Coastal effects on radar propagation in atmospheric ducting conditions

Size: px
Start display at page:

Download "Coastal effects on radar propagation in atmospheric ducting conditions"

Transcription

1 Meteorol. Appl. 13, (2006) Coastal effects on radar propagation in atmospheric ducting conditions doi: /s B. W. Atkinson & M. Zhu Department of Geography, Queen Mary, University of London, London E1 4NS, United Kingdom Two models were used to assess the effects of coastal characteristics on radar propagation in ducting conditions in the Persian Gulf. The NCAR/Penn State MM5 model simulated atmospheric conditions at a 5-km horizontal spatial and hourly temporal resolution on a day on which observations of ducts existed. The output from this model was input to the AREPS propagation model to produce radar coverage over coastal areas. Four factors influenced radar propagation: the sea breeze; coastal configuration; orography; and ambient wind. The sea breeze alone allowed propagation to extend about 100 km inland in a layer 200 m deep. When the breeze was aided by a following ambient wind the propagation layer extended for 150 km and was 400 m deep. A coastal indentation caused differences in depth and intensity of propagation over a distance of about 30 km parallel to the coast in which the indentation occurred. Steep near-coastal orography blocked radar propagation. Keywords: radar propagation, atmospheric ducts, coastal effects, numerical modelling, propagation modelling Received September 2004, revised October Introduction Radar has many important civil and military applications. The propagation of waves from a surfacebased antenna is affected by atmospheric conditions, particularly those in the boundary layer. These effects frequently lead to anomalous propagation, when radar detection distances are significantly greater than usual. An extreme form of anomalous propagation occurs in the presence of a duct, which traps the waves in a shallow, quasi-horizontal layer (Turton et al. 1988). Duct characteristics are determined from the distribution of the modified refractivity M, which is given by M = N + z R 106 (1) where z is the height above sea level and R is the mean radius of the earth and N is the refractivity (Bean & Dutton 1968) N = 77.6 ( p e ) (2) T T in which T is the air temperature in Kelvin, p is the air pressure in hpa and e is the water vapour pressure in hpa. A ray emitted at a small angle to the ground will be bent downwards (or upwards) if the modified refractivity (M) decreases (or increases) with height. If sufficient bending towards the ground occurs, the ray may become trapped in a duct. Detailed studies of the nature and distribution of ducts using, among other tools, special aircraft observations and numerical models, have been made off the Californian coast (Burk & Thompson 1997; Haack & Burk 2001), in the Baltic Sea (Anderson et al. 1997) and the Persian Gulf (Atkinson et al. 2001; Plant & Atkinson 2002; Atkinson & Zhu 2005; Zhu & Atkinson 2004, 2005). Observations at Barcelona, later supported by output from a numerical model, outlined seasonal variation of duct occurrence over one point on the coast of north east Spain (Bech et al. 2000, 2002a, 2002b, 2004). The effects of ducts on radar coverage can be estimated by using a radar propagation model, with the atmospheric conditions (e.g. refractivity field) as input (Abdul-Jauwad et al. 1991). A frequently used assumption in early estimates was that the atmosphere in the area of interest was horizontally homogeneous. This was necessitated by the initialisation of the calculation from one vertical profile. In reality this assumption is called into question by meso-scale and smaller scale variability in duct nature and distribution. Examples of such variability are given in Zhu & Atkinson s (2005) study of the Persian Gulf region. The existence and nature of ducts are strongly determined by the character of the atmospheric boundary layer. Dry, convective boundary layers, such as are frequently found over land in daytime, inhibit ducts. In contrast, moist, stable air over the sea, the marine boundary layer (MBL), favours duct formation. Frequently such a MBL 53

2 B. W. Atkinson & M. Zhu forms as air flows from warm land to cooler sea, thus becoming a marine internal boundary layer (MIBL). The nature of a MIBL and associated ducts is influenced by coastal morphology, land-sea temperature contrast, sea surface temperature, orography, the ambient wind and meso-scale structures such as the land-sea breeze circulation (Zhu & Atkinson 2004). In view of the known atmospheric meso-scale structure, later radar propagation models could be initialised with more profiles so as to capture the small-scale structure. In the absence of meteorological observations at the mesoscale, output from an atmospheric numerical model can provide the input to the radar propagation model. This study shows how meso-scale atmospheric variability affects the predicted radar coverage over coastal areas of the Persian Gulf. The approach was to use two models, a numerical atmospheric model and a radar propagation model, in a case study of one day on which detailed observations of ducts and radar propagation were available in part of the Persian Gulf (Brooks et al. 1999). The day, 28 April 1996, was a typical shamal day, shamal being the name given to strong north-westerly winds in this area, which frequently occur in both warm and cold seasons (Rao et al. 2003). The synoptic conditions showed at low levels a high pressure ridge extending from Turkey to southeast Saudi Arabia, along with a strengthening low pressure trough over Iran, a situation that generally triggered a shamal over the Gulf. Wind speeds of up to 23 m s 1 were reported at an inversion height of m (Brooks et al. 1999). Section 2 outlines the models used in the study, Section 3 the results and Section 4 is the conclusion. 2. Models used 2.1. Atmospheric model The model used for the atmospheric simulations (MM5V3) was the meso-scale model developed by the Pennsylvania State University and National Center for Atmospheric Research. This is based on the hydrostatic model introduced by Anthes & Warner (1978) and was presented in non-hydrostatic form by Dudhia (1993). Subsequent changes were succinctly described by Dudhia (1993 p. 1493): improvements have been made in the representation of the planetary boundary layer (Zhang & Anthes 1982), the surface radiation budget (Benjamin & Carlson 1986), the addition of several more cumulus parameterization schemes (e.g. Zhang & Fritsch 1986; Frank & Cohen 1987; Grell 1993), and an explicit moisture scheme (Hsie et al. 1984) with ice-phase processes (Dudhia 1989) for resolved-scale condensation. Grid nesting was also added by Zhang et al. (1986) and four-dimensional data assimilation by Stauffer & Seaman (1990). The atmospheric radiation option in the model provides a long-wave and short-wave scheme that interacts with cloud and precipitation and with the surface (Dudhia 1989). In addition to the continuous evaluation of the 54 model throughout the above development, validation for its use in studies of the atmospheric boundary layer in the Persian Gulf area, particularly for coastal areas, was presented in Zhu & Atkinson (2004). The model configuration for the simulation (Table 1) had three nested grids, the finest having a horizontal grid length of 5 km (Figure 1). This horizontal resolution was finer than that used in similar meteorological studies (e.g. Burk & Thompson 1996) and was appropriate to capture the meso-scale structures over the Gulf area. The vertical resolution used here was also shown to be adequate to capture the profiles of significant variables by comparison of simulated profiles with those observed in the US Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) programme (Brooks et al and pers. comm.). Tests showed that a spin-up time of 24 hours was advantageous and results from the following 24 hours were used in the analysis. The results with hourly temporal resolution from the inner, finest domain (Figure 1) are used in the study presented here. Local time (LT) is UTC plus three hours. Further validation was carried out by comparison of modelled and observed duct characteristics and associated meteorological variables, the observed values being taken from the SHAREM- 115 programme (Brooks et al and pers. comm.). Details on the resultant duct characteristics are available in Atkinson & Zhu (2005) and Zhu & Atkinson (2005) Radar propagation model The effects of the refractivity environment on radar propagation were assessed with the Advanced Refractive Effects Prediction System (AREPS) Version 3.3, (Space and Naval Warfare Systems Center 2004). The internal propagation model for AREPS is a hybrid called the Advanced Propagation Model, which solves a parabolic approximation to the wave equation through use of split-step Fourier transforms (Dockery 1988). Factors such as range-dependent refractivity environments, variable terrain, range-varying dielectric ground constants for finite conductivity and vertical polarization calculations, troposcatter and gaseous absorption are taken into account in this model. Input for the calculation includes atmospheric refractivity, terrain height, land use and surface wind. The radar modelled is an X-band radar operating at 10 GHz with the transmitter located 50 km offshore and 30 m above the surface, corresponding to the approximate characteristics of a ship-mounted search radar. The radar signal strength is represented by the one-way propagation factor F, defined by Meeks (1982) as F = 10 log E / E0 (3) where E 0 is the magnitude of the free-space field at a given point when the antenna is pointed toward the point and E is the field to be investigated at the point in question.

