UP AND DOWN THE AIR. Solution suggestions to the worksheet: Narrator: Katarína Frečková

Size: px
Start display at page:

Download "UP AND DOWN THE AIR. Solution suggestions to the worksheet: Narrator: Katarína Frečková"

Transcription

1 Video: DVD, 13 minutes, 2005 Addressees: pupils from 10 years of age at elementary, secondary and grammar school Keywords: windward and leeward, the High Tatras, air moisture, point of condensation, summer clouds, storm, area of high and low pressure, cold front, adiabatic warming and cooling, cloud formation, Föhn principle, Dobšinská ice cave Chapters: Windward and Leeward, Summer Clouds, Storm, Ice Cave A Film by Rainer Hahn Assistance: Jana Bryjová, Annerose Hahn, Jakub Ľudma, Rastislav Pjontek, Miroslava Suchánová, Katarína Frečková Narrator: Katarína Frečková Content: The film shows consequences of adiabatic warming and cooling of the air: emergence and dissipation of clouds; condensation niveau of the clouds on windward and leeward side of the mountains; the föhn principle and its consequences. It also illustrates the formation of summer clouds and storms, as well as shifting of cold front and formation of an ice cave. In three natural landscapes high mountains, flatland and a cave the film provides an impressive insight into enigmatic powers of the air. Up and down the air that is a constant circulation. Solution suggestions to the worksheet: 1a. emergence of water vapour droplets during cooling 1b. fog, clouds and precipitation 1c. temperature, at which water vapour condenses 1d. the side exposed to/ away from the wind 1e. warm, moist air rises on the windward side, condenses, clouds emerge, on the lee side the clouds dissipate due to adiabatic warming 2a. small, cumulus clouds 2b. the air cools down 2c. e.g. condensation trail does not dissipate 2d. cold and warm air masses collide, the cold front takes over warm front 2e. energy 3a. cold air in winter cools the cave, warm air does not get in 3b. ground glaciers and various forms of ice all year round Praxis Unterrichtsfilm Draisendorf Wiesenttal 4a. snow, rain, hoarfrost, hail, black ice, frost, etc. 4b. cloud formation on windward side, cloud dissipation on the lee side 4c. North of Slovakia, at the Polish border 1

2 Film text to PRAXIS EDUCATIONAL FILM Windward and Leeward Ahead of us: the High Tatras, the smallest high mountains in the world. The High Tatras are a famous holiday and skiing resort, as well as the location of spas for curing pulmonary diseases. The peaks are thickly veiled by the clouds. Such a common view! The airflow approaching the High Tatras blows from the north to the south. This is the Polish side. The town of Zakopane, a noted winter sports resort, is typical of almost constant stormy and rainy weather. That is the Slovak side: the city of Poprad suffused with sunshine. Between the two cities, on an area of about six kilometres (approx. four miles), sprawls the mountain range of High Tatras. Why is the weather on such a small area so unstable? That s what we d like to find out! So, let s go to the Lomnický Peak. On the funicular railway, we go over beautiful, clear, but ice cold brooks to reach the belt of dwarf mountain pine. We are approaching the peak. Thick clouds embrace us. The air is humid and it is getting colder and colder. The peak offers a breathtaking, bright view southwards. Suddenly the curtain of clouds opens. It gives us a chance to observe the formation of clouds. Warm air, rising from the valley, is humid. On its way up, it cools down and the moisture condenses into very small water droplets. The clouds arise. The point of condensation is clearly visible. Mountain peaks are heavily overcast. On the other side, we can observe quite a reverse process. The clouds sink down the peak and dissipate. This is the point of dissipation. The cool air heats up. The High Tatras a cloud machine. Summer clouds In the flatlands the air circulation is similar to that in the mountains. The sun heats the earth and the warm air rises up. The higher the air rises the lower is the temperature. The warm air cools down and the water vapour condenses. Summer clouds arise. Most of the summer clouds are visible between one and two p.m. The darker the bottom of the cloud the higher it reaches. In the afternoon, the air gets colder again and clouds disappear. On the next day, the summer clouds are formed again. However, this time they become larger and more numerous. Eventually, there comes a short, strong summer storm. Soon, everything is calm again and the air is fresh and clear. 2

3 Film text PRAXIS EDUCATIONAL FILM (continuation) Storm How does a storm originate? It is a lovely day. This is an area of a high air pressure with warm air. Cirrus clouds fly high above us. A condensed stripe left by an airplane does not dissipate, because the air moisture strongly increased. We can see the low air pressure area approaching. The next day begins with a nice sunny weather. When a low-pressure area with colder and moister air comes, the colder air will move over the warm air of the high-pressure area. The warm air has no more space to rise and the pressure between the two layers steadily increases. Electric discharges occur. A strong storm develops. These are the consequences of the storm: A new house was hit by a thunderbolt. Its statics was badly damaged. It must be demolished. The storm goes on. Ice Cave This is a unique ice cave in Slovakia the Dobšinská Ice Cave. One of three such caves in Europe. It is August and swarms of tourists visit this natural attraction. The huge hole is fascinating by its astonishing ice formations, stalactites, ice tunnels and ice waterfalls. It is high summer. The appearance of the cave constantly changes with the alternation of the thawing and freezing periods. Old photographs show a huge ice waterfall. It looks quite different today. When the cave was discovered, it was used as an ice rink. On some places, the ice can be up to 26.5 metres (27 yards) thick! How can the cold air and ice remain here even in summer? On the highest spot, the ice cave has got an opening a gap in the rock. Through this aperture, the cold air in winter flows into the cave as if through a funnel. Due to a special location of the cave, only the air, which is colder than the temperature inside, can get in. In winter, the cave becomes so chilled, that the glacier and other ice formations can last even through the whole year. 3

