Chapter 10 Lecture Outline. The Restless Oceans

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Chapter 10 Lecture Outline. The Restless Oceans"

Transcription

1 Chapter 10 Lecture Outline The Restless Oceans

2 Focus Question 10.1 How does the Coriolis effect influence ocean currents?

3 The Ocean s Surface Circulation Ocean currents Masses of water that flow from one place to another Surface currents develop from friction between wind and the ocean surface Huge, slowly moving gyres

4 The Ocean s Surface Circulation Coriolis effect Deflects surface currents To the right in the Northern Hemisphere To the left in the Southern Hemisphere Four main currents generally exist within each gyre

5 The Ocean s Surface Circulation Five main gyres 1. North Pacific gyre 2. South Pacific gyre 3. North Atlantic gyre 4. South Atlantic gyre 5. Indian Ocean gyre Related to atmospheric circulation

6 The Ocean s Surface Circulation

7 Ocean Circulation

8 The Ocean s Surface Circulation Importance of surface currents on climate Warm currents transfer heat from low latitudes into higher latitudes (moderating effect) Influence of cold currents is most pronounced in the tropics or during summer months in the middle latitudes Chill the air Increase aridity

9 Focus Question 10.2 Why is deep-ocean circulation referred to as thermohaline circulation?

10 Upwelling and Deep-Ocean Circulation Coastal upwelling The rising of cold deep water to replace warm surface water Wind-induced vertical movement Most characteristic along west coasts Coastal winds combined with Coriolis effect cause water to move away from shore

11 Upwelling and Deep-Ocean Circulation

12 Ekman Spiral and Coastal Upwelling/Downwelling

13 Upwelling and Deep-Ocean Circulation Deep-ocean circulation A response to density differences Factors creating a dense mass of water Temperature (cold water is dense) Salinity (density increases with increasing salinity) Called thermohaline circulation

14 Upwelling and Deep-Ocean Circulation Most water in deep-ocean currents begins in high latitudes at the surface A simple model of ocean circulation is a conveyor belt traveling from the Atlantic Ocean, through the Indian and Pacific Oceans, and back again

15 Upwelling and Deep-Ocean Circulation

16

17 Focus Question 10.3 Describe what interfaces at a shoreline?

18 The Shoreline: A Dynamic Interface Continental and oceanic processes converge along coastlines Landscapes undergoing rapid change Interface between continent, ocean, and atmosphere Transition zones between marine and continental depositional environments

19 The Shoreline: A Dynamic Interface Shorelines are constantly being modified by: Waves and storms Sea level change Stream erosion and deposition Glaciation Volcanic activity Tectonic forces Human activity

20 The Shoreline: A Dynamic Interface

21 Focus Question 10.4 Describe the motion of a floating object as a wave passes.

22 Ocean Waves Waves Energy traveling along the interface between ocean and atmosphere Derive energy and motion from wind

23 Ocean Waves Wave height Distance between a trough and a crest Wavelength Horizontal distance between successive crests (or troughs) Wave period Time interval for one full wave to pass a fixed position

24 Ocean Waves Wave height, length, and period depend on: Wind speed Length of time the wind blows Fetch (distance the wind travels) As the wave travels, the water passes energy in a circular orbital motion.

25 Ocean Waves

26 Ocean Waves Waves are unaffected by depth until they approach shore Waves begin to feel bottom at water depth equal to wave base Slightly faster waves farther out to sea catch up and decrease the wavelength, which causes the wave to grow steadily higher When the wave is too steep to support itself, the wave front collapses, or breaks Surf is turbulent water created by breaking waves

27 Ocean Waves

28 Focus Question 10.5 Why do waves approaching the shoreline often bend?

29 Beaches and Shoreline Processes Beaches are composed of whatever material is available Some have a significant biological component Material does not stay in one place Wave erosion Caused by wave impact and pressure Breaks down rock, supplying sand to beaches

30 Beaches and Shoreline Processes

31 Beaches and Shoreline Processes Rivers of sand Sand in the surf zone moves roughly parallel to the shoreline Wave energy causes sand to move perpendicular to the shoreline Wave refraction Bending of waves As waves first touch bottom in the shallows they are slowed, causing them to bend Wave arrives parallel to shore

32 Beaches and Shoreline Processes Wave refraction Wave energy is concentrated against the sides and ends of the headland Wave erosion straightens an irregular shoreline

33 Wave Motion and Wave Refraction When Approaching Shore

34 Beaches and Shoreline Processes Longshore transport Beach drift Sediment moves in a zigzag pattern along the beach face Longshore current Current in surf zone Parallel to shore Moves substantially more sediment than beach drift

