The 2011Tsunami Damage on Coastal Facilities and Countermeasures (both hard and soft) for Future Tsunamis

Size: px
Start display at page:

Download "The 2011Tsunami Damage on Coastal Facilities and Countermeasures (both hard and soft) for Future Tsunamis"

Transcription

1 NOSTcongress "Innovations for Global Waterchallenges" on May the 14th 2014 The 2011Tsunami Damage on Coastal Facilities and Countermeasures (both hard and soft) for Future Tsunamis Taro Arikawa Principal Researcher Port and Airport Research Institute, Japan

2 Contents Tohoku earthquake Tsunami in 2011 Tsunami characteristics and Damage of Coastal structures Future Tsunami Countermeasures How to protect and how to estimate of damage Possibility of movable breakwaters New hardware countermeasures For Evacuation

3 Tsunami characteristics and Damage of Coastal structures TOHOKU EARTHQUAKE TSUNAMI IN 2011

4 Tsunami around Japan North American plate Eurasian plate 1611 Keichou Sanriku 1854 Toukai, Nankai 1896 Meiji Sanriku 1933 Showa Sanriku 1944 Tounankai 1946 Nankai 1960 Chile 1983 Japan Sea 1993 Okushiri 2011 Tohoku Tohoku Sanriku Pacific plate Ria coast V-shape bay Philippine plate

5 Historical Earthquakes 地震調査委員会の図に加筆 Meiji Sanriku 1896/06/15 20:00 pm M8.2~8.5 (tsunami Eq.) Showa Sanriku 1933/03/03 M8.1 2:30am Keicho Sanriku 1611 Chilean Tsunami 1960/05/24

6 Ground displacement 5.3m Eastward 1.2m subsidence

7 GPS Wave guage 4.0m 青森東岸沖 6.3m 1m 岩手北部沖 岩手中部沖 6.7m 岩手南部沖 5.7m 宮城北部沖 5.8m 宮城中部沖 福島県沖 2.6 m 最大波の高さ 時刻 ( 時 ) 7

8 Disturibution of trace of tsunami height by the 2011 Tohoku earthquake tsunami joint survey group

9 All data plotted with the past events The 2011 Tohoku Earthquake Tsunami Joint Survey Group data as of Apr 30, 2011

10 Damage of Otsuchi Taken by resident

11 Destruction due to Tsunami (Shuto,1992) Tsunami Height (m) Wave Profile mild slope steep slope Wooden Houses Stone Houses Safe Steel, Concrete Buildings Community near shore rise in shallow like tide with fast speed Partially Destruction Safe(~5m) Inundation depth Like wall in offshore, 2nd wave breaking like tide with fast speed Destruction(2m~) Partially Almost same profile as 2m, Possibility of breaking is increasing at toe of tsunami Damage ratio 50% Plunging breaker Destruction(7m~) Destruction Damage ratio 100%

12 Type 1 Overflow Flooding Velocity is Low. IF the Height of Tsunami is same, then breaking is the maximum. Type 2 Bore Flooding Velocity is higher than the overflow. That is supercritical flow. Type 3 Breaking Very close to the coastline Flooding Velocity is high with the Impulsive load. Large

13 Impulsive Bore Pressure Pressure (kn/m 2 ) Type 3 Breaking Type 2 Bore Type 1 Overflow Maximum Sustainable Pressure Time (s)

14 Plan 平面図 View Unit (m) 単位 ( m) Cross Section 断面図 1:10 斜面勾配 1:10 slope or 1/10 1:30 or 1:50 勾配 12m 3. 0 Wave Paddle 造波板 In the Flume 184m

15

16 Tsunami Height in front of the wall is 2.0m

17 Concrete wall Thickness=60mm

18 Kamaishi Port Kamaishi Tsunami Breakwater Harbor Side Sea Side Hirata Suga Mouth of Port Izumi Tsunami Breakwaters

19 Failure of Breakwater at North Part TOHOKU REGIONAL BUREAU MINISTRY OF LAND, INFRASTRUCTURE AND TRANSPORT Outside of Port Inside of Port

20 From video by public people 15:18 (1 st positive wave, 32 minutes after) 15:28( negative tsunami started, 42 minutes after)

21 Experimental Video under overflow tsunami 21

22 Study of failure mode based on overflow scouring (example of Port of Hachinohe) Sea side Harbor side Scouring Depth 5 to 10m Harbor Side Sea side Model Scale 1/25 Video 5 times

23 How to protect against huge tsunamis How to estimate the damage due to huge tsunamis FUTURE TSUNAMI COUNTERMEASURES

24 New Earthquake Model(Nankai Trough) the Disaster Management Council of the Cabinet Office, 2012

25 Design policy of physical countermeasures It is necessary to estimate two levels of tsunamis, and develop measures to mitigate damage for both of them. Tsunami Level High-frequency tsunami (Tsunami Prevention Level) (L1) Largest class tsunami (Tsunami Reduction Level) (L2) Definition Tsunamis that occur frequently and cause extensive damage even though they are not high The largest class of tsunami, which occurs at an extremely low frequency, but which causes enormous damage when it does Planning or design To prevent the protected lowland from being flooded, it plans and it designs. Continued mitigation through physical countermeasures It plans and it designs so that it is made easily not to destroy and to collapse, and damage should not expand though the flood of the protected lowland is permitted. That means resilient structures Disaster mitigation by evacuation

26 Effect of breakwater (Tomita et. al, 2012) Water surface elevation (m) Without Breakwater Arrival time 6 minutes delay (tsunami height of 4 m) with breakwater without Tsunami height 13.7 m 8.0 m With Breakwater Tsunami height (m) Time after earthquake (min) 26

27 Resilient structure (for hardware) The Image of resiliency Caisson Armor block Erosion protection mat Armor rock Rubble mound

28 Relationship of Tsunami External Force Damage with Damage Hard Countermeasure No Hard Countermeasure Hard Countermeasure + resiliency Tsunami Level for design of protective structures Tsunami Level (Return Period) Tsunami Level for planning of evacuation

29 Resilient city against Tsunami "hardware" (disaster prevention facilities, etc.) and "software" (disaster prevention training, etc.) measures Largest class tsunami Image of Coastal Area High-frequency tsunami Buildings as Residential tower, hotel and so on Seawall Breakwater Office building as Evacuation tower multiple protective structure

30 How to estimate the damage due to large tsunamis In order to evaluate the damage due to giant tsunamis, influence of destruction of structures, debris, etc. is required. The power of the tsunami is greatly different depending on the place and the condition 3 dimensional numerical simulator should be required to analyze overflow, scour, flood into buildings and so on. The system which connects tsunami propagation simulator and 3-D numerical simulator should be developed.