4 Supplementary material to PRAXIS EDUCATIONAL FILM Condensation Saturation of the air with water vapour is a basic condition for condensation and cloud formation. Water vapour is an invisible gas. What we can see during heating radiation from thermal power machines or during exhaling in cold air, are products containing besides the actual water vapour also products of condensation in the form of very small droplets of water. Water vapour or water droplets enter the atmosphere in the form of fog, clouds and precipitation. For condensation, the air must be cooled down to the dew point; it has to be supersaturated with water vapour. Condensation is caused by the following processes: 1. Cooling down through heat radiation: The surface of the earth loses energy, especially during cold nights, by means of heat radiation. When the radiation reaches the dew point temperature, dew arises. When the dew point temperature is reached near the ground, ground fog arises. The radiation area can also be on the obverse side of the clouds. The cloud cools down and the resulting cold air provides for condensation and increase in cloud volume. 2. Cooling down through heat exchange: Due to the approach of warm air (advection), the air above cold water, snow or cold continental regions cools down up to the dew point temperature. Fog builds up. When the cold air streams over warm water areas, such as seas or shores of the subpolar regions, a temperature exchange occurs between the water and fog due to continental winds. Such fog is often called sea fog. 3. Cooling down as a result of blending of warm and cold air: Approximation of warm and cold air masses leads to creation of an interface between air masses. In this way, the so-called front arises. On such a front, cooling of the warm air ensues, with condensation and cloud formation. 4. Cooling due to adiabatic expansion of the air (convection): During the expansion, the temperature drops by one degree per 100 metres. The cooling process up to the dew point temperature triggers condensation and cloud formation. 4

5 Supplementary material to PRAXIS EDUCATIONAL FILM (continuation) Fog Industrial areas and conurbations with heavy emissions of condensation nuclei and water vapour show high frequency of fog. Also, valleys and lowlands are more liable to the occurrence of fog. It can be often observed in coastal and boundary regions on the interface of warm and cold air. Fog is dissolved by heating or exchange of air masses. Rain and snowfall may dissipate fog, similarly as it can be dispersed by trees. Clouds Fog turns into clouds in higher layers of troposphere. They are a suspension of water droplets or ice particles. Clouds can be defined horizontally and vertically and they can move in both directions. Vertical shifts cause the existence of stratus clouds, convective processes result in cumulus clouds. Besides, there are water clouds, ice clouds and mixed clouds. Register of cloud types lists four cloud families with altogether ten cloud types. Moreover, there is a series of subtypes. Clouds cannot be unambiguously recognized from satellite pictures. In the same situation, there is a large scale of existing shapes. Large-scale convergence, convection, thermal effects of the surface of the earth and orographic influence result regionally in the cycle of seasons and, according to the properties of the present air masses, in various cloud conditions and cloud forms. Cloud Formation Saturation of the air with water vapour is the basic condition for cloud formation. Value of air saturation is dependent on temperature. The warmer the air becomes, the more water vapour it can absorb. Cooling of the air by any kind of air moisture results in such a temperature, at which the air is saturated with moisture. This value is called the dew point temperature. When air reaches this point, the moisture is condensed. This leads to cloud formation or precipitation. Thus, the air moisture is dependent on temperature. Clouds arise: A. above warm air areas: the warm air rises, cools down and condenses; B. when warm air approaches cold air areas; C. on the fronts; and D. on geographical elevations or mountain passes 5

6 Supplementary material to PRAXIS EDUCATIONAL FILM (continuation) Föhn principle as a thermodynamic phenomenon is apparent on the wind and lee side of a geographical elevation. Föhn principle is an atmospheric process, taking place in an air mass when overcoming an orographic obstacle. In the föhn principle, the air pressure and temperature decrease with height, while the proportion of pressure and temperature remains constant up to the point of condensation. Cooling of the air results. Such a change of state without an increase or decrease in heat is called adiabatic. The air can only absorb such an amount of moisture, which corresponds to the temperature. During an upward motion of an air volume the temperature increases by 1 per 100 metres. The moisture (the share of water vapour in air volume) increases up to the dew point. The air is 100 % saturated. If the air rises further, water vapour condenses. As the hilltops or mountain passes are located in quite high altitudes, drizzle or rain often occurs during condensation and therefore the descending air on the lee side displays slight air moisture. Now, the decrease in temperature per 100 metres is even more minute. On the other side of the obstacle, the air mass is heating up under rising pressure and the remaining clouds reach the point of dissolution. Now the air can absorb more moisture and thus evaporate condensation droplets. The air becomes warmer. By different altitudes of the windward and leeward sides are the temperatures adequately different. Thus, the mountain functions as a sieve for the moisture and also heats the air. The air comes on the lee side warmer, dryer, with a high saturation deficit and leads to high evaporation in the landing area. Several days of clear weather follow, with unusually far range of vision. The result of adiabatic heating and cooling are the origin and dissolution of clouds. Condensation and dissipation niveau of the clouds is changed according to the volume of moisture, temperature and elevation. 6