35 Beaches and Shoreline Processes

36 Beach Drifting and Longshore Currents

37 Focus Question 10.6 Describe erosional and depositional shoreline features.

38 Shoreline Features Erosional features Wave-cut cliff Wave-cut platform Marine terraces Associated with headlands Sea arch Sea stack

39 Shoreline Features

40 Shoreline Features

41 Shoreline Features Depositional features Spit A ridge of sand extending from the land into a bay with a hooked end Baymouth bar A sand bar that completely crosses a bay Tombolo A ridge of sand that connects an island to the mainland or another island

42 Shoreline Features

43 Shoreline Features Barrier islands Mainly along the Atlantic and Gulf Coasts Parallel the coast Originate in several ways: As spits severed from the mainland Created when turbulent waters heaped up sand scoured from the bottom Former sand-dune ridges that originated along the shore during the last glacial period

44 Shoreline Features

45 Shoreline Features

46 Focus Question 10.7 How permanent are hard stabilization efforts along shorelines?

47 Stabilizing the Shore Shoreline erosion influenced by local factors: Proximity to sediment-laden rivers Degree of tectonic activity Topography and composition of the land Prevailing wind and weather patterns Configuration of the coastline

48 Stabilizing the Shore Responses to erosion problems Hard stabilization Building structures Groins Barriers built at a right angle to the beach Designed to trap sand Breakwaters Barriers built offshore and parallel Protect boats from breaking waves

49 Stabilizing the Shore

50 Stabilizing the Shore Seawalls Armors the coast against breaking waves Often not effective

51 Stabilizing the Shore Alternatives to hard stabilization Beach nourishment by adding sand to the beach system Relocating buildings away from beach

52 Focus Question 10.8 How might building a dam on a river that flows to the sea affect a beach?

53 Contrasting America s Coasts Erosion problems along U.S. Coasts Shoreline erosion problems are different along the opposite coasts Atlantic and Gulf Coasts Development occurs mainly on barrier islands Face open ocean Receive full force of storms Development taken place more rapidly than understanding barrier island dynamics

54 Contrasting America s Coasts

55 Contrasting America s Coasts Erosion problems along U.S. Coasts Pacific Coast Characterized by relatively narrow beaches backed by steep cliffs and mountain ranges Major problem is the narrowing of the beaches Sediment for beaches is interrupted by dams and reservoirs Rapid erosion occurs along the beaches

56 Contrasting America s Coasts Shoreline classification is based on changes with respect to sea level Emergent coast Uplift of the land, or A drop in sea level

57 Contrasting America s Coasts Submergent coast Land adjacent to sea subsides, or Sea level rises Features of a submergent coast Highly irregular shoreline Estuaries - Drowned river mouths

58 Contrasting America s Coasts

59 Focus Question 10.9 Explain why an observer can experience two unequal high tides during one day.

60 Tides Changes in elevation of ocean surface Caused by the gravitational forces exerted upon Earth by the Moon, and to a lesser extent by the Sun

61 Tides

62 Tides Spring tide During new and full moons Gravitational forces added together Especially high and low tides Large daily tidal range

63 Tides Neap tide First and third quarters of the Moon Gravitational forces are offset Daily tidal range is least

64 Tides Tidal patterns Many factors influence the tides: Shape of the coastline Configuration of the ocean basin Water depth Diurnal pattern Semidiurnal pattern Mixed pattern

65 Tides Diurnal tidal pattern A single high and low tide each tidal day Occurs along northern shore of Gulf of Mexico Semidiurnal tidal pattern Two high and low tides each tidal day Little difference in high and low water heights Mixed tidal pattern Two high and two low waters each day Large inequality in high water heights, low water heights, or both Prevalent along the Pacific Coast of the United States

66 Tides

67 Tidal Cycle

68 Tides Tidal currents Horizontal flow accompanying the rise and fall of tides Flood current Advances into the coastal zone Ebb current Seaward moving water Sometimes tidal deltas are created

69 Tides

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 15 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Chapter. The Dynamic Ocean

Chapter. The Dynamic Ocean Chapter The Dynamic Ocean An ocean current is the mass of ocean water that flows from one place to another. 16.1 The Composition of Seawater Surface Circulation Surface Currents Surface currents are movements

More information

Earth Science Chapter 16 Section 3 Review

Earth Science Chapter 16 Section 3 Review Name: Class: Date: Earth Science Chapter 16 Section 3 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The movement of water that parallels the shore

More information

The Composition of Seawater

The Composition of Seawater The Composition of Seawater Salinity Salinity is the total amount of solid material dissolved in water. Most of the salt in seawater is sodium chloride, common table salt. Element Percent Element Percent

More information

Overview. Beach Features. Coastal Regions. Other Beach Profile Features. CHAPTER 10 The Coast: Beaches and Shoreline Processes.