3 Coastal effects on radar propagation Table 1. Atmospheric model configuration. MM5V3 1. Domain 1 83(x) 83(y) 33(z) 9. Stephens s (1984) radiation scheme Domain 2 136(x) 106(y) 33(z) Domain 3 256(x) 223(y) 33(z) 2. Domain 1 centre 26.0 N, 52.0 E 10. Dudhia s (1989) explicit precipitation scheme Domain 2 centre 27.3 N, 52.6 E Domain 3 centre 27.3 N, 51.9 E 3. Domain 1 horizontal grid length ds = 45 km 11. Grell s (1993) convective precipitation scheme Domain 2 horizontal grid length ds = 15 km Domain 3 horizontal grid length ds = 5km 4. σ = , 0.996, 0.993, 0.991, 0.988, 0.984, 12. Surface temperature derived by force-restore method 0.979, 0.974, 0.969, 0.963, 0.958, 0.953, 0.948, 0.943, 0.938, 0.932, 0.922, 0.904, 0.888, 0.850, 0.816, 0.783, 0.746, 0.704, 0.664, 0,622, 0.576, 0.513, 0.436, 0.337, 0.225, 0.136, The equivalent heights to these σ levels for a point over the Persian Gulf are, in metres 11, 30, 50, 69, 88, 118, 157, 196, 239, 282, 321, 360, 400, 440, 480, 528, 608, 760, 959, 1210, 1506, 1803, 2152, 2552, 2953, 3400, 3910, 4650, 5642, 7140, 9138, 11142, Domain 1 time step dt = 90 s 13. Orography included Domain 2 time step dt = 30 s Domain 3 time step dt = 10 s 6. Integration time 48 hr 14. Land use includes only desert and water 7. Non-hydrostatic dynamics 8. Blackadar s (1979) high resolution PBL scheme 15. Initial fields for all domains at 00 UTC 27 April 1996 and lateral boundary conditions for the coarsest domain at 12-hr intervals were based on 40-year ECMWF Reanalysis data. The lateral boundary conditions for the fine domains were provided by their mother domains at every time step Figure 1. Area covered by the finest of the three grids and locations of cross-sections used in the study. 55

4 B. W. Atkinson & M. Zhu Figure 2. Cross-sections along line AB (see Figure 1 for location), 28 April 1996 of simulated elements. (a) mixing ratio (g kg 1 ) at 0900 hr UTC (1200 hr LT); (b) potential temperature ( C) at 0900 hr UTC (1200 hr LT); (c) modified refractivity (M-units) at 0900 hr UTC (1200 hr LT); (d) mixing ratio (g kg 1 ) at 1800 hr UTC (2100 hr LT). 3. Results Four cases of modelled radar propagation are presented. They show the effect on the propagation of a sea breeze, coastal configuration, orography and an ambient wind Sea breeze On 28 April 1996 a sea-breeze circulation developed over the west coast of the Gulf (see Zhu & Atkinson 2004, 2005). Such circulations have a clear diurnal pattern of behaviour, being non-existent or very weak in the morning and being best developed in the late afternoon. Figure 2 shows conditions along section AB (see Figure 1 for location) at 0900 hr UTC (1200 hr LT). Moist sea air remained largely over the sea, giving a duct with top height of m (Figure 2a). Over the land the dry, convective boundary layer prevented the formation of a duct (Figure 2b). The small magnitude of the difference in M ( M) across the layer with negative vertical gradient (the trapping layer) suggests that the duct was weak (Figure 2c). In contrast, by 1800 hr UTC (2100 hr LT) moist air had been carried about 90 km inland by the sea breeze, taking with it the duct, its depth of 200 m reflecting that of the layer of moist air (Figure 2d). Between 90 and 115 km from the coast no duct existed but beyond 115 km a shallow surface 56 duct had formed. The radar propagation showed a clear response to this variation in the atmospheric conditions. At 0900 hr UTC (1200 hr LT) the duct over the sea had no effect on the propagation and areas over land at low levels were beyond detection distance (Figure 3a). By 1800 hr UTC (2100 hr LT) (Figure 3b), energy propagated for a distance of 90 km inland, due to the presence of duct associated with the moist air brought in by the sea breeze Coastal configuration A sea breeze also developed near the north coast but, because of the opposing northwest ambient wind, the sea breeze front (SBF) remained offshore, parallel to the coastline. The front was breached by a tongue of sinking, warm, dry air from the north, which was associated with an indentation of the coastline (see line CD in Figure 1). Figure 4 shows that the warm, dry air in the tongue restricted the depths of the MIBL and the associated duct to less than 100 m over a distance of 100 km offshore. Further south, outside the tongue, the MIBL and duct height increased to over 300 m with M of about 10 M-units. Only a few tens of kilometres to the west, outside the tongue, the north coast sea-breeze circulation had a pronounced effect on the development of the MIBL and duct height. The interplay of MIBL

5 Coastal effects on radar propagation Figure 3. Range-height distribution of one-way propagation factor (db) derived from AREPS 3.3 along line AB (see Figure 1 for location), 28 April Antenna located 30 m above the surface at point A. (a) 0900 hr UTC (1200 hr LT); (b) 1800 hr UTC (2100 hr LT). and sea breeze has been examined by Plant & Atkinson (2002). In this case the SBF lay about 25 km offshore (Figure 5a). The uplift associated with it led to a plume of moist air (Figure 5b) that, in turn, led to duct top heights of 200 m. Seaward of the SBF, subsidence inhibited the growth of the MIBL so that its depth, and that of the associated duct, remained at less than 100 m over the rest of the section. M within the MIBL was over 30 M-units (Figure 5c). The distribution of radar propagation reflected the different atmospheric states described above. The deep but relatively weak duct south of the tongue trapped energy below about 100 m (Figure 6a), but this layer 57

6 B. W. Atkinson & M. Zhu Figure 4. Cross-sections along line CD (see Figure 1 for location) at 1300 hr UTC (1600 hr LT), 28 April 1996, of simulated elements. (a) vertical velocity (cm s 1 ); (b) potential temperature ( C);(c)mixingratio(gkg 1 ); (d) modified refractivity (M-units). Figure 5. Cross-sections along line EF (see Figure 1 for location) at 1300 hr UTC (1600 hr LT), 28 April 1996, of simulated elements. (a) vertical velocity (cm s 1 ); (b) mixing ratio (g kg 1 ); (c) modified refractivity (M-units). 58

7 Coastal effects on radar propagation Figure 6. Range-height distribution of one-way propagation factor (db) derived from AREPS 3.3 at 1300 hr UTC (1600 hr LT), 28 April Antenna located 30 m above the surface at points C and E. (a) along line CD; (b) along line EF. (See Figure 1 for locations.) became much shallower (about m) within the tongue itself, before disappearing over the land. Outside the tongue, where the surface duct was shallower but stronger, more energy was trapped (Figure 6b) in a layer of almost constant depth ( 40 m). The local increase in depth at km probably reflected the SBF. The clear difference in duct characteristics and radar propagation within and without the tongue revealed sensitivity to the coastal configuration Orography To the east of the Gulf the mountains of Iran reach heights of about 900 m within about 25 km of the coast. This means that an upslope breeze was added to the sea breeze over that coast, giving a MBL that increased in depth above sea level from west to east (Figure 7a). The associated duct-top height above sea level increased from 300 to 600 m. M was about 30 M-units in the 59