31 The STOC-CADMAS system Quasi-3D model (multi-level model) Assumes hydrostatic pressures at each level Computation load: light STOC-ML 3D model Estimates the free water surface with the VOF method Computation load: heavy CADMAS-SURF/3D Tsunami source STOC system (Tomita et. al., 2005) CADMAS system (Arikawa et. al., 2005) STOC-IC Coupled with DEM 3D model Calculates the free water surface with a vertically integrated continuity equation Computation load: moderate

32 Layer Domain for STOC-IC Domain for CADMAS-SURF

33 STOC-ML

34 Tsunami source: Takagawa, Tomita(2012) CADMAS-SURF/3D

35 Comparison of wave profile measured by GPS Buoy (Tsunami Source: Central Disaster Prevention Council (2011)

36 Comparison of Maximum Inundation height (Tsunami Source: Central Disaster Prevention Council (2011) measured

37 Calculated Wave Force This building was washed away by tsunami Building specification: width 7.1m, depth 5.3m, height 13.8m Assuming that weight of the Building per unit area : 12kN/m2 Weight in the air:2019 kn Weight in the water:1177 kn(14/24) From the video analysis, this building withstood against Tsunami under at least 7 to 8 meter tsunami height It indicates that this building was washed away when the tsunami height became maximum. t(s)

38 New hardware countermeasures POSSIBILITY OF MOVABLE BREAKWATERS

39 Protection of harbour against tsunami/storm At ordinary: Installation of breakwater below seabed for free navigation Tsunami Storm At tsunami/storm: Raising breakwater to protect harbour Shipway Harbour Marina Container Terminal Ferry Terminal Fishing Port 39

40 Flap-gate Breakwaters (Japanese Type) Flap Type Tsunami/Surge Barrier Hitachizosen Corporation Toyo Construction Co., Ltd. Penta-Ocean Construction Co., Ltd - The flap type tsunami barrier lies down on the bottom of sea usually. - When tsunamis or storm surges occur, it rises up above the sea surface with its buoyancy and seals entrances of ports or channels, and then It stands up utilizing water elevation of outside. - The lying gate has buoyancy in normal circumstance, and mooring systems keep it lying position. Offshore side Onshore side Offshore side Onshore side 2. Standing 1. Rising 3. Falling Operation room Mooring Systems Stoppers against backrush Gates Tension rods Substructure

41 Buoyancy-Driven Vertical Piling System New type breakwater against tsunami and storm Double piles set below seabed Raising upper pile by air in case of tsunami or storm Upper steel pile Lower steel pile Before raising Raising Completion of raising Air Deadweight>Buoyancy Air Deadweight<Buoyancy Deadweight< Buoyancy 41

42 Structural configuration of breakwater Sea side Port side Exhaust valve Inner air Sea bed Overlapped part Upper pile (movable) To compression tank Rubble Stabiliser Air inlet pipe Lower pile 42

43 Wakayama-shimotsu port

44 Protect effectiveness at Wakayama- Shimotsu Port in Japan

45 Wakayama- Shimotsu Port

46 Case Studies Vertical Pile Breakwaters Earthquake Model: Tokai/ To-Nankai/ Nankai Earthquake

47 Maximum Tsunami height Comparison Not installed Installed Opening Rate10%

48 FOR EVACUATION

49 Mortality in Different Municipalities Maximum Onagawa Natori Rikuzentakada Minamisankriku Otsuchi Kamaishi Higashimatsushma Kesennuma Sendai Ofunao Minumum Yono Fudai

50 For Safety

51 Inundation depth 50cm Inundation height is about 50cm, Inundation speed is about 4.0m/s

52 Probability of falling or sliding sliding Probability of falling or sliding 確率 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% Inundation depth 浸水深 (m) Men 転倒等確率 ( 男性 ) Women For falling only (men) 転倒等確率 ( 女性 ) 転倒率 ( 男性 ) falling Tsunami Warning in Japan * Tsunami Height is 50cm

53 Thank you for your attention!

Numerical Simulations and Experiments on Tsunami for the Design of Coastal and Offshore Structures

Numerical Simulations and Experiments on Tsunami for the Design of Coastal and Offshore Structures Numerical Simulations and Experiments on Tsunami for the Design of Coastal and Offshore Structures SHITO Motoaki : Senior Researcher, Numerical Engineering Department, Research Laboratory, Corporate Research

More information

New Reinforcing Technique for Mitigation of Earthquake-induced Failure of Breakwater

New Reinforcing Technique for Mitigation of Earthquake-induced Failure of Breakwater 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 2015 Christchurch, New Zealand New Reinforcing Technique for Mitigation of Earthquake-induced Failure of Breakwater B.

More information

COLLAPSE MECHANISM OF SEAWALLS BY IMPULSIVE LOAD DUE TO THE MARCH 11 TSUNAMI

COLLAPSE MECHANISM OF SEAWALLS BY IMPULSIVE LOAD DUE TO THE MARCH 11 TSUNAMI 9 th International Conference on Shock & Impact Loads on Structures Fukuoka, Japan, Nov. 16-18, 2011 COLLAPSE MECHANISM OF SEAWALLS BY IMPULSIVE LOAD DUE TO THE MARCH 11 TSUNAMI N. Ishikawa *, M. Beppu**,

More information

The Failure of the Kamaishi Tsunami Protection Breakwater

The Failure of the Kamaishi Tsunami Protection Breakwater PT-13: Coastal and Ocean Engineering ENGI.8751 Undergraduate Student Forum Faculty of Engineering and Applied Science, Memorial University, St. John s, NL, Canada March, 2013 Paper Code. (PT-13 - Tucker)

More information

Yasuyuki Hirose 1. Abstract

Yasuyuki Hirose 1. Abstract Study on Tsunami force for PC box girder Yasuyuki Hirose 1 Abstract In this study, a waterway experiment was performed in order to understand the influence of tsunami forms on tsunami forces acting on

More information

For Educational and Non-Profit Use Only!