Overview. Beach Features. Coastal Regions. Other Beach Profile Features. CHAPTER 10 The Coast: Beaches and Shoreline Processes. Overview CHAPTER 10 The Coast: Beaches and Shoreline Processes Coastal regions constantly change. The beach is a dominant coastal feature. Wave activity continually modifies the beach and coastal areas.

More information

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS

Directed Reading. Section: Ocean Currents. a(n). FACTORS THAT AFFECT SURFACE CURRENTS Skills Worksheet Directed Reading Section: Ocean Currents 1. A horizontal movement of water in a well-defined pattern is called a(n). 2. What are two ways that oceanographers identify ocean currents? 3.

More information

Essentials of Oceanography Eleventh Edition

Essentials of Oceanography Eleventh Edition Chapter Chapter 1 10 Clickers Lecture Essentials of Oceanography Eleventh Edition The Coast: Beaches and Shoreline Processes Alan P. Trujillo Harold V. Thurman Chapter Overview Coastal regions have distinct

More information

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular Fig. 11-11, p. 253 There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular differ by the amount of energy, which

More information

Marginal Marine Environments

Marginal Marine Environments Marginal Marine Environments Delta: discrete shoreline protuberances formed where rivers enter oceans, semi-enclosed seas, lakes or lagoons and supply sediment more rapidly than it can be redistributed

More information

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches Ocean Waves Capillary Wind generated Gravity Tides Tsunamis Seiches Capillary waves are driven by the surface tension produced by electrically polarized water molecule San Pedro Lighthouse Waves are alternate

More information

4/20/17. #30 - Coastlines - General Principles Coastlines - Overview

4/20/17. #30 - Coastlines - General Principles Coastlines - Overview Writing Assignment Due one week from today by 11:59 pm See main class web pages for detailed instructions Essays will be submitted in Illinois Compass (instructions later) Pick one: Earthquakes, tsunamis,

More information

The movement of ocean water is a powerful thing. Waves created

The movement of ocean water is a powerful thing. Waves created 16. Waves and Tides Section 16. 1 FOCUS Key Concepts From where do ocean waves obtain their energy? What three factors affect the characteristics of a wave? How does energy move through a wave? What force

More information

LAB: WHERE S THE BEACH

LAB: WHERE S THE BEACH Name: LAB: WHERE S THE BEACH Introduction When you build a sandcastle on the beach, you don't expect it to last forever. You spread out your towel to sunbathe, but you know you can't stay in the same spot

More information

Lesson: Ocean Circulation

Lesson: Ocean Circulation Lesson: Ocean Circulation By Keith Meldahl Corresponding to Chapter 9: Ocean Circulation As this figure shows, there is a connection between the prevailing easterly and westerly winds (discussed in Chapter

More information

170 points. 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description.

170 points. 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description. Ch 15 Earth s Oceans SECTION 15.1 An Overview of Oceans 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description. (5 points) 1. German research

More information

Oceans in Motion: Waves and Tides

Oceans in Motion: Waves and Tides Oceans in Motion: Waves and Tides Waves Waves are among the most familiar features in the ocean. All waves work similarly, so although we are talking about ocean waves here, the same information would

More information

Why Study Shorelines?

Why Study Shorelines? Why Study Shorelines? The seafloor is the largest part of Earth s surface. Many seafloor features and processes provide evidence of plate tectonics. Seafloor sediments and rocks are a source of several

More information

OCEANOGRAPHY STUDY GUIDE

OCEANOGRAPHY STUDY GUIDE OCEANOGRAPHY STUDY GUIDE Chapter 2 Section 1 1. Most abundant salt in ocean. Sodium chloride; NaCl 2. Amount of Earth covered by Water 71% 3. Four oceans: What are they? Atlantic, Pacific, Arctic, Indian

More information

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used. Assessment Chapter Test B The Movement of Ocean Water USING KEY TERMS Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

More information

THE RESTLESS SEA. https://pao.cnmoc.navy.mil/pao/educate/oceantalk2/indexrestless.htm

THE RESTLESS SEA. https://pao.cnmoc.navy.mil/pao/educate/oceantalk2/indexrestless.htm THE RESTLESS SEA Energy from the sun is the engine that drives the major ocean basin circulation patterns. Rising warm air, sinking cold air, and uneven heating of the Earth's surface create wind, the

More information

Ch 9: Waves. Wind waves. Formation of a wind wave

Ch 9: Waves. Wind waves. Formation of a wind wave Ch 9: Waves 1. Features of Waves 2. Deep-water, shallow water and transitional waves 3. Breaking Waves 4. Wind Waves 5. Tsunamis Cf. Fig. 9-2 Waves are created by a disturbance. * wind (wind waves, L=

More information

CHAPTER 7 Ocean Circulation

CHAPTER 7 Ocean Circulation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CHAPTER 7 Ocean Circulation Words Ocean currents Moving seawater Surface ocean currents Transfer heat from warmer to cooler areas Similar to pattern of major wind belts

More information

OCEANS. Main Ideas. Lesson 2: Ocean Currents Ocean Currents help distribute heat around Earth.