7 Supplementary material to PRAXIS EDUCATIONAL FILM (continuation) Precipitation Condensation yields water droplets. In order to release precipitation, bigger water drops have to emerge first. However, it was discovered, that ice crystals arise in the clouds to fulfil certain conditions. During precipitation, the ice-crystals fall through warmer layers and reach the earth as drops. Otherwise, it would not be possible, that ice-crystals in winter arise from water droplets in the bottom layers; thus, these must have emerged first. Arguments supporting this theory are not yet sufficient, though. There are several forms of precipitation, e.g. rain, snow, hoarfrost, hail, black ice, frost, etc. A specific form of precipitation is storm. Basic conditions for a storm are large scale condensation of water vapour and convective changes of state. During the discharge of condensation heat, high temperatures and moist air prefer strong vertical currents. Therefore, the storm clouds are mostly of high towering shapes. A storm normally consists of several layers of clouds, which collide with each other. By means of the following condensation between cold and warm air, or through changes conditioned by temperature and height, great amount of heat and other energy is released into the atmosphere. These are discharged as lightning and thunder. Approximately storms and about 8 million cases of lightning are discharged daily all across the world. Most of the lightning flashes discharge in the upward direction, only a few are headed towards the surface of the earth. A storm of average strength has the power of several hundred megawatts, which equals the capacity of a small nuclear power station. Classification of storms distinguishes three types of storms: 1. Air mass storms are heat storms and emerge due to overheating of the layers close to the ground, when the air is highly moistened. This is typical of tropes and summer storms; 2. front storms occur mostly along cold fronts, when warm air moves over the cold air. Such storms can take a long time and they occur most frequently in Europe/central Europe, where cold continental polar air overtakes the warm air of the Golf stream. This can also happen conversely, when cold air takes over warm air, which cannot rise any higher to cool down. Resulting pressure between the air masses is discharged; 3. Orographic storms occur when advective air glides over mountains, with unstable humidity and swells into great heights. These stormsx are often long lasting. 7

8 WORKSHEET to PRAXIS EDUCATIONAL FILM 2a. Can you describe summer clouds? 2b. Why do they dissipate in the afternoon? 2c. What are the signals forecasting a rainy weather? 2d. What fronts collide during a storm? What happens then? 2e. What is discharged during thunder and lightning? 1a. How would you explain the notion of condensation? 1b. In what forms does water vapour occur in the atmosphere? 1c. What does dew point temperature mean? 1d. Can you explain the terms windward and leeward? 1e. Can you explain the emergence and dissipation of clouds on the example of föhn principle? 3a. Why does the cold air and ice hold in the ice cave? 3b. What are the consequences of strong cooling of the cave in winter? 4a. What forms of precipitation can you name? 4b. Why can we call the High Tatras a cloud machine? 4c. Describe the location of the High Tatras with the help of a map. 8

Moisture and Stability in the Atmosphere

Moisture and Stability in the Atmosphere Moisture and Stability in the Atmosphere Humidity can be measured as: HUMIDITY Absolute humidity the mass of water vapour in a volume of air (g/m 3.) Relative Humidity the proportion of the actual mass

More information

Wind is caused by differences in air pressure created by changes in temperature and water vapor content.

Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Topic 8: Weather Notes, Continued Workbook Chapter 8 Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Wind blows from high pressure areas to low

More information

Understanding Weather

Understanding Weather Understanding Weather Images Graphic of the atmosphere. Enlarge Cirrus clouds. Enlarge Air masses Air masses are parcels of air that bring distinctive weather features to the country. An air mass is a

More information

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM 1 TEM: 0643 OM-RT - Weather - hap. 6 OD_PREG: PREG20098600 (5301) PREGUNT: Every physical process of weather is accompanied

More information

ENVIRONMENTAL PHYSICS

ENVIRONMENTAL PHYSICS ENVIRONMENTAL PHYSICS Atmospheric Stability An understanding of why and how air moves in the atmosphere is fundamental to the prediction of weather and climate. What happens to air as it moves up and down

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 3 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Natural convection and turbulence are most likely to occur when: a) temperature decreases rapidly with

More information

LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS

LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS Introduction LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS This lab will provide students with the opportunity to become familiar with the concepts of atmospheric stability

More information

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Exam 1 Review Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Location on Earth (L04) Latitude & Longitude great circles, prime meridian, time zones, cardinal points, azimuth

More information

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle from: USGS http://water.usgs.gov/edu/watercycle.html Evaporation: enough water to cover the entire surface of Earth to 1 meter cycles

More information

Weather Unit Study Guide

Weather Unit Study Guide Weather Unit Study Guide - 2018 Weather vs Climate What does weather measure? The condition of the earth's atmosphere at a particular time and place. How are climate and weather different? Climate is the

More information

Weather EOG Review Questions

Weather EOG Review Questions Weather EOG Review Questions 1. Which statement best describes runoff? A Water vapor cools off and changes into water droplets. B Water in the form of rain, snow, sleet, or hail falls from clouds. C Precipitation