8 B. W. Atkinson & M. Zhu Figure 7. Cross-sections along line GH (see Figure 1 for location) at 1500 hr UTC (1800 hr LT), 28 April 1996, of simulated elements. (a) mixing ratio (g kg 1 ); (b) modified refractivity (M-units). Figure 8. Range-height distribution of one-way propagation factor (db) derived from AREPS 3.3 along line GH (see Figure 1 for location) 1500 hr UTC (1800 hr LT,) 28 April Antenna located 30 m above the surface at point G. west over the Gulf and reduced to zero over the land (Figure 7b). Radar energy was trapped by the duct and blocked by the orography (Figure 8). Beam blockage corrections are available but, as shown by Bech et al. (2001, 2003), their standard forms can be inadequate in duct conditions Ambient wind Astride the south coast, moist air was about 400 m deep and penetrated inland for at least 150 km (Figure 9a). This was due to two factors. First, the MIBL over the Gulf increased in depth from northwest to southeast, thus being at its deepest over the southern coast. Second, the south coast sea breeze s formation in a following ambient wind, in sharp contrast to the situation over the north coast, favoured large penetration inland. The 60 duct was about 400 m deep with M about 30 M-units in its upper layers over the sea, but less than 5 M-units at 100 km inland (Figure 9b). This deep, extensive duct led to a concentration of propagation below 400 m over the sea and for 100 km inland (Figure 10). Further inland the very weak duct allowed escape of energy to higher levels. The strong trapping at heights of 200 to 400 m just inland from the coast was associated with very weak propagation near the surface at the coast, similar to that shown in Figure 3a. 4. Conclusion This study has two main conclusions. First, it has shown the feasibility of coupling a meso-scale and a radar propagation model to estimate radar coverage over coastal areas. Secondly, it has demonstrated the

9 Coastal effects on radar propagation Figure 9. Cross-sections along line IJ (see Figure 1 for location) at 1500 hr UTC (1800 hr LT), 28 April 1996, of simulated elements. (a) mixing ratio (g kg 1 ); (b) modified refractivity (M-units). Figure 10. Range-height distribution of one-way propagation factor (db) derived from AREPS 3.3 along line IJ (see Figure 1 for location) 1500 hr UTC (1800 hr LT), 28 April Antenna located 30 m above the surface at point I. effects of coastal meso-scale atmospheric structure in a desert environment, largely through their effect on ducts, on the radar coverage across the coast. The sea breeze alone led to trapping of radar waves in a layer about 100 m deep penetrating about 100 km inland. When the sea breeze lay in an ambient wind and a welldeveloped MIBL, these dimensions increased to 400 m and 150 km respectively. Coastal orography also led to a deepening and increased penetration of the layer of high radar propagation over the coastal slope but further inland the radar beam was blocked by the orography. Coastal configuration led to a break in the SBF off the north coast, giving quite different radar coverage across the coast along two parallel lines only 30 km apart. Acknowledgement We are grateful to the Defence, Science and Technology Laboratory, Ministry of Defence for supporting this work. References Abdul-Jauwad, S. H., Khan, P. Z. & Halawani, T. O. (1991) Prediction of radar coverage under anomalous propagation condition for a typical coastal site: a case study. Radio Sci. 26: Anderson, T., Alberoni, P. P., Mezzalsama, P., Michelson, D. & Nanni, S. (1997) Anomalous propagation identification from terrain and sea waves using vertical reflectivity profile 61

10 B. W. Atkinson & M. Zhu analysis. Proc. 28th International Conf. Radar Meteorol., Am. Meteorol. Soc., Austin, Texas: Anthes, R. A. & Warner, T. T. (1978) Development of hydro-dynamic models suitable for air pollution and other mesometeorological studies. Mon. Wea. Rev. 106: Atkinson, B. W., Li, J.-G. & Plant, R. S. (2001) Numerical modelling of the propagation environment in the atmospheric boundary layer over the Persian Gulf. J. Appl. Meteorol. 40: Atkinson, B. W. & Zhu, M. (2005) Radar-duct and boundarylayer characteristics over The Gulf area Q. J. R. Meteorol. Soc. 131: Bean, B. R. & Dutton, E. J. (1968) Radio Meteorology. Dover Publications, 435 pp. Bech, J., Sairouni, A., Codina, B., Lorente, J. & Bebbington, D. (2000) Weather radar anaprop conditions at a Mediterranean coastal site. Phys. Chem. Earth (B) 25: Bech, J., Codina, B., Lorente, J. & Bebbington, D. (2001) Anomalous propagation effects on weather radar beam blockage corrections. Proc. 30th International Conf. Radar Meteorol., Am. Meteorol. Soc., Munich, Germany: P7.3. Bech, J., Codina, B., Lorente, J. & Bebbington, D. (2002a) Seasonal variations of radar anomalous propagation conditions in a coastal area. URSI Commision-F Open Symposium on Radiowave Propagation and Remote Sensing, Institut fur Hochfrequenztechnik, Deutsches Zentrum fur Luftund Raumfahrt, D-82234, Wessling, Germany. 3 pp. Bech, J., Codina, B., Lorente, J. & Bebbington, D. (2002b) Monthly and daily variations of radar anomalous propagation conditions: How normal is normal propagation? Proc. ERAD (2002), Delft, Netherlands: Bech, J., Codina, B., Lorente, J. & Bebbington, D. (2003) The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. J. Atmos. Ocean Technol. 20: Bech, J., Toda, J., Codina, B., Lorente, J. & Bebbington, D. (2004) Using mesoscale NWP model data to identify radar anomalous propagation events. Proc. ERAD (2004), Visby, Island of Gotland, Sweden: Benjamin, S. G. &. Carlson, T. N (1986) Some effects of surface heating and topography on the regional severe storm environment. Part I: Three-dimensional simulations. Mon. Wea. Rev. 114: Blackadar, A. K. (1979) High-resolution models of the planetary boundary layer. In: J. Pfaffin & E. Ziegler (eds.), Advances in Environmental Science and Engineering 1, no. 1, Gordon and Beach, Brooks, I. M., Goroch, A. K. & Rogers, D. P. (1999) Observations of strong surface radar ducts over the Persian Gulf. J. Appl. Meteorol. 38: Burk, S. D. & Thompson, W. T. (1996) The summertime lowlevel jet and marine boundary layer structure along the California coast. Mon. Wea. Rev. 124: Burk, S. D. & Thompson, W. T. (1997) Meso-scale modelling of summertime refractive conditions in the southern California Bight. J. Appl. Meteorol. 36: Dockery, G. D. (1988) Modelling electromagnetic wave propagation in the troposphere using the parabolic equation. IEEE Trans. Antennas Propag. 36: Dudhia, J. (1989) Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46: Dudhia, J. (1993) A nonhydrostatic version of the Penn State- NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Rev. 121: Frank, W. M. & Cohen, C. (1987) Simulation of tropical convective systems. Part I: A cumulus parameterization. J. Atmos. Sci. 46: Grell, G. A. (1993) Prognostic evaluation of assumptions used in cumulus parameterizations. Mon. Wea. Rev. 121: Haack, T. & Burk, S. D. (2001) Summertime marine refractivity conditions along coastal California. J. Appl. Meteorol. 40: Hsie, E.-Y., Anthes, R. A. & Keyser, D. (1984) Numerical simulation of frontogenesis in a moist atmosphere. J. Atmos. Sci. 41: Meeks, M. L. (1982) Radar Propagation at Low Altitudes. Artech House Inc., 105 pp. Plant, R. S. & Atkinson, B. W. (2002) Sea-breeze modification of the growth of a marine internal boundary layer. Bound.- Layer Meteor. 104: Rao, P. G., Hatwar, H. R., Al-Sulaiti, M. H. & Al-Mulla, A. H. (2003) Summer shamals over the Arabian Gulf. Weather 58: Space and Naval Warfare Systems Center (2004) Statement of functionality for Advanced Refractive Effects Prediction System, Space and Naval Warfare Systems Command, San Diego, 208 pp. Stauffer, D. R. & Seaman, N. L. (1990) Use of fourdimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic scale data. Mon. Wea. Rev. 118: Stephens, G. L. (1984) The parameterization of radiation for weather prediction and climate models. Mon. Wea. Rev. 112: Turton, J. D., Bennetts, D. A. & Farmer, S. F. G. (1988) An introduction to radio ducting. Meteorol. Mag. 117: Zhang, D.-L. & Anthes, R. A. (1982) A high-resolution model of the planetary boundary layer sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteorol. 21: Zhang, D.-L. & Fritsch, J. M. (1986) Numerical simulations of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci. 43: Zhu, M. & Atkinson, B. W. (2004) Observed and modelled climatology of the land-sea breeze circulation over the Persian Gulf. Int. J. Climatol. 24: Zhu, M. & Atkinson, B. W. (2005) Simulated climatology of atmospheric ducts over the Persian Gulf area. Bound.-Layer Meteor. 115:

ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS

ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS ASSESSMENT OF SEA BREEZE CHARACTERISTICS FROM SODAR ECHOGRAMS SUNEETHA RANI. JUPUDI Prof. M. PURNACHANDRA RAO Department of Physics, Andhra University, Visakhapatnam, India. ABSTRACT The SODAR echograms

More information

An Analysis of the South Florida Sea Breeze Circulation: An Idealized Study

An Analysis of the South Florida Sea Breeze Circulation: An Idealized Study An Analysis of the South Florida Sea Breeze Circulation: An Idealized Study John Cangialosi University of Miami/RSMAS Abstract This experiment is an idealized study (removal of mean large scale flow) to

More information

6.28 PREDICTION OF FOG EPISODES AT THE AIRPORT OF MADRID- BARAJAS USING DIFFERENT MODELING APPROACHES

6.28 PREDICTION OF FOG EPISODES AT THE AIRPORT OF MADRID- BARAJAS USING DIFFERENT MODELING APPROACHES 6.28 PREDICTION OF FOG EPISODES AT THE AIRPORT OF MADRID- BARAJAS USING DIFFERENT MODELING APPROACHES Cecilia Soriano 1, Darío Cano 2, Enric Terradellas 3 and Bill Physick 4 1 Universitat Politècnica de

More information

Conditions for Offshore Wind Energy Use

Conditions for Offshore Wind Energy Use Carl von Ossietzky Universität Oldenburg Institute of Physics Energy Meteorology Group Detlev Heinemann Conditions for Offshore Wind Energy Use Detlev Heinemann ForWind Carl von Ossietzky Universität Oldenburg

More information

NUMERICAL MODELLING OF THE PROPAGATION ENVIRONMENT IN THE ATMOSPHERIC BOUNDARY LAYER OF LITTORAL AREAS. Resolution Effects

NUMERICAL MODELLING OF THE PROPAGATION ENVIRONMENT IN THE ATMOSPHERIC BOUNDARY LAYER OF LITTORAL AREAS. Resolution Effects NUMERICAL MODELLING OF THE PROPAGATION ENVIRONMENT IN THE ATMOSPHERIC BOUNDARY LAYER OF LITTORAL AREAS Resolution Effects R. S. Plant and B. W. Atkinson Department of Geography Queen Mary and Westfield

More information

1.5 THE LAND BREEZE CHARACTERISTICS IN ISRAEL DURING THE SUMMER BY THE MM5 MODEL

1.5 THE LAND BREEZE CHARACTERISTICS IN ISRAEL DURING THE SUMMER BY THE MM5 MODEL 1. THE LAND BREEZE CHARACTERISTICS IN ISRAEL DURING THE SUMMER BY THE MM MODEL S. Berkovic and Y. Feliks Department of Mathematics, Israel Institute for Biological Research P.O.B 19, Ness-Ziona, Israel

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Numerical investigation of the formation of elevated pollution layers over the Los Angeles air basin Rong Lu, R.P. Turco Department of Atmospheric Sciences, University of California, Los Angeles, 405 Hilgard

More information

Darwin s mid-evening surge

Darwin s mid-evening surge Darwin s mid-evening surge Gerald L. Thomsen and Roger K. Smith Meteorological Institute, University of Munich, Germany November 11, 2009 Corresponding author: Gerald Thomsen, gerald@meteo.physik.uni-muenchen.de

More information

Local Winds. Please read Ahrens Chapter 10

Local Winds. Please read Ahrens Chapter 10 Local Winds Please read Ahrens Chapter 10 Scales of Motion Microscale: meters Turbulent eddies Formed by mechanical disturbance or convection Lifetimes of minutes Mesoscale: km s to 100 s of km s Local

More information

10.6 The Dynamics of Drainage Flows Developed on a Low Angle Slope in a Large Valley Sharon Zhong 1 and C. David Whiteman 2

10.6 The Dynamics of Drainage Flows Developed on a Low Angle Slope in a Large Valley Sharon Zhong 1 and C. David Whiteman 2 10.6 The Dynamics of Drainage Flows Developed on a Low Angle Slope in a Large Valley Sharon Zhong 1 and C. David Whiteman 2 1Department of Geosciences, University of Houston, Houston, TX 2Pacific Northwest

More information

2.4. Applications of Boundary Layer Meteorology

2.4. Applications of Boundary Layer Meteorology 2.4. Applications of Boundary Layer Meteorology 2.4.1. Temporal Evolution & Prediction of the PBL Earlier, we saw the following figure showing the diurnal evolution of PBL. With a typical diurnal cycle,

More information

Darwin s mid-evening surge

Darwin s mid-evening surge Australian Meteorological and Oceanographic Journal 60 (2010) 25-36 Darwin s mid-evening surge Gerald L. Thomsen and Roger K. Smith Meteorological Institute, University of Munich, Germany (Manuscript received

More information

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) 1 Definitions: The sea breeze is a local, thermally direct circulation arising from

More information

Characterization of Boundary-Layer Meteorology During DISCOVER-AQ

Characterization of Boundary-Layer Meteorology During DISCOVER-AQ Characterization of Boundary-Layer Meteorology During DISCOVER-AQ Daniel M. Alrick and Clinton P. MacDonald Sonoma Technology, Inc. Gary A. Morris St. Edward s University for Texas Air Quality Research

More information

Polar storms and polar jets: Mesoscale weather systems in the Arctic & Antarctic

Polar storms and polar jets: Mesoscale weather systems in the Arctic & Antarctic Polar storms and polar jets: Mesoscale weather systems in the Arctic & Antarctic Ian Renfrew School of Environmental Sciences, University of East Anglia ECMWF-WWRP/Thorpex Polar Prediction Workshop 24-27

More information

The dynamics of heat lows over flat terrain

The dynamics of heat lows over flat terrain The dynamics of heat lows over flat terrain Roger K. Smith, Thomas Spengler presented by Julia Palamarchuk, Ukraine, Odessa Split Workshop in Atmospheric Physics and Oceanography, May 22-30, Split, Croatia