OCEANS. Main Ideas. Lesson 2: Ocean Currents Ocean Currents help distribute heat around Earth. Oceans Chapter 10 OCEANS Main Ideas Lesson 2: Ocean Currents Ocean Currents help distribute heat around Earth. Lesson 3: The Ocean Shore The shore is shaped by the movement of water and sand. OCEANS SO

More information

OCN201 Spring14 1. Name: Class: Date: True/False Indicate whether the statement is true or false.

OCN201 Spring14 1. Name: Class: Date: True/False Indicate whether the statement is true or false. Name: Class: _ Date: _ OCN201 Spring14 1 True/False Indicate whether the statement is true or false. 1. Short residence time elements are uniformly distributed in the oceans 2. Thermohaline circulation

More information

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks.

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks. Chapter 11 Tides A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks. Tidal range can be very large Tide - rhythmic oscillation of the ocean surface

More information

Exam 2 test bank with page references (Note that at the end of each question is a reference to the page where the answer can be found) Chapter 6 Water

Exam 2 test bank with page references (Note that at the end of each question is a reference to the page where the answer can be found) Chapter 6 Water Exam 2 test bank with page references (Note that at the end of each question is a reference to the page where the answer can be found) Chapter 6 Water 1. The hydrogen atoms in a water molecule tend to

More information

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company Unit 11 Lesson 2 How Does Ocean Water Move? Catch a Wave A wave is the up-and-down movement of surface water. Catch a Wave Catch a Wave (wave effects) Surface waves are caused by wind pushing against

More information

Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are.

Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are. Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are. 1. A cool breeze is blowing toward the land from the ocean on a warm, cloudless summer day. This condition is

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

Montessori for Everyone 2013 Types of Coastlines

Montessori for Everyone 2013 Types of Coastlines Coast The coast is the part of the land that borders the sea. It is subject to constant change, as the result of the waves and deposits carried by water onto the land. Coastline The coastline is where

More information

Oceans and Coastal Processes

Oceans and Coastal Processes C H A P T E R 11 Oceans and Coastal Processes WORDS TO KNOW barrier island longshore transport sandbar tidal range Coriolis effect neap tide spring tide tide El Niño ocean current surf zone This chapter

More information

Zonal (East-West) Currents. Wind-Driven Ocean Currents. Zonal (East-West) Currents. Meridional (N-S) Currents

Zonal (East-West) Currents. Wind-Driven Ocean Currents. Zonal (East-West) Currents. Meridional (N-S) Currents Wind-Driven Ocean Currents Similarities between winds & surface currents Zonal (East-West) Currents Trade winds push currents westward north & south of the equator Equatorial currents. Up to 100 cm/sec.

More information

Role of the oceans in the climate system

Role of the oceans in the climate system Role of the oceans in the climate system heat exchange and transport hydrological cycle and air-sea exchange of moisture wind, currents, and upwelling gas exchange and carbon cycle Heat transport Two Primary

More information

Chapter. Air Pressure and Wind

Chapter. Air Pressure and Wind Chapter Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. 19.1 Understanding Air Pressure Air Pressure Defined Air pressure

More information

Air Pressure and Wind

Air Pressure and Wind Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The

More information

Coastal Processes and Landforms

Coastal Processes and Landforms Coastal Processes and Landforms These icons indicate that teacher s notes or useful web addresses are available in the Notes Page. This icon indicates that the slide contains activities created in Flash.

More information

Dynamic Shoreline. Why do we care? Loss of land Damage to structures Recreation

Dynamic Shoreline. Why do we care? Loss of land Damage to structures Recreation Dynamic Shoreline Why do we care? Loss of land Damage to structures Recreation Coastal Water Movement Waves provide the energy Through breaking As waves shoal Speed decreases Height increases Wavelength

More information

Oceanography 10. Tides Study Guide (7A)

Oceanography 10. Tides Study Guide (7A) Tides Study Guide (Topic 7A) page 1 Oceanography 10 Name: Tides Study Guide (7A) Note: Do not forget to include the units of your answers. 1. Use the tide chart below to determine the height and time of

More information

Under the Boardwalk: Coastal Geomorphology

Under the Boardwalk: Coastal Geomorphology Under the Boardwalk: Coastal Geomorphology What to look for while you're on the beach during spring break. What Causes Changes in Sea Level? Answer Varies with Time Scale. Long-Term Changes in Sea Level

More information

Q1. What are the primary causes/contributors to coastal erosion at Westshore and the concept of longshore / littoral drift.