More information

WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67

WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67 WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67 What is Wind? A wind is a horizontal movement of air across a surface. Vertical movements are currents or updrafts and

More information

Horizontal movement of air between cooler and warmer regions. - horizontal movement of air Convection over areas where is

Horizontal movement of air between cooler and warmer regions. - horizontal movement of air Convection over areas where is Winds and Water Chapter 9 continued... Uneven Heating The various materials of the earth absorb and emit energy at different rates Convection Heated air expands; density reduced; air rises Upward movement

More information

Social Studies CHAPTER 2: PART 2 CLIMATE AND WEATHER

Social Studies CHAPTER 2: PART 2 CLIMATE AND WEATHER Social Studies CHAPTER 2: PART 2 CLIMATE AND WEATHER Climate Weather and Identity Climate and weather have a large influence on how Canadians build their identity. We will study the factors that contribute

More information

Unit Test Study Guide:

Unit Test Study Guide: Name: Homeroom: Date: Unit 6: Meteorology Study Guide Unit Test Study Guide: Atmosphere & Weather Use the summary points below as a resource to help you study for our unit test Monday! EARTH S ATMOSPHERE:

More information

Water in the Atmosphere

Water in the Atmosphere Water in the Atmosphere Chapter 24 Solid to Liquid The process of changing state, such as melting ice, requires that energy be transferred in the form of heat. Latent heat is the energy absorbed or released

More information

Global Weather Patterns

Global Weather Patterns Global Weather Patterns AZ State Standards Concept 2: Energy in the Earth System (Both Internal and External) Understand the relationships between the Earth s land masses, oceans, and atmosphere. PO 2.

More information

1.3: CLIMATE GEOGRAPHY. pgs

1.3: CLIMATE GEOGRAPHY. pgs 1.3: CLIMATE GEOGRAPHY pgs. 76-89 INTRODUCTION WEATHER: Is the combination of temperature, precipitation, cloud cover and wind that we experience EACH DAY. Example: 22 0 C and clear skies. CLIMATE: The

More information

Adiabatic Lapse Rates and Atmospheric Stability

Adiabatic Lapse Rates and Atmospheric Stability 8 Adiabatic Lapse Rates and Atmospheric Stability Learning Goals After studying this chapter, students should be able to: 1. describe adiabatic processes as they apply to the atmosphere (p. 174); 2. apply

More information

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 5 Winds, Oceans, Weather, and Climate Section 1 Global Wind Patterns and Weather What Do You See? Learning Outcomes In this section, you will Determine the effects of Earth s rotation and the uneven

More information

Canada s vast size creates a diverse range of weather conditions and climatic conditions. Warming trend for last 10 years Wet Spring Dry five summers

Canada s vast size creates a diverse range of weather conditions and climatic conditions. Warming trend for last 10 years Wet Spring Dry five summers Chapter 4 Weather and Climate Canada s vast size creates a diverse range of weather conditions and climatic conditions. Weather examples: Rainy today Snow tomorrow Fog on Wednesday 23 degree C today High

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the air temperature remains constant, evaporating water into the air will the dew point and the relative

More information

WEATHER SYSTEMS OF MIDDLE LATITUDES

WEATHER SYSTEMS OF MIDDLE LATITUDES CHAPTER 10 WEATHER SYSTEMS OF MIDDLE LATITUDES MULTIPLE CHOICE QUESTIONS 1. In equal volumes, which one of the following air masses exerts the highest surface air pressure? a. cp *b. A c. mp d. ct e. mt

More information

Chapter 8 Air Masses

Chapter 8 Air Masses Chapter 8 Air Masses Air Masses - 1 1. An Air Mass is a large body of air usually about 1500 km across and several km thick, that has homogeneous physical properties. 2. The important physical properties

More information

PHSC 3033: Meteorology Stability

PHSC 3033: Meteorology Stability PHSC 3033: Meteorology Stability Equilibrium and Stability Equilibrium s 2 States: Stable Unstable Perturbed from its initial state, an object can either tend to return to equilibrium (A. stable) or deviate

More information

You Can Die Here PRACTICE Regents Exam Questions

You Can Die Here PRACTICE Regents Exam Questions You Can Die Here PRACTICE Regents Exam Questions 1. Which diagram best illustrates how air rising over a mountain produces precipitation? (1) (3) (2) (4) 2. As a parcel of air rises, its temperature will

More information

Civil Air Patrol Auxiliary of the United States Air Force

Civil Air Patrol Auxiliary of the United States Air Force Mountain Flying Qualification Course Civil Air Patrol Auxiliary of the United States Air Force Mountain Weather Slopes Most U.S. mountain ranges are oriented north-south, while the prevailing winds are

More information

Air Masses and Fronts

Air Masses and Fronts Air Masses and Fronts A huge body of air that has similar temperature, humidity, and air pressure at any given height is called an air mass. A single air mass may spread over millions of square kilometers

More information

18 Flight Hazards over High Ground

18 Flight Hazards over High Ground 18 Flight Hazards over High Ground meteorology 18.1 Mountain Effect on Fronts When a warm front passes a mountain range, the air, is lifted over the mountain and will strengthen the formation of cloud

More information

The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate.