For Educational and Non-Profit Use Only! This flyer was originally created and published in Japanese by Shizuoka Prefecture, Japan. UNESCO IOC ITIC provides this English translation for portions of the original document with the kind permission

More information

STUDY ON TSUNAMI PROPAGATION INTO RIVERS

STUDY ON TSUNAMI PROPAGATION INTO RIVERS ABSTRACT STUDY ON TSUNAMI PROPAGATION INTO RIVERS Min Roh 1, Xuan Tinh Nguyen 2, Hitoshi Tanaka 3 When tsunami wave propagation from the narrow river mouth, water surface is raised and fluctuated by long

More information

A New Generator for Tsunami Wave Generation

A New Generator for Tsunami Wave Generation Journal of Energy and Power Engineering 10 (2016) 166-172 doi: 10.17265/1934-8975/2016.03.004 D DAVID PUBLISHING Tetsuya Hiraishi 1, Ryokei Azuma 1, Nobuhito Mori 2, Toshihiro Yasuda 2 and Hajime Mase

More information

WAVE LOAD ACTING ON HORIZONTAL PLATE DUE TO BORE

WAVE LOAD ACTING ON HORIZONTAL PLATE DUE TO BORE Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

Understanding the Tsunami Wave

Understanding the Tsunami Wave The First Tsunami attack on Sri Lanka Krakatoa Island 27 th August 1883 Understanding the Tsunami Wave Generation Propagation Nearshore Transformation Shoreline Entry Inland Dissipation 1 Generation and

More information

OECS Regional Engineering Workshop September 29 October 3, 2014

OECS Regional Engineering Workshop September 29 October 3, 2014 B E A C H E S. M A R I N A S. D E S I G N. C O N S T R U C T I O N. OECS Regional Engineering Workshop September 29 October 3, 2014 Coastal Erosion and Sea Defense: Introduction to Coastal/Marine Structures

More information

Development of New Type of Breakwater Reinforced with Steel Piles against a Huge Tsunami

Development of New Type of Breakwater Reinforced with Steel Piles against a Huge Tsunami Technical Report UDC 627. 235 : 550. 344. 4 Development of New Type of Breakwater Reinforced with Steel Piles against a Huge Tsunami Shunsuke MORIYASU* Shin OIKAWA Shinji TAENAKA Noriyoshi HARATA Ryuta

More information

Fig.1 A bridge along the shore in expressways

Fig.1 A bridge along the shore in expressways Abstract STUDY ON TSUNAMI WAVE FORCE ACTING ON A BRIDGE SUPERSTRUCTURE Hidekazu Hayashi 1 In this study, we conducted waterway experiments to clarify properties that tsunami wave force affects a bridge

More information

Experimental study of tsunami wave load acting on storage tank in coastal area

Experimental study of tsunami wave load acting on storage tank in coastal area Experimental study of tsunami wave load acting on storage tank in coastal area Graduate School of Engineering, Osaka University Wataru Kunimatsu Graduate School of Engineering, Osaka University Shinji

More information

Osaka University Graduate School of Engineering Division of Global Architecture Dept. of Naval Architecture and Ocean Engineering Takuya Okubayashi,

Osaka University Graduate School of Engineering Division of Global Architecture Dept. of Naval Architecture and Ocean Engineering Takuya Okubayashi, Osaka University Graduate School of Engineering Division of Global Architecture Dept. of Naval Architecture and Ocean Engineering Takuya Okubayashi, Hiroyoshi Suzuki, Naomi Kato, Nagai Yoshiki, Hirokazu

More information

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology -

Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - Clarification of Behavior of Huge Tsunami Action on Bridges - Hydraulic Model Experiment and Simulation Technology - 21 TOSHIMITSU SUZUKI *1 RIKUMA SHIJO *2 KAORU YOKOYAMA *3 SYUNICHI IKESUE *4 HIROFUMI

More information

FORMATION OF BREAKING BORES IN FUKUSHIMA PREFECTURE DUE TO THE 2011 TOHOKU TSUNAMI. Shinji Sato 1 and Shohei Ohkuma 2

FORMATION OF BREAKING BORES IN FUKUSHIMA PREFECTURE DUE TO THE 2011 TOHOKU TSUNAMI. Shinji Sato 1 and Shohei Ohkuma 2 FORMATION OF BREAKING BORES IN FUKUSHIMA PREFECTURE DUE TO THE 2011 TOHOKU TSUNAMI Shinji Sato 1 and Shohei Ohkuma 2 Tsunami forces on critical coastal structures were reanalyzed by combining laboratory

More information

2011 TOHOKU TSUNAMI RUNUP AND DEVASTATING DAMAGES AROUND YAMADA BAY, IWATE: SURVEYS AND NUMERICAL SIMULATION

2011 TOHOKU TSUNAMI RUNUP AND DEVASTATING DAMAGES AROUND YAMADA BAY, IWATE: SURVEYS AND NUMERICAL SIMULATION 2011 TOHOKU TSUNAMI RUNUP AND DEVASTATING DAMAGES AROUND YAMADA BAY, IWATE: SURVEYS AND NUMERICAL SIMULATION Akio Okayasu 1, Takenori Shimozono 1, Shinji Sato 2, Yoshimitsu Tajima 2, Haijiang Liu 3, Tomohiro

More information

LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709

LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709 F-4 Fourth International Conference on Scour and Erosion 2008 LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709 Yoshimitsu TAJIMA 1 and Shinji SATO 2 1 Member of JSCE, Associate