Q1. What are the primary causes/contributors to coastal erosion at Westshore and the concept of longshore / littoral drift. Q1. What are the primary causes/contributors to coastal erosion at Westshore and the concept of longshore / littoral drift. In order of (timing related) contribution to present problem 1. Beach is too

More information

GEOLOGY 101 Under the Boardwalk: Coastal Geomorphology

GEOLOGY 101 Under the Boardwalk: Coastal Geomorphology GEOLOGY 101 Under the Boardwalk: Coastal Geomorphology What to look for while you're on the beach during spring break. J.S. Kite, WVU What Causes Changes in Sea Level? Answer Varies with Time Scale. Long-Term

More information

Chronic coastal erosion is a statewide problem

Chronic coastal erosion is a statewide problem Chronic coastal erosion is a statewide problem 1 Seawalls are constructed where there is erosion, but they do not solve the erosion they often worsen it along adjacent shores. Hawaii needs erosion solutions.

More information

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted

Chapter 10 Waves. wave energy NOT the water particles moves across the surface of the sea. wave form moves and with it, energy is transmitted Capillary Waves, Wind Waves, Chapter 10 Waves Anatomy of a Wave more like a real wave Tsunamis, Internal waves big waves huge waves rogue waves small waves more like a sine wave Wave direction Wave wave

More information

Section 1: Waves. There are two distinct types of wave at the coastline: constructive and destructive waves.

Section 1: Waves. There are two distinct types of wave at the coastline: constructive and destructive waves. Coastal Erosion EARTH SCIENCE GEOLOGY COASTAL EROSION Section 1: Waves How do waves form? Waves are generated by the competing forces of surface friction. The wind transfers energy from air to water and

More information

OCEAN WAVES NAME. I. Introduction

OCEAN WAVES NAME. I. Introduction NAME OCEAN WAVES I. Introduction The physical definition of a wave is a disturbance that transmits energy from one place to another. In the open ocean waves are formed when wis blowing across the water

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 6 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) A steep pressure gradient: a. produces light winds. b. produces strong winds. c. is only possible in

More information

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer 18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways.

More information

Ocean Currents Unit (4 pts)

Ocean Currents Unit (4 pts) Name: Section: Ocean Currents Unit (Topic 9A-1) page 1 Ocean Currents Unit (4 pts) Ocean Currents An ocean current is like a river in the ocean: water is flowing traveling from place to place. Historically,

More information

Air moves towards ITCZ in tropics because of rising air - convection. Horizontal extent of Hadley cell is modified by Friction Coriolis Force

Air moves towards ITCZ in tropics because of rising air - convection. Horizontal extent of Hadley cell is modified by Friction Coriolis Force Air moves towards ITCZ in tropics because of rising air - convection Horizontal extent of Hadley cell is modified by Friction Coriolis Force Speed from rotation Objects at rest on Earth move at very different

More information

Deep Water Currents Lab

Deep Water Currents Lab Deep Water Currents Lab Background: Anyone visiting the seashore is struck by the constant motion of water traveling on the surface of the ocean in the form of waves. But beneath the ocean's surface, water

More information

Name Date Class. Overview Oceans. Directions: Use the following terms to complete the concept map below. wind salts climate gases.

Name Date Class. Overview Oceans. Directions: Use the following terms to complete the concept map below. wind salts climate gases. Directed Reading for Content Mastery Overview Oceans Directions: Use the following terms to complete the concept map below. wind salts climate gases densitytides nekton Seawater contains dissolved 1. and

More information

GCSE GEOGARPHY OCR B REVISION GUIDE Coasts

GCSE GEOGARPHY OCR B REVISION GUIDE Coasts GCSE GEOGARPHY OCR B REVISION GUIDE Coasts Definition: The interface between land and sea. Coastal regions cover only 10% of the inhabited land space, yet they are home to more than 60% of the world s

More information

Consequences of the Earth's Rotation

Consequences of the Earth's Rotation Consequences of the Earth's Rotation The earth rotates onits axis taking approximately 24hours to complete onerotation. This has important environmental consequences. 1. Rotation creates a diurnal cycle

More information

OCEANOGRAPHY 101. Map, and temperature, salinity & density profiles of the water column at X, near mouth of the Columbia River.