The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate. The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate. In this lesson you will: 2.3.1 Define the term prevailing winds. (k) 2.3.3 State the impact

More information

In comparison to depressions, these can be quite boring, at least in terms of the weather they bring.

In comparison to depressions, these can be quite boring, at least in terms of the weather they bring. Anticyclones In comparison to depressions, these can be quite boring, at least in terms of the weather they bring. In summary, anticyclones; Are larger than low pressure systems, Last longer than low pressure

More information

8/29/20098 SAHRA - Watershed Visualization

8/29/20098 SAHRA - Watershed Visualization Module 3 Narration Southwestern Water Cycle 001.wav 26 sec 002.wav 10 sec 003 wav 17 sec Water on Earth is constantly on the move. Water continually circulates between the surface of Earth and the atmosphere

More information

Atmosphere & Weather. Earth Science

Atmosphere & Weather. Earth Science Atmosphere & Weather Earth Science Energy Transfer in the Atmosphere Earth s energy is provided by the SUN! Energy is important to us because it 1. Drives winds and ocean currents. 2. Allows plants to

More information

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation The tmosphere Write answers on your own paper 1. What is the primary energy source that drives all weather events, including precipitation, hurricanes, and tornados?. the Sun. the Moon C. Earth s gravity

More information

Cloud Development and Forms

Cloud Development and Forms Chapter 6 Lecture Understanding Weather and Climate Seventh Edition Cloud Development and Forms Redina L. Herman Western Illinois University Mechanisms That Lift Air When air lifts, clouds develop and

More information

Weather & Atmosphere Study Guide

Weather & Atmosphere Study Guide Weather & Atmosphere Study Guide 1. Draw a simple water cycle diagram using the following words: Precipitation, Evaporation, Condensation, Transpiration 2. In your own words, explain the difference between

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

REMINDERS: Problem Set 2: Due Monday (Feb 3)

REMINDERS: Problem Set 2: Due Monday (Feb 3) REMINDERS: Problem Set 2: Due Monday (Feb 3) Midterm 1: Next Wednesday, Feb 5 - Lecture material covering chapters 1-5 - Multiple Choice, Short Answers, Definitions - Practice midterm will be on course

More information

The Hydrological Cycle

The Hydrological Cycle Introduction to Climatology GEOGRAPHY 300 The Hydrological Cycle Tom Giambelluca University of Hawai i at Mānoa Atmospheric Moisture Changes of Phase of Water Changes of Phase of Water 1 Changes of Phase

More information

Length of day for a full year. Ocean Gyres. Wet. Adiabatic. lapse rate, starts at. dewpoint Dry Adiabatic lapse rate

Length of day for a full year. Ocean Gyres. Wet. Adiabatic. lapse rate, starts at. dewpoint Dry Adiabatic lapse rate Vernal Equinox March 20, 11:57 AM, CDT Sun will rise exactly in the east and set exactly in the west. All latitudes get 12 hours of day and 12 hours of dark. Length of day for a full year Wet Adiabatic

More information

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams ATS 351 Lecture 6 Stability & Skew-T Diagrams To demonstrate stability, a parcel of air is used Expands and contracts freely Always has uniform properties throughout Air Parcel Air Parcel Movement: Why

More information

Earth s tilt at an angle of 23.5 degrees to the plane of its orbit around the Sun.

Earth s tilt at an angle of 23.5 degrees to the plane of its orbit around the Sun. Science 2200 1 Weather dynamics is the study of how the motion of water and air causes weather patterns. Energy from the Sun drives the motion of clouds, air, and water. Earth s tilt at an angle of 23.5

More information

Meteorology I Pre test for the Second Examination

Meteorology I Pre test for the Second Examination Meteorology I Pre test for the Second Examination MULTIPLE CHOICE 1. A primary reason why land areas warm up more rapidly than water areas is that a) on land, all solar energy is absorbed in a shallow

More information

Chapter. Air Pressure and Wind

Chapter. Air Pressure and Wind Chapter Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. 19.1 Understanding Air Pressure Air Pressure Defined Air pressure

More information

Notepack 41. Aim: What factors determine the climate of a certain area? Do Now: What is the difference between weather and climate?

Notepack 41. Aim: What factors determine the climate of a certain area? Do Now: What is the difference between weather and climate? Notepack 41 Aim: What factors determine the climate of a certain area? Do Now: What is the difference between weather and climate? WEATHER VS. CLIMATE Weather atmospheric conditions at a certain location

More information

Local Winds & Microclimates. Unit 2- Module 1

Local Winds & Microclimates. Unit 2- Module 1 Local Winds & Microclimates Unit 2- Module 1 Objectives Overview of local winds (sea & land breezes, valley winds) Overview of microclimates (valley, urban, woodland) Local Winds Local Winds Local winds

More information

MET Lecture 8 Atmospheric Stability

MET Lecture 8 Atmospheric Stability MET 4300 Lecture 8 Atmospheric Stability Stability Concept Stable: Ball returns to original position Neutral: Ball stays wherever it is placed Unstable: Displacement grows with time. Atmospheric Stability

More information

Air Pressure and Wind

Air Pressure and Wind Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The

More information

Questionnaire for the theoretical part of education in skydiving. Meteorology

Questionnaire for the theoretical part of education in skydiving. Meteorology 1. At which approximately altitude is the atmospheric pressure ½ of the pressure at MSL (mean sea level)? a) 1.500m MSL b) 2.000m MSL c) 5.500m MSL d) 7.000m MSL 2. The rate of oxygen in the air is 21%.