More information

Impact of Sea Breeze Fronts on Urban Heat Island & Air Quality in Texas

Impact of Sea Breeze Fronts on Urban Heat Island & Air Quality in Texas Impact of Sea Breeze Fronts on Urban Heat Island & Air Quality in Texas Xiao-Ming Hu Center for Analysis and Prediction of Storms, School of Meteorology University of Oklahoma July 14, 2015 at LanZhou

More information

Mesoscale Meteorology

Mesoscale Meteorology Mesoscale Meteorology METR 4433 Spring 2015 3.4 Drylines The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL. In this section, we will consider its general

More information

A R e R v e iew e w on o n th t e h e Us U e s s e s of o Clou o d u - (S ( y S s y t s e t m e )-Re R sol o ving n Mod o e d ls Jeff Duda

A R e R v e iew e w on o n th t e h e Us U e s s e s of o Clou o d u - (S ( y S s y t s e t m e )-Re R sol o ving n Mod o e d ls Jeff Duda A Review on the Uses of Cloud- (System)-Resolving Models Jeff Duda What is a Cloud-Resolving-Model (CRM)? General definition: A model with the following properties Resolution high enough to be able to

More information

Effect of Orography on Land and Ocean Surface Temperature

Effect of Orography on Land and Ocean Surface Temperature Present and Future of Modeling Global Environmental Change: Toward Integrated Modeling, Eds., T. Matsuno and H. Kida, pp. 427 431. by TERRAPUB, 2001. Effect of Orography on Land and Ocean Surface Temperature

More information

The impacts of explicitly simulated gravity waves on large-scale circulation in the

The impacts of explicitly simulated gravity waves on large-scale circulation in the The impacts of explicitly simulated gravity waves on large-scale circulation in the Southern Hemisphere. Linda Mudoni Department of Geological and Atmospheric Sciences October 2003 Introduction In the

More information

Synoptic features of orographically enhanced heavy rainfall on the east coast of Korea associated with Typhoon Rusa (2002)

Synoptic features of orographically enhanced heavy rainfall on the east coast of Korea associated with Typhoon Rusa (2002) Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L02803, doi:10.1029/2006gl028592, 2007 Synoptic features of orographically enhanced heavy rainfall on the east coast of Korea associated

More information

Super-parameterization of boundary layer roll vortices in tropical cyclone models

Super-parameterization of boundary layer roll vortices in tropical cyclone models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Super-parameterization of boundary layer roll vortices in tropical cyclone models PI Isaac Ginis Graduate School of Oceanography

More information

INTRODUCTION * Corresponding author address: Michael Tjernström, Stockholm University, Department of Meteorology, SE-

INTRODUCTION * Corresponding author address: Michael Tjernström, Stockholm University, Department of Meteorology, SE- 4.12 NEW ENGLAND COASTAL BOUNDARY LAYER MODELING Mark Žagar and Michael Tjernström * Stockholm University, Stockholm, Sweden Wayne Angevine CIRES, University of Colorado, and NOAA Aeronomy Laboratory,

More information

Gravity waves in stable atmospheric boundary layers

Gravity waves in stable atmospheric boundary layers Gravity waves in stable atmospheric boundary layers Carmen J. Nappo CJN Research Meteorology Knoxville, Tennessee 37919, USA Abstract Gravity waves permeate the stable atmospheric planetary boundary layer,

More information

1.6 HIGH RESOLUTION SIMULATIONS OF THE ISLAND-INDUCED CIRCULATIONS FOR THE ISLAND OF HAWAII DURING HaRP. Yang Yang and Yi-Leng Chen*

1.6 HIGH RESOLUTION SIMULATIONS OF THE ISLAND-INDUCED CIRCULATIONS FOR THE ISLAND OF HAWAII DURING HaRP. Yang Yang and Yi-Leng Chen* 1.6 HIGH RESOLUTION SIMULATIONS OF THE ISLAND-INDUCED CIRCULATIONS FOR THE ISLAND OF HAWAII DURING HaRP Yang Yang and Yi-Leng Chen* Department of Meteorology University of Hawaii at Manoa Honolulu, Hawaii

More information

EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT

EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT EFFECTS OF WAVE, TIDAL CURRENT AND OCEAN CURRENT COEXISTENCE ON THE WAVE AND CURRENT PREDICTIONS IN THE TSUGARU STRAIT Ayumi Saruwatari 1, Yoshihiro Yoneko 2 and Yu Tajima 3 The Tsugaru Strait between

More information

P2.17 OBSERVATIONS OF STRONG MOUNTAIN WAVES IN THE LEE OF THE MEDICINE BOW MOUNTAINS OF SOUTHEAST WYOMING

P2.17 OBSERVATIONS OF STRONG MOUNTAIN WAVES IN THE LEE OF THE MEDICINE BOW MOUNTAINS OF SOUTHEAST WYOMING P2.17 OBSERVATIONS OF STRONG MOUNTAIN WAVES IN THE LEE OF THE MEDICINE BOW MOUNTAINS OF SOUTHEAST WYOMING Larry D. Oolman 1, Jeffrey R. French 1, Samuel Haimov 1, David Leon 1, and Vanda Grubišić 2 1 University

More information

Abrupt marine boundary layer changes revealed by airborne in situ and lidar measurements

Abrupt marine boundary layer changes revealed by airborne in situ and lidar measurements Abrupt marine boundary layer changes revealed by airborne in situ and lidar measurements David A. Rahn 1, Thomas R. Parish 2, and David Leon 2 1 Univeristy of Kansas 2 Univeristy of Wyoming Precision Atmospheric

More information

Organized Deep Cumulus Convection Over the South China Sea and its Interaction with Cold Surges

Organized Deep Cumulus Convection Over the South China Sea and its Interaction with Cold Surges December 1983 F.-C. Zhu 839 Organized Deep Cumulus Convection Over the South China Sea and its Interaction with Cold Surges By Fu-Cheng Zhu* Atmospheric Physics Group, Imperial College, London, U.K. (Manuscript

More information

P2.25 SUMMER-TIME THERMAL WINDS OVER ICELAND: IMPACT OF TOPOGRAPHY. Bergen

P2.25 SUMMER-TIME THERMAL WINDS OVER ICELAND: IMPACT OF TOPOGRAPHY. Bergen P2.25 SUMMER-TIME THERMAL WINDS OVER ICELAND: IMPACT OF TOPOGRAPHY Haraldur Ólafsson 1 and Hálfdán Ágústsson 2 1 University of Iceland, Bergen School of Meteorology, Geophysical Institute, University of

More information

Local Winds & Microclimates. Unit 2- Module 1

Local Winds & Microclimates. Unit 2- Module 1 Local Winds & Microclimates Unit 2- Module 1 Objectives Overview of local winds (sea & land breezes, valley winds) Overview of microclimates (valley, urban, woodland) Local Winds Local Winds Local winds

More information

Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields: Supplementary material

Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields: Supplementary material Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore windfields: Supplementary material Authors: C. J. Steele, S. R. Dorling, R. von Glasow and J. Bacon Synoptic

More information

Thorsten Mauritsen *, Gunilla Svensson Stockholm University, Stockholm, Sweden

Thorsten Mauritsen *, Gunilla Svensson Stockholm University, Stockholm, Sweden J.1 WAVE FLOW SIMULATIONS OVER ARCTIC LEADS Thorsten Mauritsen *, Gunilla Svensson Stockholm University, Stockholm, Sweden Branko Grisogono Department of Geophysics, Faculty of Science, Zagreb, Croatia

More information

A climatological study of the sea and land breezes in the Arabian Gulf region

A climatological study of the sea and land breezes in the Arabian Gulf region Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jd009710, 2008 A climatological study of the sea and land breezes in the Arabian Gulf region Rebecca E. Eager, 1,4

More information

10.6 Eddy Formation and Shock Features Associated with a Coastally Trapped Disturbance

10.6 Eddy Formation and Shock Features Associated with a Coastally Trapped Disturbance 10.6 Eddy Formation and Shock Features Associated with a Coastally Trapped Disturbance William T. Thompson and Stephen D. Burk Naval Research Laboratory Monterey, California 1. Introduction On 28 August

More information

DUE TO EXTERNAL FORCES

DUE TO EXTERNAL FORCES 17B.6 DNS ON GROWTH OF A VERTICAL VORTEX IN CONVECTION DUE TO EXTERNAL FORCES Ryota Iijima* and Tetsuro Tamura Tokyo Institute of Technology, Yokohama, Japan 1. INTRODUCTION Various types of vertical vortices,

More information

The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL.