More information

STABILITY OF WAVE-DISSIPATING CONCRETE BLOCKS OF DEACHED BREAKWATERS AGAINST TSUNAMI

STABILITY OF WAVE-DISSIPATING CONCRETE BLOCKS OF DEACHED BREAKWATERS AGAINST TSUNAMI STABILITY OF WAVE-DISSIPATING CONCRETE BLOCKS OF DEACHED BREAKWATERS AGAINST TSUNAMI Minoru Hanzawa 1, Akira Matsumoto and Hitoshi Tanaka 3 In Japan, detached breakwaters made with wave dissipating concrete

More information

Tsunamis. Tsunamis COMMUNITY EMERGENCY RESPONSE TEAM TSUNAMIS

Tsunamis. Tsunamis COMMUNITY EMERGENCY RESPONSE TEAM TSUNAMIS Tsunamis Tsunamis Tell the participants that tsunamis are ocean waves that are produced by underwater earthquakes or landslides. The word is Japanese and means harbor wave because of the devastating effects

More information

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS

LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS Asian and Pacific Coasts 23 LABORATORY EXPERIMENTS ON WAVE OVERTOPPING OVER SMOOTH AND STEPPED GENTLE SLOPE SEAWALLS Takayuki Suzuki 1, Masashi Tanaka 2 and Akio Okayasu 3 Wave overtopping on gentle slope

More information

Taranaki Tsunami Inundation Analysis. Prepared for Taranaki Civil Defence Emergency Management Group. Final Version

Taranaki Tsunami Inundation Analysis. Prepared for Taranaki Civil Defence Emergency Management Group. Final Version Taranaki Tsunami Inundation Analysis Prepared for Taranaki Civil Defence Emergency Management Group Final Version June 2012 AM 12/07 HBRC Plan Number 4362 Asset Management Group Technical Report Prepared

More information

Structure Failure Modes

Structure Failure Modes US Army Corps Monitoring and Maintenance of Coastal Infrastructure Structure Failure Modes Steven A. Hughes, PhD, PE Coastal and Hydraulics Laboratory US Army Engineer Research and Development Center Waterways

More information

Tsunami Force Reduction due to Obstacle in Front of Coastal Dike and Evaluation of Collision Force by Driftage

Tsunami Force Reduction due to Obstacle in Front of Coastal Dike and Evaluation of Collision Force by Driftage Journal of Energy and Power Engineering 11 (2017) 300-310 doi: 10.17265/1934-8975/2017.05.003 D DAVID PUBLISHING Tsunami Force Reduction due to Obstacle in Front of Coastal Dike and Evaluation of Collision

More information

Waves Part II. non-dispersive (C g =C)

Waves Part II. non-dispersive (C g =C) Waves Part II Previously we discussed Surface Gravity Waves Deep Water Waves Shallow Water Waves C g T 2 C g h dispersive (C g =C/2) Definitions: phase speed C= /T= /k non-dispersive (C g =C) group speed

More information

Prologue. TSUNAMI - To Survive from Tsunami World Scientific Publishing Co. Pte. Ltd.

Prologue. TSUNAMI - To Survive from Tsunami World Scientific Publishing Co. Pte. Ltd. Prologue The Indian Ocean tsunami which occurred on December 26, 2004 caused unprecedented disaster and claimed the priceless lives of more than 300,000 persons worldwide. Among the conditions which contributed

More information

Considering the Meaning of Build Back Better from the experience of Catastrophe

Considering the Meaning of Build Back Better from the experience of Catastrophe 1 Considering the Meaning of Build Back Better from the experience of Catastrophe International Recovery Forum Enhancing Urban Resilience January 24, 2018, Kobe, Japan President, Toyohashi University of

More information

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR

More information

WHAT IS A TSUNAMI? happens.nz. Long or Strong GET GONE TSUNAMI 101

WHAT IS A TSUNAMI? happens.nz. Long or Strong GET GONE TSUNAMI 101 WHAT IS A TSUNAMI? A tsunami is a series of powerful waves with strong currents. They are mostly caused by underwater or coastal earthquakes, and sometimes by underwater landslides or volcanic eruptions.

More information

LAB: WHERE S THE BEACH

LAB: WHERE S THE BEACH Name: LAB: WHERE S THE BEACH Introduction When you build a sandcastle on the beach, you don't expect it to last forever. You spread out your towel to sunbathe, but you know you can't stay in the same spot

More information

NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents

NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents NTHMP - Mapping & Modeling Benchmarking Workshop: Tsunami Currents Ahmet Cevdet Yalçıner, Andrey Zaytsev, Utku Kanoğlu Deniz Velioglu, Gozde Guney Dogan, Rozita Kian, Naeimeh Shaghrivand, Betul Aytore

More information

For Development of Resilient Structures against Tsunami

For Development of Resilient Structures against Tsunami For Development of Resilient Structures against Tsunami -Lessons Learnt from the East Japan Great Earthquake Disaster- Tomotsuka Takayama Professor Emeritus of Kyoto University Director of Institute of

More information

REBUILDING COMPOSITE BREAKWATERS FOLLOWING THE 2011 TOHOKU TSUNAMI: LESSONS LEARNT AND DOES IT MAKE SENSE TO REINFORCE?

REBUILDING COMPOSITE BREAKWATERS FOLLOWING THE 2011 TOHOKU TSUNAMI: LESSONS LEARNT AND DOES IT MAKE SENSE TO REINFORCE? Proceedings of Coastal Engineering, JCE, Vol.3, 212, November REBUILDING COMPOITE BREAKWATER FOLLOWING THE 211 TOHOKU TUNAMI: LEON LEARNT AND DOE IT MAKE ENE TO REINFORCE? Miguel Esteban1, Rafael Aranguiz

More information

UNDERSTANDING STORM SURGE

UNDERSTANDING STORM SURGE The Education Program at the New Jersey Sea Grant Consortium 22 Magruder Road, Fort Hancock, NJ 07732 (732) 872-1300 www.njseagrant.org UNDERSTANDING STORM SURGE ACTIVITY 6 SURGE OF THE STORM http://secoora.org/classroom/virtual_hurricane/surge_of_the_storm>