More information

4.2 Pressure and Air Masses (6.3.2)

4.2 Pressure and Air Masses (6.3.2) 4.2 Pressure and Air Masses (6.3.2) Explore This Phenomena www.ck12.org Everybody loves a picnic. Your friends and you are headed up the canyon to enjoy the mountains. While driving you feel a slight discomfort

More information

Unit 5 Lesson 2 What Are Types of Weather? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 5 Lesson 2 What Are Types of Weather? Copyright Houghton Mifflin Harcourt Publishing Company Up in the Air Warm up 1 Up in the Air Earth s atmosphere protects us from the sun s harmful ultraviolet rays and shields Earth from space debris. The atmosphere is a mixture of gases and is mostly made

More information

SESSION THREE: FACTORS THAT INFLUENCE WEATHER IN SOUTH AFRICA

SESSION THREE: FACTORS THAT INFLUENCE WEATHER IN SOUTH AFRICA SESSION THREE: FACTORS THAT INFLUENCE WEATHER IN SOUTH AFRICA KEY CONCEPTS: In this section we will focus on the following aspects: Factors determining the weather of South Africa Influence of the oceans

More information

Earth s Atmosphere. Earth s atmosphere is a key factor in allowing life to survive here.

Earth s Atmosphere. Earth s atmosphere is a key factor in allowing life to survive here. Chapter 10.2 Earth s Atmosphere Earth s atmosphere is a key factor in allowing life to survive here. This narrow band of air has the right ingredients and maintains the correct temperature, to allow life

More information

Lecture 13 March 24, 2010, Wednesday. Atmospheric Pressure & Wind: Part 4

Lecture 13 March 24, 2010, Wednesday. Atmospheric Pressure & Wind: Part 4 Lecture 13 March 24, 2010, Wednesday Atmospheric Pressure & Wind: Part 4 Synoptic scale winds Mesoscale winds Microscale winds Air-sea interactions The largest synoptic scale wind. Monsoon: Arabic for

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

+ - Water Planet, Water Crisis 2010 Class Notes Topic 2. Water in the earth system Part A: Properties of H 2 O: Why it's so important to us.

+ - Water Planet, Water Crisis 2010 Class Notes Topic 2. Water in the earth system Part A: Properties of H 2 O: Why it's so important to us. Water Planet, Water Crisis 2010 Class Notes Topic 2. Water in the earth system Part A: Properties of H 2 O: Why it's so important to us. Physical and Chemical properties of H 2 O: Arise from the structure

More information

What is Air Temperature? Temperature, Buoyancy, and Vertical Motion. How Atmospehric Temperature is Measured. Temperature Scales

What is Air Temperature? Temperature, Buoyancy, and Vertical Motion. How Atmospehric Temperature is Measured. Temperature Scales Temperature, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Temperature Lapse Rates Rising & Falling Motions in the Air What is Air Temperature? Temperature

More information

Atmospheric Stability. GEOG/ENST 2331 Lecture 10 Ahrens: Chapter 6

Atmospheric Stability. GEOG/ENST 2331 Lecture 10 Ahrens: Chapter 6 Atmospheric Stability GEOG/ENST 2331 Lecture 10 Ahrens: Chapter 6 Last lecture: Thanks to Dr. Stewart! Hydrologic cycle! Humidity! Diabatic: convection, conduction, radiation; mixing! Adiabatic: change

More information

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation.

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation. Chapter 6: Stability Concept of Stability Concept of Stability Lapse Rates Determine Stability and Stability Indices Air Parcel Expands as It Rises Air Parcel Expands As It Rises Air pressure decreases

More information

Mountain Forced Flows

Mountain Forced Flows Mountain Forced Flows Jeremy A. Gibbs University of Oklahoma gibbz@ou.edu February 3, 2015 1 / 45 Overview Orographic Precipitation Common Ingredients of Heavy Orographic Precipitation Formation and Enhancement

More information

The total precipitation (P) is determined by the average rainfall rate (R) and the duration (D),

The total precipitation (P) is determined by the average rainfall rate (R) and the duration (D), Orographic precipitation Common ingredients of heavy orographic precipitation The total precipitation (P) is determined by the average rainfall rate (R) and the duration (D), P = RD. (1) The rainfall rate

More information

Review for the second quarter. Mechanisms for cloud formation

Review for the second quarter. Mechanisms for cloud formation Review for the second quarter Mechanisms for cloud formation 1 Rising air expands and cools; Sinking air compresses and warms. (18) (24) Dry adiabatic lapse rate (10 o C/km): the rate of temperature decrease

More information

Canada s Natural Systems. Canadian Geography 1202

Canada s Natural Systems. Canadian Geography 1202 Canada s Natural Systems Canadian Geography 1202 Canada s Natural Systems Natural System: A system found in nature Here are the four natural systems that we will explore in the next few weeks 1. Canada

More information

The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate.