The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL. 2.2. Development and Evolution of Drylines The dryline is a mesoscale phenomena whose development and evaluation is strongly linked to the PBL. Text books containing sections on dryline: The Dry Line.

More information

The Persian Gulf summertime low-level jet over sloping terrain

The Persian Gulf summertime low-level jet over sloping terrain Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 145 157, January 2012 A The Persian Gulf summertime low-level jet over sloping terrain E. M. Giannakopoulou* and R. Toumi

More information

August 1990 H. Kondo 435. A Numerical Experiment on the Interaction between Sea Breeze and

August 1990 H. Kondo 435. A Numerical Experiment on the Interaction between Sea Breeze and August 1990 H. Kondo 435 A Numerical Experiment on the Interaction between Sea Breeze and Valley Wind to Generate the so-called "Extended Sea Breeze" By Hiroaki Kondo National Research Institute for Pollution

More information

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter

Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high over Siberia in winter 5th Session of the East Asia winter Climate Outlook Forum (EASCOF-5), 8-10 November 2017, Tokyo, Japan Influence of enhanced convection over Southeast Asia on blocking ridge and associated surface high

More information

Chapter 2. Turbulence and the Planetary Boundary Layer

Chapter 2. Turbulence and the Planetary Boundary Layer Chapter 2. Turbulence and the Planetary Boundary Layer In the chapter we will first have a qualitative overview of the PBL then learn the concept of Reynolds averaging and derive the Reynolds averaged

More information

Influence of Heat Transport by Sea Breezes on Inland Temperature in the Osaka Area

Influence of Heat Transport by Sea Breezes on Inland Temperature in the Osaka Area Academic Article Journal of Heat Island Institute International Vol. 9-2 (2) Influence of Heat Transport by Sea Breezes on Inland Temperature in the Osaka Area Atsumasa Yoshida* Junichi Yashiro* Xinbo

More information

Lecture 20. Active-weak spells and breaks in the monsoon: Part 1

Lecture 20. Active-weak spells and breaks in the monsoon: Part 1 Lecture 20 Active-weak spells and breaks in the monsoon: Part 1 Although the summer monsoon season is the rainy season over most of the Indian region, it does not rain every day, at any place, during the

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 1.138/nature877 Background The main sis of this paper is that topography produces a strong South Asian summer monsoon primarily by insulating warm and moist air over India from cold and dry extratropics.

More information

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Structure Consists of Layers Separated by Temperature Stratosphere: Temperature

More information

Figure 1. Modeling domains used in WRF-ARW

Figure 1. Modeling domains used in WRF-ARW SIMULATION OF TRANSPORT AND DISPERSION OF POLLUTANTS FROM ELEVATED POINT SOURCES IN MISSISSIPPI GULF COAST USING A MESOSCALE ATMOSPHERIC DISPERSION MODELING SYSTEM Venkata Srinivas Challa, Jayakumar Indracanti,

More information

1 INTRODUCTION. Figure 2: Synoptical situation at the beginning of the simulation: 5th January 1999 at 12UTC.

1 INTRODUCTION. Figure 2: Synoptical situation at the beginning of the simulation: 5th January 1999 at 12UTC. 2.2 NOCTURNAL CIRCULATIONS UNDER WEAK PRESSURE GRADIENTS IN THE ISLAND OF MALLORCA J. Cuxart and M.A. Jiménez Universitat de les Illes Balears, Spain 1 INTRODUCTION To study the local nocturnal circulations

More information

Xiaoli Guo Larsén,* Søren Larsen and Andrea N. Hahmann Risø National Laboratory for Sustainable Energy, Roskilde, Denmark

Xiaoli Guo Larsén,* Søren Larsen and Andrea N. Hahmann Risø National Laboratory for Sustainable Energy, Roskilde, Denmark Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 138: 274 279, January 2012 A Notes and Correspondence Origin of the waves in A case-study of mesoscale spectra of wind and

More information

The total precipitation (P) is determined by the average rainfall rate (R) and the duration (D),

The total precipitation (P) is determined by the average rainfall rate (R) and the duration (D), Orographic precipitation Common ingredients of heavy orographic precipitation The total precipitation (P) is determined by the average rainfall rate (R) and the duration (D), P = RD. (1) The rainfall rate

More information

2. THE NEW ENGLAND AIR QUALITY STUDY

2. THE NEW ENGLAND AIR QUALITY STUDY P2.4 NEW ENGLAND COASTAL AIR POLLUTION DISPERSION MODELING Michael Tjernström * and Mark Žagar Stockholm University, Stockholm, Sweden Wayne Angevine CIRES, University of Colorado, and NOAA Aeronomy Laboratory,

More information

The Effects of Gap Wind Induced Vorticity, the ITCZ, and Monsoon Trough on Tropical Cyclogenesis

The Effects of Gap Wind Induced Vorticity, the ITCZ, and Monsoon Trough on Tropical Cyclogenesis The Effects of Gap Wind Induced Vorticity, the ITCZ, and Monsoon Trough on Tropical Cyclogenesis Heather M. Holbach and Mark A. Bourassa Center for Ocean-Atmospheric Prediction Studies Department of Earth,

More information

Performance of three Selected Convective Schemes for Predicting Indian Summer Monsoon Rainfall using RegCM4.4

Performance of three Selected Convective Schemes for Predicting Indian Summer Monsoon Rainfall using RegCM4.4 Performance of three Selected Convective Schemes for Predicting Indian Summer Monsoon Rainfall using RegCM4.4 A.K.M. Saiful Islam Professor Institute of Water and Flood Management Bangladesh University

More information

OBSERVATIONAL AND NUMERICAL STUDY ON THE INFLUENCE OF LARGE-SCALE FLOW DIRECTION AND COASTLINE SHAPE ON SEA-BREEZE EVOLUTION

OBSERVATIONAL AND NUMERICAL STUDY ON THE INFLUENCE OF LARGE-SCALE FLOW DIRECTION AND COASTLINE SHAPE ON SEA-BREEZE EVOLUTION OBSERVATIONAL AND NUMERICAL STUDY ON THE INFLUENCE OF LARGE-SCALE FLOW DIRECTION AND COASTLINE SHAPE ON SEA-BREEZE EVOLUTION ROBERT C. GILLIAM, SETHU RAMAN and DEV DUTTA S. NIYOGI Department of Marine,

More information

Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis

Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis Climatology of the 10-m wind along the west coast of South American from 30 years of high-resolution reanalysis David A. Rahn and René D. Garreaud Departamento de Geofísica, Facultad de Ciencias Físicas

More information

Impacts of diffusion in stable boundary layers and orographic drag

Impacts of diffusion in stable boundary layers and orographic drag Impacts of diffusion in stable boundary layers and orographic drag Irina Sandu Thanks: Anton Beljaars, Ted Shepherd, Ayrton Zadra, Felix Pithan, Alessio Bozzo, Peter Bechtold 1 Outline Context: drag and

More information

FORMULATION OF THE THERMAL INTERNAL BOUNDARY LAYER IN A MESOSCALE MODEL. and

FORMULATION OF THE THERMAL INTERNAL BOUNDARY LAYER IN A MESOSCALE MODEL. and FORMULATON OF THE THERMAL NTERNAL BOUNDARY LAYER N A MESOSCALE MODEL W. L. PHYSCK, D. J. ABBS CSRO Division of Atmospheric Research, Private Bag No. 1, Mordialloc, Australia, 3195 and R. A. PELKE Dept.