OCEANOGRAPHY 101. Map, and temperature, salinity & density profiles of the water column at X, near mouth of the Columbia River. OCEANOGRAPHY 101 EXAM 2 WINTER 00 NAME STUDENT NUMBER 1 Map, and temperature, salinity & density profiles of the water column at X, near mouth of the Columbia River. P a c i f i c O c e a n X WA Columbia

More information

Waves Part II. non-dispersive (C g =C)

Waves Part II. non-dispersive (C g =C) Waves Part II Previously we discussed Surface Gravity Waves Deep Water Waves Shallow Water Waves C g T 2 C g h dispersive (C g =C/2) Definitions: phase speed C= /T= /k non-dispersive (C g =C) group speed

More information

Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres

Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres Ocean Currents What Happens at the Coast? Readings: Ch 9: 9.2-9.6, 9.8-9.13 Graphic: America's Cup sailboat race off Newport, Rhode Island. J.

More information

Wave-dominated embayed beaches. Andrew D Short School of Geosciences University of Sydney

Wave-dominated embayed beaches. Andrew D Short School of Geosciences University of Sydney Wave-dominated embayed beaches Andrew D Short School of Geosciences University of Sydney Wave-dominated embayed beaches wave-dominated beaches embayed beaches morphodynamics of W-D embayed beaches circulation,

More information

DUNE STABILIZATION AND BEACH EROSION

DUNE STABILIZATION AND BEACH EROSION DUNE STABILIZATION AND BEACH EROSION CAPE HATTERAS NATIONAL SEASHORE NORTH CAROLINA ROBERT DOLAN PAUL GODFREY U. S. DEPARTMENT OF INTERIOR NATIONAL PARK SERVICE OFFICE OF NATURAL SCIENCE WASHINGTON, D.

More information

What Causes Different Weather?

What Causes Different Weather? What Causes Different Weather? Table of Contents What causes weather?...3 What causes it to rain or snow?...4 What causes flooding?...5 What causes hail?...6 What causes the seasons?...7-8 What causes

More information

La Rance tidal power plant in La Rance, France. Tidal and Wave Energy

La Rance tidal power plant in La Rance, France. Tidal and Wave Energy La Rance tidal power plant in La Rance, France Tidal and Wave Energy Tides Tides are caused by the pull of the moon. Tides involve the rise and fall of sea levels. Around the coast of Ireland, the sea

More information

The Dynamic Coast. Right Place Resources. A presentation about the interaction between the dynamic coast and people

The Dynamic Coast. Right Place Resources. A presentation about the interaction between the dynamic coast and people The Dynamic Coast Houses threatened by coastal erosion in California Right Place Resources A presentation about the interaction between the dynamic coast and people For the rest of the presentations in

More information

Longshore sediment transport

Longshore sediment transport and Orson P. Smith, PE, Ph.D., Professor Emeritus Longshore transport Waves breaking at an angle to shore Sediment under breakers lifted by saltation Drops back to sea bed a little down drift Swash (runup)

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 15 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 3, Lecture 1 Mass emission rate, Atmospheric Stability Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Review homework Review quiz Mass emission

More information

Atmospheric and Ocean Circulation Lab

Atmospheric and Ocean Circulation Lab Atmospheric and Ocean Circulation Lab name Key Objectives: The main goal of this lab is to learn about atmospheric and oceanic circulation and how these two processes are strongly inter-dependent and strongly

More information

Statistics for Five Oceans - (In reality there is only one world ocean but geopolitics and environmental groups leads to the naming of five oceans.

Statistics for Five Oceans - (In reality there is only one world ocean but geopolitics and environmental groups leads to the naming of five oceans. UNIT 4: OCEANS AND SHORELINES STUDY GUIDE CHAPTERS: 9 AND 16 (Revised 7/16) UNIT 4 HOMEWORK worth 10 points WEB HIT HOMEWORK: Two written paragraphs, each with three complete sentences For any Unit Web

More information

Variation in Beach Profile and Sediment Characteristics at Popham Beach, Phippsburg, ME

Variation in Beach Profile and Sediment Characteristics at Popham Beach, Phippsburg, ME Colby College Digital Commons @ Colby Undergraduate Research Symposium Student Research 2006 Variation in Beach Profile and Sediment Characteristics at Popham Beach, Phippsburg, ME Kathryn Lidington Colby

More information

Tides. Tides: longest waves. or seas. or ripples

Tides. Tides: longest waves. or seas. or ripples Tides or ripples or seas Tides: longest waves Tides Definition: The rise and fall of sea level due to the gravitational forces of the Moon and Sun and the rotation of the Earth. Why tides are important?

