in Lausanne, Switzerland, on Friday 13 April 2018 at Maison du Sport International Ver. 1.0 / 28.05.2018 Contents 1

More information

NSTAR Ion Engine Xenon Feed System: Introduction to System Design and Development

NSTAR Ion Engine Xenon Feed System: Introduction to System Design and Development NSTAR Ion Engine Xenon Feed System: Introduction to System Design and Development IEPC-97-844 2 8 9 Edward D. Bushway III, Moog, Inc., East Aurora, NY Carl S. Engelbrecht and Dr. Gani B. Ganapathi, Jet

More information

Safety Policy and Requirements

Safety Policy and Requirements Safety Policy and Requirements NSTS 1700.7B ISS ADDENDUM For Payloads Using the International Space Station December 1995 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston,

More information

Habitability (continued)

Habitability (continued) Habitability (continued) Required Crew Volumes Human Physiological Adaptation to 0G Workstation Design Restraint Design Ideal Cabin Layout Habitability in Partial Gravity Stowage Various Examples 106 2017

More information

COMMON RISK CRITERIA FOR NATIONAL TEST RANGES SUBTITLE: INERT DEBRIS

COMMON RISK CRITERIA FOR NATIONAL TEST RANGES SUBTITLE: INERT DEBRIS STANDARD 321-02 RANGE SAFETY GROUP COMMON RISK CRITERIA FOR NATIONAL TEST RANGES SUBTITLE: INERT DEBRIS WHITE SANDS MISSILE RANGE REAGAN TEST SITE YUMA PROVING GROUND DUGWAY PROVING GROUND ABERDEEN TEST

More information

LUN..A..R 1Vl:ISSION. S..A..FET-y..A..ND RESCUE

LUN..A..R 1Vl:ISSION. S..A..FET-y..A..ND RESCUE .. MSC-03976 LMSC-A984262B JULY 15,1971 LUN..A..R 1Vl:ISSION S..A..FET-y..A..ND RESCUE PREPARED FOR NATIONAL AERONAUTICS & SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS CONTRACT NAS 9-10969

More information

BACKGROUND TO STUDY CASE

BACKGROUND TO STUDY CASE BACKGROUND TO STUDY CASE German Aerospace Center (DLR) is using Andøya Rocket Range for a sounding rocket campaign. On 27th October 2005 a 300 kg payload (SHEFEX) was launched Due do a technical problems

More information

Lecture 4: Spaceflight Environment

Lecture 4: Spaceflight Environment Space Environment and Effects Previous Lecture Next Lecture Home Classes Contact Lecture 4: Spaceflight Environment 1. Gravity (see Lecture 3): Microgravity, Microgravity Simulation Launch / Landing Acceleration

More information

WARM GAS PROPULSION FOR SMALL SATELLITES. J. R. French Propulsion Development Associates, Inc. ~1AlN HOUSING CATALY5THOUSP.\G C AT.

WARM GAS PROPULSION FOR SMALL SATELLITES. J. R. French Propulsion Development Associates, Inc. ~1AlN HOUSING CATALY5THOUSP.\G C AT. The purpose of this activity is to quickly develop miniature warm gas thruster technology for application to next generation micro satellite systems and to provide an industrial source for this technology.

More information