The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate. The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate. In this lesson you will: 2.3.1 Define the term prevailing winds. (k) 2.3.3 State the impact

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation Why do we say Earth's temperature is moderate? It may not look like it, but various processes work to moderate Earth's temperature across the latitudes. Atmospheric circulation

More information

APPI PPG LECTURE 5: FURTHER METEOROLOGY

APPI PPG LECTURE 5: FURTHER METEOROLOGY LECTURE 5: FURTHER METEOROLOGY Introduction: This lecture covers Further Meteorology and aims to give you more of an understanding of advanced weather conditions and patterns. However Meteorology is a

More information

9-1: What Causes Climate. 6 th Grade Earth Science

9-1: What Causes Climate. 6 th Grade Earth Science 6 th Grade Earth Science What is Climate? 9-1: What Causes Climate Climate is the long-term average conditions of temperature, precipitation, winds, and clouds in an area. Examples of Climate The Mojave

More information

Chapter 4. Convec.on Adiaba.c lapse rate

Chapter 4. Convec.on Adiaba.c lapse rate Chapter 4 Convec.on Adiaba.c lapse rate 1.Outline: a. air parcel theory, adiabatic processes b. how do we define/determine atmospheric stability? 2.Readings: Chapter 4 VERTICAL STRUCTURE T STRATIFICATION

More information

10.2 Energy Transfer in the Atmosphere

10.2 Energy Transfer in the Atmosphere 10.2 Energy Transfer in the Atmosphere Learning Outcomes Understand the different layers of the atmosphere Understand how energy moves in, out, and around our atmosphere er Composi

More information

The atmospheric circulation system

The atmospheric circulation system The atmospheric circulation system Key questions Why does the air move? Are the movements of the winds random across the surface of the Earth, or do they follow regular patterns? What implications do these

More information

CHAPTER 9. More on meteorology

CHAPTER 9. More on meteorology CHAPTER 9 More on meteorology 1). Atmospheric Pressure Atmospheric pressure is the pressure with which the atmosphere acts downwards due to its weight. Pressure decreases with altitude because the column

More information

Vertical Motion and Atmospheric Stability

Vertical Motion and Atmospheric Stability Lesson 4 Vertical Motion and Atmospheric Stability This lesson describes the vertical structure of the atmosphere, atmospheric stability and the corresponding vertical motion. Adiabatic diagrams are introduced

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately.

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately. Instructor: Prof. Seiberling PHYSICS DEPARTMENT MET 1010 2nd Midterm Exam October 28, 2002 Name (print, last rst): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

MET 101 Introduction to Meteorology

MET 101 Introduction to Meteorology MET 101 Introduction to Meteorology MET 101 Griswold 1 MIDTERM EXAM Spring Semester 2015 Thursday, March 12, 2015 Name: Student ID #: Instructions: Closed Book. Time limit is 50 minutes. Total Points Attainable:

More information

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer 18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways.

More information

Lesson 2C - Weather 2C-1-S190-EP

Lesson 2C - Weather 2C-1-S190-EP Lesson 2C - Weather 2C-1-S190-EP Fire Weather *Click on image to play video 2C-2-S190-EP A. Air Temperature The degree of hotness or coldness of a substance. 1. Air Temperature varies with: Time Location

More information

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Discovering Physical Geography Third Edition by Alan Arbogast Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Factors That Influence Air Pressure Air Pressure is the measured weight of air

More information

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions.

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions. Santa Ana Winds Surface weather map showing typical Santa Ana conditions. High Desert Elevation ~1500-2000 ft Santa Ana Winds ~1500 meters 0 meters Santa Ana Winds ~875 mb ~1500 meters ~875 mb Horizontal

More information

Weather and Meteorology Sheet 1 Adiabatic Processes The definition is:- A system where heat is neither added nor taken from a process.

Weather and Meteorology Sheet 1 Adiabatic Processes The definition is:- A system where heat is neither added nor taken from a process. Weather and Meteorology Sheet 1 Adiabatic Processes The definition is:- A system where heat is neither added nor taken from a process. The expansion and compression of gases are adiabatic. Consider the

More information

Physical Geography. Physical Geography III of the United States and Canada. Formation of Great Lakes. Climates of North America. Definitions 2/21/2013

Physical Geography. Physical Geography III of the United States and Canada. Formation of Great Lakes. Climates of North America. Definitions 2/21/2013 Physical Geography III of the United States and Canada Ancient Glacial Lakes As the Ice Age ended, areas of North America beyond the terminal moraine were flooded with melt water Prof Anthony Grande AFG

More information

Wind Patterns on Earth

Wind Patterns on Earth Wind Patterns on Earth What causes air to move? Air pressure differences causes air to move. These differences in air pressure at the same altitude is caused by uneven heating of the Earth s surface. With

More information

Scott Denning CSU CMMAP 1

Scott Denning CSU CMMAP 1 Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic Lapse Rates Dry and Moist Convective Motions Present Atmospheric Composition What

More information

A Guide To Aviation Weather

A Guide To Aviation Weather A Guide To Aviation Weather Richard D. Clark, Ph.D. Professor of Meteorology Student Assistants: Keith Liddick and Sam DeAlba Department of Earth Sciences Millersville University 16 NOV 2005 Outline Icing