More information

An Update of Coastal Erosion in Puerto Rico

An Update of Coastal Erosion in Puerto Rico Jack Morelock and Maritza Barreto An Update of Coastal Erosion in Puerto Rico Department of Marine Sciences, University of Puerto Rico at Mayagüez and Geography Department, University of Puerto Rico at

More information

OCN 201: Coastal Erosion and Beach Loss

OCN 201: Coastal Erosion and Beach Loss OCN 201: Coastal Erosion and Beach Loss This lecture was prepared from slides and notes kindly provided by: Prof. Chip Fletcher Department of Geology and Geophysics, University of Hawaii Chip Fletcher

More information

COASTAL MANAGEMENT AND PROTECTION METHODS! 1

COASTAL MANAGEMENT AND PROTECTION METHODS! 1 COASTAL MANAGEMENT AND PROTECTION METHODS! 1 Strategy What it does Cons Pros Examples SOFT ENGINEERING: The use of ecological principles and practices to reduce erosion and achieve the stabilization and

More information

CROSS-SHORE SEDIMENT PROCESSES

CROSS-SHORE SEDIMENT PROCESSES The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL DEFENSE SYSTEMS I CHAPTER

More information

Wind and Air Pressure

Wind and Air Pressure Wind and Air Pressure When air moves above the surface of the Earth, it is called wind. Wind is caused by differences in air pressure. When a difference in pressure exists, the air will move from areas

More information

CHAPTER 32 WAVES, BREAKERS AND SURF

CHAPTER 32 WAVES, BREAKERS AND SURF CHAPTER 32 WAVES, BREAKERS AND SURF OCEAN WAVES 3200. Introduction Ocean waves, the most easily observed phenomenon at sea, are probably the least understood by the average seaman. More than any other

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

COASTAL UPWELLING - MONTEREY BAY CALIFORNIA (modified from The Maury Project, AMS)

COASTAL UPWELLING - MONTEREY BAY CALIFORNIA (modified from The Maury Project, AMS) Name: Date: Per: COASTAL UPWELLING - MONTEREY BAY CALIFORNIA (modified from The Maury Project, AMS) The ocean is composed of 3 distinct layers: the shallow surface mixed zone, the transition zone, and

More information

Lecture 13. Global Wind Patterns and the Oceans EOM

Lecture 13. Global Wind Patterns and the Oceans EOM Lecture 13. Global Wind Patterns and the Oceans EOM Global Wind Patterns and the Oceans Drag from wind exerts a force called wind stress on the ocean surface in the direction of the wind. The currents

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation Why do we say Earth's temperature is moderate? It may not look like it, but various processes work to moderate Earth's temperature across the latitudes. Atmospheric circulation

More information

D) water having a higher specific heat than land B) B C) expansion, cooling to the dewpoint, and condesation

D) water having a higher specific heat than land B) B C) expansion, cooling to the dewpoint, and condesation Base your answers to questions 1 through 4 on the map and the passage below and on your knowledge of Earth science. The map shows four different locations in India, labeled, A, B, C, and D, where vertical

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 6 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Air Pressure and Wind. Goal: Explain the formation of wind based on differences in air pressure

Air Pressure and Wind. Goal: Explain the formation of wind based on differences in air pressure Air Pressure and Wind Goal: Explain the formation of wind based on differences in air pressure What is Air Pressure? Reminder: Air pressure is thickest near Earth s surface and becomes thinner as we move

More information

9.3. Storing Thermal Energy. Transferring Thermal Energy

9.3. Storing Thermal Energy. Transferring Thermal Energy 9.3 If you have been to a beach on a hot summer day, you have likely cooled off by going for a dip in the water. The water, which is cooler than you are, removes thermal energy from your body, making you

More information

Modeling Beach Erosion

Modeling Beach Erosion Ocean Lecture & Educator s Night May 16, 2012 Modeling Beach Erosion Below is an overview of the activity Modeling Beach Erosion (New Jersey Sea Grant Consortium, Education Program) to incorporate information

More information

INTRODUCTION TO COASTAL ENGINEERING

INTRODUCTION TO COASTAL ENGINEERING The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL DEFENSE SYSTEMS I CHAPTER

More information

Yellow Sea with contributions by John R. Apel

Yellow Sea with contributions by John R. Apel with contributions by John R. Apel Overview The is a shallow inland sea lying between northeastern China and the Korean Peninsula, with depths in its central north-south trough in excess of 60 to 80 m

More information

Coastal Processes Day Criccieth

Coastal Processes Day Criccieth Coastal Processes Rivers (Conwy) Rivers (Peris) Urban Studies Lowland Glaciation Tourism and National Parks Soils Sand Dunes Upland Glaciation Rural Settlements The Centre and Staff Fieldwork Equipment

More information

The Physical and Human Causes of Erosion. The Holderness Coast

The Physical and Human Causes of Erosion. The Holderness Coast The Physical and Human Causes of Erosion The Holderness Coast By The British Geographer Situation The Holderness coast is located on the east coast of England and is part of the East Riding of Yorkshire;

More information

Waters rise and fall in tides.