More information

Evaluation of Tsunami Fluid Force Acting on a Bridge Deck Subjected to Breaker Bores

Evaluation of Tsunami Fluid Force Acting on a Bridge Deck Subjected to Breaker Bores Available online at www.sciencedirect.com Procedia Engineering 14 (2011) 1079 1088 The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction Evaluation of Tsunami Fluid Force

More information

LABORATORY STUDY ON TSUNAMI REDUCTION EFFECT OF TEIZAN CANAL

LABORATORY STUDY ON TSUNAMI REDUCTION EFFECT OF TEIZAN CANAL Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

What are Waves? Earthquake. Waving flags. Vocal Cords Vibrate

What are Waves? Earthquake. Waving flags. Vocal Cords Vibrate Waves Ch. 10 What are Waves? All waves are movement of energy through a medium (air, rock, water) Series of vibrations or undulations in a medium Wave types: ocean, sound, light, seismic Vocal Cords Vibrate

More information

COMMENTS FOR THE NSF TSUNAMI WORKSHOP AT HILO, HAWAII, DECEMBER 2006 By Robert L. Wiegel

COMMENTS FOR THE NSF TSUNAMI WORKSHOP AT HILO, HAWAII, DECEMBER 2006 By Robert L. Wiegel COMMENTS FOR THE NSF TSUNAMI WORKSHOP AT HILO, HAWAII, 26-28 DECEMBER 2006 By Robert L. Wiegel 1. Introduction 2. Risk, Adjustment, Mitigation 3. Hilo, Hawaii 4. Designing for Tsunamis: Seven Principles

More information

DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS

DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS DAMAGE TO STORAGE TANKS CAUSED BY THE 2011 TOHOKU EARTHQUAKE AND TSUNAMI AND PROPOSAL FOR STRUCTURAL ASSESSMENT METHOD FOR CYLINDRICAL STORAGE TANKS Takashi Ibata Isho Nakachi Dr. Kazuo Ishida Junichi

More information

ALTERNATIVES FOR COASTAL STORM DAMAGE MITIGATION AND FUNCTIONAL DESIGN OF COASTAL STRUCTURES

ALTERNATIVES FOR COASTAL STORM DAMAGE MITIGATION AND FUNCTIONAL DESIGN OF COASTAL STRUCTURES The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL DEFENSE SYSTEMS I CHAPTER

More information

ALTERNATIVES FOR COASTAL STORM DAMAGE MITIGATION

ALTERNATIVES FOR COASTAL STORM DAMAGE MITIGATION ALTERNATIVES FOR COASTAL STORM DAMAGE MITIGATION Dave Basco Old Dominion University, Norfolk, Virginia, USA National Park Service Photo STRUCTURAL (changes to natural, physical system) hardening (seawalls,

More information

Tsunami Preparedness in the Capital Region

Tsunami Preparedness in the Capital Region Tsunami Preparedness in the Capital Region A presentation by: the CRD Local Government Emergency Program Advisory Commission (LG EPAC) and your community emergency programs What is a tsunami? A tsunami

More information

PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING. Akihiko Kimura 1 and Taro Kakinuma 2

PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING. Akihiko Kimura 1 and Taro Kakinuma 2 PHYSICAL REQUIREMENTS FOR A TAKEOFF IN SURFING Akihiko Kimura 1 and Taro Kakinuma 2 The conditions required for a takeoff in surfing, are discussed, with the waves simulated numerically, considering two

More information

RESEARCH ON STABILITY OF OPENING SECTION AT BAYMOUTH BREAKWATER Junichiro SAKUNAKA 1 and Taro ARIKAWA 2

RESEARCH ON STABILITY OF OPENING SECTION AT BAYMOUTH BREAKWATER Junichiro SAKUNAKA 1 and Taro ARIKAWA 2 RESEARCH ON STABILITY OF OPENING SECTION AT BAYMOUTH BREAKWATER Junichiro SAKUNAKA 1 and Taro ARIKAWA 2 The baymouth breakwater is to protect the port area from tsunami. It narrows the bay mouth and prevents

More information

Low-crested offshore breakwaters: a functional tool for beach management

Low-crested offshore breakwaters: a functional tool for beach management Environmental Problems in Coastal Regions VI 237 Low-crested offshore breakwaters: a functional tool for beach management K. Spyropoulos & E. Andrianis TRITON Consulting Engineers, Greece Abstract Beach

More information

SUSTAINABLE DEVELOPMENT: CIVIL ENGINEERING AND THE BUILT ENVIRONMENT. INTERNATIONAL CONFERENCE Malta 5 th May 2011

SUSTAINABLE DEVELOPMENT: CIVIL ENGINEERING AND THE BUILT ENVIRONMENT. INTERNATIONAL CONFERENCE Malta 5 th May 2011 SUSTAINABLE DEVELOPMENT: CIVIL ENGINEERING AND THE BUILT ENVIRONMENT Malta 5 th May 2011 Wave Forces: Tsunami And Sea Wind Driven in the Mediterranean: Malta s Scenario Tsunami wave hitting sea wall in

More information

EVALUATION OF TSUNAMI FLUID FORCE ACTING ON THE BRIDGE DECK

EVALUATION OF TSUNAMI FLUID FORCE ACTING ON THE BRIDGE DECK JOINT CONFERENCE PROCEEDINGS 9th International Conference on Urban Earthquake Engineering/ th Asia Conference on Earthquake Engineering March -8,, Tokyo Institute of Technology, Tokyo, Japan EVALUATION

More information

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack

Waves. Types of Waves. Parts of a wave. Insert wind_wave.wmv. Shark attack Waves Recall: Waves = transmitted energy What causes waves? Wind gravity Earthquakes We will talk about all of these, but first Insert wind_wave.wmv Shark attack Types of Waves Body waves transmit energy

More information

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS Skills Worksheet Directed Reading Section: Ocean Currents 1. A horizontal movement of water in a well-defined pattern is called a(n). 2. What are two ways that oceanographers identify ocean currents? 3.