More information

6.1 Introduction to Weather Weather air mass Weather factors Temperature Pressure What is wind? Wind Convection in the atmosphere Thermals thermal

6.1 Introduction to Weather Weather air mass Weather factors Temperature Pressure What is wind? Wind Convection in the atmosphere Thermals thermal 6.1 Introduction to Weather Weather is a term that describes the condition of the atmosphere in terms of temperature, atmospheric pressure, wind, and water. The major energy source for weather events is

More information

Lecture The Oceans

Lecture The Oceans Lecture 22 -- The Oceans ATMOSPHERE CIRCULATION AND WINDS Coriolis effect Prevailing winds and vertical circulation Zones of pressure, evap. & ppt. Factors modifying global winds -- Differential heating

More information

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4 Wednesday, September 20, 2017 Reminders Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4 PLEASE don t memorize equations, but know how to recognize them

More information

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA MT DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM Pag.: 1 TEM: 0159 OMMERIL PILOT - (H. 6) WETHER OD_PREG: PREGUNT: RPT: 5301 Every physical process of weather is accompanied

More information

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 EXAM NUMBER NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 Name: SID: S Instructions: Write your name and student ID on ALL pages of the exam. In the multiple-choice/fill in the

More information

THE ATMOSPHERE. WEATHER and CLIMATE. The Atmosphere 10/12/2018 R E M I N D E R S. PART II: People and their. weather. climate?

THE ATMOSPHERE. WEATHER and CLIMATE. The Atmosphere 10/12/2018 R E M I N D E R S. PART II: People and their. weather. climate? R E M I N D E R S Two required essays are due by Oct. 30, 2018. (A third may be used for extra credit in place of a Think Geographically essay.) ESSAY TOPICS (choose any two): Contributions of a noted

More information

Nevis Hulme Gairloch High School John Smith Invergordon Academy. Gairloch High School / Invergordon Academy

Nevis Hulme Gairloch High School John Smith Invergordon Academy. Gairloch High School / Invergordon Academy Nevis Hulme Gairloch High School John Smith Invergordon Academy 1 Gairloch High School / Invergordon Academy ATMOSPHERIC CIRCULATION The Three Cell Model Global Winds The ITCZ The purpose of this presentation

More information

Lornshill Academy. Geography Department Higher Revision Physical Environments - Atmosphere

Lornshill Academy. Geography Department Higher Revision Physical Environments - Atmosphere Lornshill Academy Geography Department Higher Revision Physical Environments - Atmosphere Physical Environments Atmosphere Global heat budget The earth s energy comes from solar radiation, this incoming

More information

Atmosphere Circulation

Atmosphere Circulation Atmosphere Circulation Winds What Causes Winds? Difference in air pressure due to unequal heating of the atmosphere. Temperatures vary according to the amount of sun it gets. Uneven heating of the Earth

More information

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA DIREION DE PERSONL ERONUTIO DPTO. DE INSTRUION PREGUNTS Y OPIONES POR TEM MT 28/04/2006 T E M : 0159 OMMERIL PILOT - (H. 6) WETHER OD_PREG: P R E G U N T : RPT: 5301 Every physical process of weather is

More information

V. SEA and LAND BREEZES:

V. SEA and LAND BREEZES: V. SEA and LAND BREEZES: A. Pressure largely reflects the weight of overlying air, owing to gravity, and is proportional to mass. Therefore pressure decreases with height. 1. Remember, surface pressure

More information

STUDENT PACKET # 10. Vocabulary: condensation, convection, convection current, land breeze, sea breeze

STUDENT PACKET # 10. Vocabulary: condensation, convection, convection current, land breeze, sea breeze STUDENT PACKET # 10 Name: Date: Student Exploration: Coastal Winds and Clouds Big Idea 7: Earth Systems and Patterns SC.6.E.7.4 Differentiate and show interactions among the geosphere, hydrosphere, cryosphere,

More information

Bell Work. Compare and contrast warm fronts and cold fronts. What type of weather is associated with a high pressure and low pressure systems?

Bell Work. Compare and contrast warm fronts and cold fronts. What type of weather is associated with a high pressure and low pressure systems? Daily Routine Sit in your appropriate seat quietly Have all necessary materials out All back packs on the floor All cell phones on silent and away in backpacks All music devices off and headphones out

More information

Water Budget I: Precipitation Inputs

Water Budget I: Precipitation Inputs Water Budget I: Precipitation Inputs Forest Cover Global Mean Annual Precipitation (MAP) Biomes and Rainfall Forests won t grow where P < 15 / yr Forest type depends strongly on rainfall quantity, type

More information

Chapter 2. Turbulence and the Planetary Boundary Layer

Chapter 2. Turbulence and the Planetary Boundary Layer Chapter 2. Turbulence and the Planetary Boundary Layer In the chapter we will first have a qualitative overview of the PBL then learn the concept of Reynolds averaging and derive the Reynolds averaged

More information

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate

Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Circulation (Ch. 8) Ocean & Atmosphere are intertwined Gases & waters freely exchanged Wind Weather Climate Atmospheric Structure Consists of Layers Separated by Temperature Stratosphere: Temperature

More information