More information

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College The Shoreline A Dynamic Interface The shoreline is a dynamic interface (common boundary) among air, land, and the ocean. The shoreline

More information

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected)

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected) Supplement Wind, Fetch and Waves Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular 10-7 - 10-2 10-1 (neglected) Coriolis not important Turbulent 10-2 10

More information

Idealized Numerical Modeling of a Land/Sea Breeze

Idealized Numerical Modeling of a Land/Sea Breeze Idealized Numerical Modeling of a Land/Sea Breeze Jeremy A. Gibbs School of Meteorology, University of Oklahoma 3 December 2008 1 Introduction With references in the Bible, the land and sea breeze is one

More information

SENSITIVITY OF DEVELOPING TROPICAL CYCLONES TO INITIAL VORTEX DEPTH AND THE HEIGHT OF ENVIRONMENTAL DRY AIR

SENSITIVITY OF DEVELOPING TROPICAL CYCLONES TO INITIAL VORTEX DEPTH AND THE HEIGHT OF ENVIRONMENTAL DRY AIR 6D.6 SENSITIVITY OF DEVELOPING TROPICAL CYCLONES TO INITIAL VORTEX DEPTH AND THE HEIGHT OF ENVIRONMENTAL DRY AIR Peter M. Finocchio*, Sharanya J. Majumdar, David S. Nolan University of Miami - RSMAS, Miami,

More information

Influence of NOx/VOC emission-reduction on ozone levels in the Mediterranean area

Influence of NOx/VOC emission-reduction on ozone levels in the Mediterranean area EUROPEAN COMMISSION JOINT RESEARCH CENTRE ENVIRONMENT INSTITUTE Environmental Modelling Task Force Influence of NOx/VOC emission-reduction on ozone levels in the Mediterranean area C. Cuvelier, P. Thunis

More information

QUARTERLY JOURNAL ROYAL METEOROLOGICAL SOCIETY

QUARTERLY JOURNAL ROYAL METEOROLOGICAL SOCIETY QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Vol. 132 APRIL 2006 Part A No. 616 Q. J. R. Meteorol. Soc. (2006), 132, pp. 691 707 doi: 10.1256/qj.05.126 Simulations of low-level convergence lines

More information

8.4 COASTAL WIND ANOMALIES AND THEIR IMPACT ON SURFACE FLUXES AND PROCESSES OVER THE EASTERN PACIFIC DURING SUMMER

8.4 COASTAL WIND ANOMALIES AND THEIR IMPACT ON SURFACE FLUXES AND PROCESSES OVER THE EASTERN PACIFIC DURING SUMMER 8.4 COASTAL WIND ANOMALIES AND THEIR IMPACT ON SURFACE FLUXES AND PROCESSES OVER THE EASTERN PACIFIC DURING SUMMER Ragoth Sundararajan * and Darko Koraĉin Desert Research Institute, Reno, NV, USA Michael

More information

Role of detailed wind-topography interaction in orographic rainfall

Role of detailed wind-topography interaction in orographic rainfall Q. J. R. Meteorol. SOC. (99), 7, pp. 4-46.77.:.8.(4.3) Role of detailed wind-topography interaction in orographic rainfall By P. ALPERT and H. SHAFIR Department of Geophysics and Planetary Sciences, Raymond

More information

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN

ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN ISOLATION OF NON-HYDROSTATIC REGIONS WITHIN A BASIN Bridget M. Wadzuk 1 (Member, ASCE) and Ben R. Hodges 2 (Member, ASCE) ABSTRACT Modeling of dynamic pressure appears necessary to achieve a more robust

More information

Seasonal Evaluation of Temperature Inversion

Seasonal Evaluation of Temperature Inversion Seasonal Evaluation of Temperature Inversion Kandil, H A 1, Kader M M. A 2, Moaty, A A. 2, Elhadidi, B 3, Sherif, A.O. 3 The seasonal evaluation of the temperature inversion over Cairo-Egypt is examined

More information

Lecture 14. Heat lows and the TCZ

Lecture 14. Heat lows and the TCZ Lecture 14 Heat lows and the TCZ ITCZ/TCZ and heat lows While the ITCZ/TCZ is associated with a trough at low levels, it must be noted that a low pressure at the surface and cyclonic vorticity at 850 hpa

More information

Beach Wizard: Development of an Operational Nowcast, Short-Term Forecast System for Nearshore Hydrodynamics and Bathymetric Evolution

Beach Wizard: Development of an Operational Nowcast, Short-Term Forecast System for Nearshore Hydrodynamics and Bathymetric Evolution Beach Wizard: Development of an Operational Nowcast, Short-Term Forecast System for Nearshore Hydrodynamics and Bathymetric Evolution Ad Reniers Civil Engineering and Geosciences, Delft University of Technology

More information

Mountain Forced Flows

Mountain Forced Flows Mountain Forced Flows Jeremy A. Gibbs University of Oklahoma gibbz@ou.edu February 3, 2015 1 / 45 Overview Orographic Precipitation Common Ingredients of Heavy Orographic Precipitation Formation and Enhancement

More information

Observations of Strong Surface Radar Ducts over the Persian Gulf

Observations of Strong Surface Radar Ducts over the Persian Gulf SEPTEMBER 1999 BROOKS ET AL. 1293 Observations of Strong Surface Radar Ducts over the Persian Gulf IAN M. BROOKS Scripps Institution of Oceanography, La Jolla, California ANDREAS K. GOROCH Naval Research

More information

13.1 EFFECTS OF DIABATIC COOLING ON THE FORMATION OF CONVECTIVE SYSTEMS UPSTREAM OF THE APENNINES DURING MAP IOP-8

13.1 EFFECTS OF DIABATIC COOLING ON THE FORMATION OF CONVECTIVE SYSTEMS UPSTREAM OF THE APENNINES DURING MAP IOP-8 13.1 EFFECTS OF DIABATIC COOLING ON THE FORMATION OF CONVECTIVE SYSTEMS UPSTREAM OF THE APENNINES DURING MAP IOP-8 Heather Dawn Reeves and Yuh-Lang Lin North Carolina State University Raleigh, NC 1. Introduction

More information

Numerical Study of Diurnal Circulations of Tropical Coastal Site Visakhapatnam Using the ARW MesoScale Model

Numerical Study of Diurnal Circulations of Tropical Coastal Site Visakhapatnam Using the ARW MesoScale Model (An ISO 3297: 2007 Certified Organization Numerical Study of Diurnal Circulations of Tropical Coastal Site Visakhapatnam Using the ARW MesoScale Model 1 V. LakshmanaRao, 2P.Satish 1 Assistant Professor,

More information

Development and propagation of a pollution gradient in the marine boundary layer during INDOEX (1999)

Development and propagation of a pollution gradient in the marine boundary layer during INDOEX (1999) Development and propagation of a pollution gradient in the marine boundary layer during INDOEX (1999) Matthew Simpson and Sethu Raman Department of Marine, Earth, and Atmospheric Sciences, North Carolina

More information

Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster. Abstract

Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster. Abstract Atmospheric Waves James Cayer, Wesley Rondinelli, Kayla Schuster Abstract It is important for meteorologists to have an understanding of the synoptic scale waves that propagate thorough the atmosphere

More information

Numerical Approach on the Mechanism of Precipitation-Topography Relationship in Mountainous Complex Terrain

Numerical Approach on the Mechanism of Precipitation-Topography Relationship in Mountainous Complex Terrain Numerical Approach on the Mechanism of Precipitation-Topography Relationship in Mountainous Complex Terrain Yoshiharu, S. 1, S. Miyata 2, E. Nakakita 3 and M. Hasebe 4 1 Faculty of Engineering, Utsunomiya

More information

ALARO physics developments

ALARO physics developments Regional Cooperation for Limited Area Modeling in Central Europe ALARO physics developments Neva Pristov contributions from R. Brožkova, J. Mašek, L. Gerard, Ivan Baštak Duran, C. Wastl, C. Wittmann, M.