More information

WIND SPEED LENGTH OF TIME WIND BLOWS (Duration) DISTANCE OVER WHICH IT BLOWS (Fetch)

WIND SPEED LENGTH OF TIME WIND BLOWS (Duration) DISTANCE OVER WHICH IT BLOWS (Fetch) WAVES Up and down movement of ocean surface Transportation of energy across the water over vast distances If not stopped by anything, waves can travel entire oceans Size and speed depend upon: WIND SPEED

More information

Technical Brief - Wave Uprush Analysis Island Harbour Club, Gananoque, Ontario

Technical Brief - Wave Uprush Analysis Island Harbour Club, Gananoque, Ontario Technical Brief - Wave Uprush Analysis RIGGS ENGINEERING LTD. 1240 Commissioners Road West Suite 205 London, Ontario N6K 1C7 October 31, 2014 Table of Contents Section Page Table of Contents... i List

More information

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted Capillary Waves, Wind Waves, Chapter 10 Waves Anatomy of a Wave more like a real wave Tsunamis, Internal waves big waves huge waves rogue waves small waves more like a sine wave Wave direction Wave wave

More information

2016 NC Coastal Local Governments Annual Meeting

2016 NC Coastal Local Governments Annual Meeting 2016 NC Coastal Local Governments Annual Meeting Coastal Flood Study Modeling and Mapping 101 April 21, 2016 Tom Langan, PE, CFM Engineering Supervisor NCEM Floodplain Mapping Program FEMA Coastal Flood

More information

Chapter 3 Field Survey Report on the 2004 Indian Ocean Tsunami along the Southwestern Coast of Sri Lanka

Chapter 3 Field Survey Report on the 2004 Indian Ocean Tsunami along the Southwestern Coast of Sri Lanka Chapter 3 Field Survey Report on the 2004 Indian Ocean Tsunami along the Southwestern Coast of Sri Lanka 3.1 Introduction A huge earthquake with a magnitude of 9.0 took place to the northwest of Sumatra

More information

Tsunami Preparedness in the Capital Region

Tsunami Preparedness in the Capital Region Tsunami Preparedness in the Capital Region A presentation by: the CRD Local Government Emergency Program Advisory Commission (LG EPAC) and your community emergency programs What is a tsunami? A tsunami

More information

Lessons learnt from the Samoa tsunami September a multi-disciplinary survey

Lessons learnt from the Samoa tsunami September a multi-disciplinary survey Lessons learnt from the Samoa tsunami September 2009 - a multi-disciplinary survey Stefan Reese, Jochen Bind, Graeme Smart, Shona van Zijll de Jong, William Power, Brendon Bradley, Kate Wilson, Gegar Prasetya

More information

Deep-water orbital waves

Deep-water orbital waves What happens when waves approach shore? Deep-water orbital waves Fig. 9.16, p. 211 Wave motion is influenced by water depth and shape of the shoreline wave buildup zone surf zone beach Wave base deepwater

More information

Update: UNSW s Research Program for Extreme Waves on Fringing Reefs. Matt Blacka,Kristen Splinter, Ron Cox

Update: UNSW s Research Program for Extreme Waves on Fringing Reefs. Matt Blacka,Kristen Splinter, Ron Cox Update: UNSW s Research Program for Extreme Waves on Fringing Reefs Matt Blacka,Kristen Splinter, Ron Cox Overview Research Area 1: Extreme wave and water level processes for fringing reef coastlines Research

More information

Ocean Motion Notes. Chapter 13 & 14

Ocean Motion Notes. Chapter 13 & 14 Ocean Motion Notes Chapter 13 & 14 What is a Wave? Wave: movement of energy through a body of water How are Waves Caused? Caused mostly by wind Wind blowing on the water transmits energy to the water Size

More information

Oceans - Laboratory 12

Oceans - Laboratory 12 Oceans - Laboratory 12 (Name) How do ocean waves form? All waves are disturbances of a fluid medium through which energy is moved (Davis, 1997). Ocean waves travel on the interface between oceans and the

More information

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches Ocean Waves Capillary Wind generated Gravity Tides Tsunamis Seiches Capillary waves are driven by the surface tension produced by electrically polarized water molecule San Pedro Lighthouse Waves are alternate

More information

New Orleans Municipal Yacht Harbor

New Orleans Municipal Yacht Harbor New Orleans Municipal Yacht Harbor Marina Schematic Design Update 601 Poydras St., Suite 1860 New Orleans, LA, 70130 504-648-3560 Post-Katrina Municipal Yacht Harbor: Introduction The MYH was an approximate

More information

WAVE PRESSURE DISTRIBUTION ON PERMEABLE VERTICAL WALLS

WAVE PRESSURE DISTRIBUTION ON PERMEABLE VERTICAL WALLS Abstract WAVE PRESSURE DISTRIBUTION ON PERMEABLE VERTICAL WALLS Hendrik Bergmann, Hocine Oumeraci The pressure distribution at permeable vertical walls is investigated within a comprehensive large-scale

More information

COASTAL HAZARDS. What are Coastal Hazards?

COASTAL HAZARDS. What are Coastal Hazards? COASTAL HAZARDS What are Coastal Hazards? Hazards in the New Jersey coastal zone include unavoidable risks to life and property generated by: coastal flooding, waves, high winds and waves, short-term and

More information

Coastal management has lagged behind the growth in population leading to problems with pollution

Coastal management has lagged behind the growth in population leading to problems with pollution Fifty percent of the population of the industrialized world lives within 100 km of a coast. Coastal management has lagged behind the growth in population leading to problems with pollution and natural

More information

The Surge of the Storm By Margaret Olsen and Katie Greganti

The Surge of the Storm By Margaret Olsen and Katie Greganti The Surge of the Storm By Margaret Olsen and Katie Greganti Grade Level: 5-12 Type of Activity: Hands on Focus Question: How does a hurricane s storm surge of a hurricane affect the low-lying areas along

More information

Bahman Esfandiar Jahromi 1*, Faridah Jaffar Sidek 2

Bahman Esfandiar Jahromi 1*, Faridah Jaffar Sidek 2 CONCEPTUALIZATION OF SUBMERGED STRUCTURES AS TSUNAMI BARRIER Bahman Esfandiar Jahromi 1*, Faridah Jaffar Sidek 2 1 Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Malaysia 2