Waters rise and fall in tides. Page 1 of 5 KEY ONEPT Waters rise and fall in tides. BEFORE, you learned Wind provides the energy to form waves in the ocean Ocean waves change near shore The ocean is a global body of water NOW, you will

More information

Wind Energy. Definition of Wind Energy. Wind energy is energy from moving air.

Wind Energy. Definition of Wind Energy. Wind energy is energy from moving air. Wind Energy Definition of Wind Energy Wind energy is energy from moving air. Air has mass. When it moves, it has kinetic energy. Kinetic energy is the energy of motion. How does wind form? Wind forms when

More information

Tidal Energy. Definition of Tidal Energy. Tidal energy is energy derived from the movement of the ocean tides.

Tidal Energy. Definition of Tidal Energy. Tidal energy is energy derived from the movement of the ocean tides. Tidal Energy Definition of Tidal Energy Tidal energy is energy derived from the movement of the ocean tides. Water has mass. When it moves, it has kinetic energy which can be harnessed. Kinetic energy

More information

NORTHERN CELL OPTIONS SHORTLIST RECOMMENDATIONS

NORTHERN CELL OPTIONS SHORTLIST RECOMMENDATIONS OPTIONS SHORTLIST RECOMMENDATIONS Coastal Unit C: Bayview Options recommended for MCDA scoring. Status quo. Planting 3. Renourishment (gravel) 6. Beach-scraping 7. Restore shingle crest. Inundation accommodation

More information

ATMS 310 Tropical Dynamics

ATMS 310 Tropical Dynamics ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any

More information

Oceanography. Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS

Oceanography. Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS Oceanography Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS أ. راي د مرعي الخالدي Circulation Patterns and Ocean Currents 7.1 Density-Driven Driven Circulation 7.2 Thermohaline Circulation 7.3 The Layered

More information

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces MET 200 Lecture 11 Local Winds Last Lecture: Forces Scales of Motion Eddies Sea Breeze Mountain-Valley Circulations Chinook - Snow Eater Drainage Wind - Katabatic Wind 1 2 Review of Forces 1. Pressure

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Nearshore Circulation Undertow and Rip Cells Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay

More information

STUDY GUIDE. The Land. Physical Geography of Europe. Chapter 11, Section 1. Terms to Know DRAWING FROM EXPERIENCE ORGANIZING YOUR THOUGHTS

STUDY GUIDE. The Land. Physical Geography of Europe. Chapter 11, Section 1. Terms to Know DRAWING FROM EXPERIENCE ORGANIZING YOUR THOUGHTS For use with textbook pages 271 276. The Land Terms to Know dikes Large banks of earth and stone that hold back water (page 272) polder Drained area of land (page 272) glaciation The process in which glaciers

More information

Global Winds and Local Winds

Global Winds and Local Winds Global Winds and Local Winds National Science Education Standards ES 1j What is the Coriolis effect? What are the major global wind systems on Earth? What Causes Wind? Wind is moving air caused by differences

More information

Isaac Newton ( )

Isaac Newton ( ) Introduction to Climatology GEOGRAPHY 300 Isaac Newton (1642-1727) Tom Giambelluca University of Hawai i at Mānoa Atmospheric Pressure, Wind, and The General Circulation Philosophiæ Naturalis Principia

More information

Chapter 9 - Ocean Circulation

Chapter 9 - Ocean Circulation Chapter 9 - Ocean Circulation The Atmosphere and Ocean Circulation Systems Are Linked The global atmospheric circulation system influences the movement of air masses in general "belts" stationary wind

More information

SAND BOTTOM EROSION AND CHANGES OF AN ACTIVE LAYER THICKNESS IN THE SURF ZONE OF THE NORDERNEY ISLAND

SAND BOTTOM EROSION AND CHANGES OF AN ACTIVE LAYER THICKNESS IN THE SURF ZONE OF THE NORDERNEY ISLAND SAND BOTTOM EROSION AND CHANGES OF AN ACTIVE LAYER THICKNESS IN THE SURF ZONE OF THE NORDERNEY ISLAND Kos'yan R. 1, Kunz H. 2, Podymov l. 3 1 Prof.Dr.,The Southern Branch of the P.P.Shirshov Institute

More information