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

The atmospheric circulation system

The atmospheric circulation system The atmospheric circulation system Key questions Why does the air move? Are the movements of the winds random across the surface of the Earth, or do they follow regular patterns? What implications do these

More information

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65)

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Weather fronts (p 63) General circulation on a rotating Earth (p 65) Geostrophy force balance (p 66) Local effects (no coriolis force)

More information

Wind: Small Scale and Local Systems Chapter 9 Part 1

Wind: Small Scale and Local Systems Chapter 9 Part 1 Wind: Small Scale and Local Systems Chapter 9 Part 1 Atmospheric scales of motion Scales of atmospheric circulations range from meters or less to thousands of kilometers- millions of meters Time scales

More information

The influence of synoptic scale flow on sea breeze induced surface winds and calm zones

The influence of synoptic scale flow on sea breeze induced surface winds and calm zones PUBLISHED BY THE INTERNATIONAL METEOROLOGICAL INSTITUTE IN STOCKHOLM SERIES A DYNAMIC METEOROLOGY AND OCEANOGRAPHY Tellus (2010), 62A, 209 217 Printed in Singapore. All rights reserved C 2009 The Authors

More information

A new mechanism of oceanatmosphere coupling in midlatitudes

A new mechanism of oceanatmosphere coupling in midlatitudes A new mechanism of oceanatmosphere coupling in midlatitudes Arnaud Czaja & Nicholas Blunt Imperial College, London Grantham Institute for Climate Change 1. Motivation Two key questions By which mechanism(s)

More information

Lecture 13 March 24, 2010, Wednesday. Atmospheric Pressure & Wind: Part 4

Lecture 13 March 24, 2010, Wednesday. Atmospheric Pressure & Wind: Part 4 Lecture 13 March 24, 2010, Wednesday Atmospheric Pressure & Wind: Part 4 Synoptic scale winds Mesoscale winds Microscale winds Air-sea interactions The largest synoptic scale wind. Monsoon: Arabic for

More information

Observations and Modeling of Coupled Ocean-Atmosphere Interaction over the California Current System

Observations and Modeling of Coupled Ocean-Atmosphere Interaction over the California Current System Observations and Modeling of Coupled Ocean-Atmosphere Interaction over the California Current System Cape Blanco Dudley Chelton 1, Xin Jin 2, Jim McWilliams 2 & Tracy Haack 3 1 Oregon State University

More information

Canada s vast size creates a diverse range of weather conditions and climatic conditions. Warming trend for last 10 years Wet Spring Dry five summers

Canada s vast size creates a diverse range of weather conditions and climatic conditions. Warming trend for last 10 years Wet Spring Dry five summers Chapter 4 Weather and Climate Canada s vast size creates a diverse range of weather conditions and climatic conditions. Weather examples: Rainy today Snow tomorrow Fog on Wednesday 23 degree C today High

More information

Parameterizations (fluxes, convection)

Parameterizations (fluxes, convection) Parameterizations (fluxes, convection) Heinke Schlünzen Meteorological Institute, University of Hamburg New resolutions - new challenges What is the current status? Surface fluxes Convection Towards improving

More information

9/25/2014. Scales of Atmospheric Motion. Scales of Atmospheric Motion. Chapter 7: Circulation of the Atmosphere

9/25/2014. Scales of Atmospheric Motion. Scales of Atmospheric Motion. Chapter 7: Circulation of the Atmosphere Chapter 7: Circulation of the Atmosphere The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University Scales of Atmospheric Motion Small-

More information

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW.

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. ATMOSPHERIC CIRCULATION WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. Pressure differences result from variations in temperature. AIR

More information

Review for the second quarter. Mechanisms for cloud formation

Review for the second quarter. Mechanisms for cloud formation Review for the second quarter Mechanisms for cloud formation 1 Rising air expands and cools; Sinking air compresses and warms. (18) (24) Dry adiabatic lapse rate (10 o C/km): the rate of temperature decrease

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

A Wet-Season Rainfall Climatology to Support Airline Arrivals at Key West Matthew Bloemer and Andy Devanas NWS WFO Key West, FL

A Wet-Season Rainfall Climatology to Support Airline Arrivals at Key West Matthew Bloemer and Andy Devanas NWS WFO Key West, FL A Wet-Season Rainfall Climatology to Support Airline Arrivals at Key West Matthew Bloemer and Andy Devanas NWS WFO Key West, FL Introduction and Motivations The Island of Key West is served by an airport

More information

STUDY OF LOCAL WINDS IN MOUNTAINOUS COASTAL AREAS BY MULTI- SENSOR SATELLITE DATA

STUDY OF LOCAL WINDS IN MOUNTAINOUS COASTAL AREAS BY MULTI- SENSOR SATELLITE DATA STUDY OF LOCAL WINDS IN MOUNTAINOUS COASTAL AREAS BY MULTI- SENSOR SATELLITE DATA Werner Alpers Institute of Oceanography, University of Hamburg, Bundesstrasse 53, D-20146 Hamburg, Germany E-mail: alpers@ifm.uni-hamburg.de

More information

Meteorology I Pre test for the Second Examination

Meteorology I Pre test for the Second Examination Meteorology I Pre test for the Second Examination MULTIPLE CHOICE 1. A primary reason why land areas warm up more rapidly than water areas is that a) on land, all solar energy is absorbed in a shallow

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Atmosphere Circulation

Atmosphere Circulation Atmosphere Circulation Winds What Causes Winds? Difference in air pressure due to unequal heating of the atmosphere. Temperatures vary according to the amount of sun it gets. Uneven heating of the Earth

More information

Examples of Carter Corrected DBDB-V Applied to Acoustic Propagation Modeling

Examples of Carter Corrected DBDB-V Applied to Acoustic Propagation Modeling Naval Research Laboratory Stennis Space Center, MS 39529-5004 NRL/MR/7182--08-9100 Examples of Carter Corrected DBDB-V Applied to Acoustic Propagation Modeling J. Paquin Fabre Acoustic Simulation, Measurements,

More information

Short-period gravity waves over a high-latitude observation site: Rothera, Antarctica

Short-period gravity waves over a high-latitude observation site: Rothera, Antarctica Short-period gravity waves over a high-latitude observation site: Rothera, Antarctica K. Nielsen, D. Broutman, M. Taylor, D. Siskind, S. Eckermann, K. Hoppel, R. Hibbins, M. Jarvis, N. Mitchell, J. Russell

More information

Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model

Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model GEOPHYSICAL RESEARCH LETTERS, VOL. 33,, doi:10.1029/2006gl027988, 2006 Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model Todd P. Lane

More information

Chapter 10 Lecture Outline. The Restless Oceans

Chapter 10 Lecture Outline. The Restless Oceans Chapter 10 Lecture Outline The Restless Oceans Focus Question 10.1 How does the Coriolis effect influence ocean currents? The Ocean s Surface Circulation Ocean currents Masses of water that flow from one

More information