More information

Building Coastal Resiliency at Plymouth Long Beach

Building Coastal Resiliency at Plymouth Long Beach Building Coastal Resiliency at Plymouth Long Beach Department of Marine and Environmental Affairs March 30, 2017 Introducing Green Infrastructure for Coastal Resiliency Plymouth Long Beach & Warren s Cove

More information

The Challenge of Wave Scouring Design for the Confederation Bridge

The Challenge of Wave Scouring Design for the Confederation Bridge 13: Coastal and Ocean Engineering ENGI.8751 Undergraduate Student Forum Faculty of Engineering and Applied Science, Memorial University, St. John s, NL, Canada MARCH 2013 Paper Code. (13 - walsh) The Challenge

More information

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX D SBEACH MODELING

HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX D SBEACH MODELING HURRICANE SANDY LIMITED REEVALUATION REPORT UNION BEACH, NEW JERSEY DRAFT ENGINEERING APPENDIX SUB APPENDIX D SBEACH MODELING Rev. 18 Feb 2015 1 SBEACH Modeling 1.0 Introduction Following the methodology

More information

Nearshore Dredged Material Placement Pilot Study at Noyo Harbor, CA

Nearshore Dredged Material Placement Pilot Study at Noyo Harbor, CA 1 Nearshore Dredged Material Placement Pilot Study at Noyo Harbor, CA Noyo Cove N 2011 National Conference on Beach Preservation Technology 9-11, February 2011 Lihwa Lin, Honghai Li, Mitchell Brown US

More information

Oceans in Motion: Waves and Tides

Oceans in Motion: Waves and Tides Oceans in Motion: Waves and Tides Waves Waves are among the most familiar features in the ocean. All waves work similarly, so although we are talking about ocean waves here, the same information would

More information

DAMAGE TO OIL STORAGE TANKS DUE TO TSUNAMI OF THE MW OFF THE PACIFIC COAST OF TOHOKU, JAPAN

DAMAGE TO OIL STORAGE TANKS DUE TO TSUNAMI OF THE MW OFF THE PACIFIC COAST OF TOHOKU, JAPAN 1NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 214 Anchorage, Alaska DAMAGE TO OIL STORAGE TANKS DUE TO TSUNAMI OF THE MW9. 211 OFF THE PACIFIC

More information

SCIENCE OF TSUNAMI HAZARDS

SCIENCE OF TSUNAMI HAZARDS SCIENCE OF TSUNAMI HAZARDS ISSN 8755-6839 Journal of Tsunami Society International Volume 31 Number 2 2012 SEA LEVEL SIGNALS CORRECTION FOR THE 2011 TOHOKU TSUNAMI A. Annunziato 1 1 Joint Research Centre,

More information

Effect of sea-dykes on tsunami run-up. Tainan Hydraulics Laboratory National Cheng-Kung University Tainan TAIWAN.

Effect of sea-dykes on tsunami run-up. Tainan Hydraulics Laboratory National Cheng-Kung University Tainan TAIWAN. Effect of sea-dykes on tsunami run-up Kao-Shu Hwang Chen-Chi Liu Hwung-Hweng Hwung Tainan Hydraulics Laboratory National Cheng-Kung University Tainan TAIWAN. Outline Introduction tsunami research in THL

More information

Using sea bed roughness as a wave energy dissipater

Using sea bed roughness as a wave energy dissipater Island Sustainability II 203 Using sea bed roughness as a wave energy dissipater T. Elgohary 1, R. Elgohary 1 & M. Hagrass 2 1 Department of Civil Engineering (Irrigation and Hydraulic), The Tenth of Ramadan

More information

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET Takumi Okabe, Shin-ichi Aoki and Shigeru Kato Department of Civil Engineering Toyohashi University of Technology Toyohashi, Aichi,

More information

Waves. Swell, Surf, and Tides

Waves. Swell, Surf, and Tides Waves Swell, Surf, and Tides Tsunamis Tsunamis Waves of Destruction Seismic Sea Waves Seismic Sea Waves Most tsunamis are generated by earthquakes Seismic Sea Waves Most tsunamis are generated by earthquakes

More information

BEACH EROSION COUNTERMEASURE USING NEW ARTIFICIAL REEF BLOCKS

BEACH EROSION COUNTERMEASURE USING NEW ARTIFICIAL REEF BLOCKS BEACH EROSION COUNTERMEASURE USING NEW ARTIFICIAL REEF BLOCKS Kyuhan Kim 1, Sungwon Shin 1, Chongkun Pyun 2, Hyundong Kim 3, and Nobuhisa Kobayashi 4 Two-dimensional and three-dimensional laboratory experiments

More information

ESTIMATION OF TSUNAMI FORCE ACTING ON THE BLOCK ARMORED BREAKWATER DUE TO SOLITON FISSION

ESTIMATION OF TSUNAMI FORCE ACTING ON THE BLOCK ARMORED BREAKWATER DUE TO SOLITON FISSION ESTMATON OF TSUNAM FORCE ACTNG ON THE BLOCK ARMORED BREAKWATER DUE TO SOLTON FSSON Sohei Maruyama 1, Tomotsuka Takayama 2, Kenichiro Shimosako 3, Akihiko Yahiro 2, Kojiro Suzuki 3, Toru Aota 1, Masashi

More information

MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY. Hiroaki Kashima 1 and Katsuya Hirayama 1

MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY. Hiroaki Kashima 1 and Katsuya Hirayama 1 MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY Hiroaki Kashima 1 and Katsuya Hirayama 1 Recently, coastal disasters due to long-period swells induced by heavy

More information

R E M I N D E R S. v Two required essays are due by April 9, v Extra Credit: Think Geographically Essays from any five of the textbook s

R E M I N D E R S. v Two required essays are due by April 9, v Extra Credit: Think Geographically Essays from any five of the textbook s R E M I N D E R S v Two required essays are due by April 9, 2019. Ø A third may be used for extra credit in place of a Think Geographically essay. ESSAY TOPICS (choose any two): Contributions of a noted

More information

COASTAL ENVIRONMENTS. 454 lecture 12

COASTAL ENVIRONMENTS. 454 lecture 12 COASTAL ENVIRONMENTS Repeated movement of sediment & water constructs a beach profile reflecting the balance between average daily or seasonal wave forces and resistance of landmass to wave action Coasts

More information

FIELD EXPERIMENT ON BEACH NOURISHMENT USING GRAVEL AT JINKOJI COAST

FIELD EXPERIMENT ON BEACH NOURISHMENT USING GRAVEL AT JINKOJI COAST FILD XPRIMNT ON BACH NOURISHMNT USING GRAVL AT JINKOJI COAST Takayuki Kumada, Takaaki Uda, Takeo Matsu-ura and Michio Sumiya Beach nourishment using 87, m of gravel with grain size between.5 and mm was

More information

INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT

INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT Advanced Series on Ocean Engineering Volume 16 INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT J. William Kamphuis Queen's University, Canada World Scientific Singapore New Jersey London Hong Kong Contents

More information

4/20/17. #31 - Coastal Erosion. Coastal Erosion - Overview

4/20/17. #31 - Coastal Erosion. Coastal Erosion - Overview Writing Assignment Due Monday by 11:59 pm #31 - Coastal Erosion Beach front property! Great View! Buy now at a great price! See main class web pages for detailed instructions Essays will be submitted in

More information

(Refer Slide Time: 1:01)

(Refer Slide Time: 1:01) Port and Harbour Structures. Professor R. Sundaradivelu. Department of Ocean Engineering. Indian Institute of Technology, Madras. Module-3. Lecture-11. Breakwater. So we have so far discussed 5 lectures,

More information

The behaviour of tsunamis

The behaviour of tsunamis 195 The behaviour of tsunamis Maurice N. Brearley 1 Introduction The behaviour of tsunamis is not easily understood. Readers comments on a recently published paper [3] show that a mathematical analysis

More information

Wave Breaking and Wave Setup of Artificial Reef with Inclined Crown Keisuke Murakami 1 and Daisuke Maki 2

Wave Breaking and Wave Setup of Artificial Reef with Inclined Crown Keisuke Murakami 1 and Daisuke Maki 2 Wave Breaking and Wave Setup of Artificial Reef with Inclined Crown Keisuke Murakami 1 and Daisuke Maki 2 Beach protection facilities are sometimes required to harmonize with coastal environments and utilizations.

More information

OCN 201 Tides. Tsunamis, Tides and other long waves

OCN 201 Tides. Tsunamis, Tides and other long waves OCN 201 Tides Tsunamis, Tides and other long waves Storm surges Caused by winds and low atmospheric pressure associated with large storms Can raise sea surface by up to 25 ft, bottom contours magnify effect

More information

North Shore of Long Island, Feasibility Study

North Shore of Long Island, Feasibility Study North Shore of Long Island, Asharoken New York Asharoken, Feasibility Study Asharoken, NY Public Meeting June 30, 2015 US Army Corps of Engineers US Army Corps of Engineers New York BUILDING STRONG BUILDING

More information

The Movement of Ocean Water. Currents

The Movement of Ocean Water. Currents The Movement of Ocean Water Currents Ocean Current movement of ocean water that follows a regular pattern influenced by: weather Earth s rotation position of continents Surface current horizontal movement

More information

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide.

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide. The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg and Roger Flood School of Marine and Atmospheric Sciences, Stony Brook University Since the last report was issued on January 31

More information

Sea Level Rise and Coastal Flooding Why Waves Matter!

Sea Level Rise and Coastal Flooding Why Waves Matter! Sea Level Rise and Coastal Flooding Why Waves Matter! Jason D. Burtner Massachusetts Office of Coastal Zone Management South Shore Regional Coordinator Sea Level Rise and Coastal Storm Damage and Flooding

More information

WAVE MECHANICS FOR OCEAN ENGINEERING

WAVE MECHANICS FOR OCEAN ENGINEERING Elsevier Oceanography Series, 64 WAVE MECHANICS FOR OCEAN ENGINEERING P. Boccotti Faculty of Engineering University of Reggio-Calabria Feo di Vito 1-89060 Reggio-Calabria Italy 2000 ELSEVIER Amsterdam

More information

Environmental Geology Chapter 11 COASTAL PROCESSES and RELATED HAZARDS

Environmental Geology Chapter 11 COASTAL PROCESSES and RELATED HAZARDS Environmental Geology Chapter 11 COASTAL PROCESSES and RELATED HAZARDS Introduction >50% of world population concentrated in the coastal zones ~75% of U.S. population living in coastal states Coastal hazard

More information

SURGE SUPPRESSION ACHIEVED BY DIFFERENT COASTAL SPINE (IKE DIKE) ALIGNMENTS. Bruce A. Ebersole, Thomas W. Richardson and Robert W.

SURGE SUPPRESSION ACHIEVED BY DIFFERENT COASTAL SPINE (IKE DIKE) ALIGNMENTS. Bruce A. Ebersole, Thomas W. Richardson and Robert W. SURGE SUPPRESSION ACHIEVED BY DIFFERENT COASTAL SPINE (IKE DIKE) ALIGNMENTS Abstract Bruce A. Ebersole, Thomas W. Richardson and Robert W. Whalin, Jackson State University, Jackson, Mississippi The primary

More information

Technical Note AN EMPIRICAL. METHOD FOR DESIGN OF BREAKWATERS AS SHORE PROTECTION STRUCTURES

Technical Note AN EMPIRICAL. METHOD FOR DESIGN OF BREAKWATERS AS SHORE PROTECTION STRUCTURES CETN III-23 (Rev 3/95) Coastal Engineering Technical Note AN EMPIRICAL. METHOD FOR DESIGN OF BREAKWATERS AS SHORE PROTECTION STRUCTURES PURPOSE: To present an empirical method that can be used for preliminary

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Nearshore Circulation Undertow and Rip Cells Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay

More information