OFFSHORE RENEWABLES: COLLABORATING FOR A WINDY AND WET FUTURE?

Size: px
Start display at page:

Download "OFFSHORE RENEWABLES: COLLABORATING FOR A WINDY AND WET FUTURE?"

Transcription

1 OFFSHORE RENEWABLES: COLLABORATING FOR A WINDY AND WET FUTURE? 1. INTRODUCTION P.A. Thompson 1 D. Pridden 2 J.W. Griffiths 3 The last decade has seen significant developments in the efficiency, reliability and economic viability of shoreline and offshore wave power generation. Major advances in offshore oil and gas technology, and particularly in the subsea sector have removed many of the technical barriers to early demonstration and commercialisation since the previous UK Wave Energy programme ( ). Pilot devices are now producing electricity in both primary (grid connected) and secondary generation in locations around the world. In a situation not dissimilar to the early developments of the wind energy market there is now an increasing level of private sector investment and confidence amongst device manufacturers, propelling the technology into the commercial arena. There is considerable common ground between the technology and skills required in the offshore oil and gas industry and those required for improvement of the field economics of both marine renewables and offshore wind power generation. A number of shared practical issues will prove to be the key drivers of major expansion in each sector. These include offshore oil and gas technology transfer, low cost offshore installation and improved power transmission and connectivity. This paper describes the current status of the wave energy sector, which currently represents the major part of the marine renewables industry. It also highlights the future requirements of the sector and the scope for a wider offshore industry collaborative effort to accelerate parallel developments in marine renewables and offshore wind. 2. The Wave Energy Resource In 1996 the WEC estimated the global wave energy potential at 2,000TWh\yr. In general, all sites offering over 15 KW/m of crest width have the potential for commercially competitive extraction. Some 320 GW are available along the Atlantic and Mediterranean coastlines. The highest annual wave power level off the European coasts is 75 kw/m off Ireland and Scotland and it decreases gradually to about 30kW/m off northern Norway and off the southern Atlantic Madeira and Canary archipelagos. The accessible UK wave energy resource has been estimated as being up to 840 Twh/year (260% of UK demand). The DTI s Energy Technology Support Unit (ETSU) and other sources have estimated that the practically and economically recoverable resource is nearer 15%-25% of UK demand. 1 British Maritime Technology Ltd 2 Capcis Ltd. 3 SeaPower Europe Ltd.

2 Figure 2-1: Average annual wave power kw/m of crest width The level of exploitable resource is among many factors, a determinate of geographical location and physical site (shoreline, nearshore or offshore). The relationship of the location of energy production to the end user is a key financial factor, as is the case with offshore wind. The cost of transmission and connection can often outweigh the construction and equipment costs and render a project unfeasible. Wave power is at its strongest in open sea conditions where there are minimal dampening forces. As the waves move closer to land the power of a wave is reduced by the effect of dissipation against the rising seabed and a greater proliferation of contrary wind off the landmass. Upon hitting the shore it is estimated that on average only a tenth of the wave s power remains. Table 2-1: Resource potential by water depth Water depth (m) Average available Average recoverable GW TWh GW TWh Shoreline <30 < Total Source: Thorpe DEVICE INSTALLATIONS At present about sixteen shoreline and nearshore wave power generators have been installed worldwide. This suggests that the technology is available for efficient power generation, although it has yet to reach full maturation. For example, further developments may be needed in the area of device survivability in extreme wave conditions. The majority of wave energy devices, irrespective of location, utilise the movement of the waves to directly or indirectly drive a Oscillating Water Column (OWC) turbine, with a few others using either fluid driven pistons or piezoelectric conversion.

3 Table 3-1: Some recent wave device installations Year Device Type Turbines Country Location KW Status 1998 Pendular N 1 Japan Muroran 30 Test facility 1999 Wave plane N 1 Denmark Jutland 30 Demonstration 2000 OWC S 1 UK Islay 500 Grid-connected 2000 OWC S 2 Portugal Pico Island 1000 Grid connected 2001 Denniss-Auld S 1 Australia Port Kembla 500 Grid connected 2003* OWC N 1 Ireland n/a 2000 Osprey commercial 2004* Pelamis O 2 UK Islay 750 Demonstration 2004* Floating wave vessel N 1 UK Shetland 400 Demonstration * estimated S = shoreline, N = nearshore, O = offshore Work is going on in a number of countries with wave devices at various stages of development. Other countries which are active include: China, Greece, India, Indonesia, Korea, Norway, Spain, Sweden and the USA. Figure 3-1: OWC turbo generators cross-section The Wells turbine has been one of the defining technologies in the development of wave energy. One of the distinct characteristics of wave energy is its bi-directional vertical motion. The Wells turbine utilises the power from both of these motions while maintaining efficient and effective conversion. Source: Wavegen Following on from the successful shoreline LIMPET prototype on the Scottish island of Islay which is now feeding into the UK national grid, a 400kW plant is due to be completed this year on Pico Island in the Portuguese island of the Azores. The electricity is to be generated at an estimated cost of 7-8 cent per kw/h, a rate 50% lower than prototypes in 1990 Figure 3-2: Osprey 1 & 2000 Source: Wavegen Osprey 1 sits on the seabed (up to 15m water depth) with the capture chamber, Wells turbine and generator above the water line. Power is brought ashore via a subsea cable. The new nearshore 2 MW device is of composite steel and concrete construction. A contract is currently in place with the Republic of Ireland to install an Osprey 2000 in Irish waters under the auspices of its AER III (Alternative Energy Requirement III) programme. Multiple Osprey devices can be used to form a larger breakwater but also to reduce the Capex cost through the need for less infrastructure, principally cabling and connections.

4 Figure 3-3: PELAMIS A 7 th scale model, 375kW Pelamis or Sea Snake is due to be installed off the Scottish island of Islay in early 2002.This will be followed by a full-scale pilot device. Source: OPD Ltd. The Pelamis device is moving towards commercial deployment following the award of a SRO-3 power purchase contract. Developed by Ocean Power Delivery Ltd. of the UK, Pelamis is a semi-submerged, articulated structure composed of cylindrical sections linked by hinged joints. The wave-induced motion of these joints is resisted by hydraulic rams, which pump high-pressure oil through hydraulic motors via smoothing accumulators. The hydraulic motors drive electrical generators to produce electricity. Power from all the joints is fed down a single umbilical cable to a junction on the seabed. Several devices can be connected together and linked to shore through a single seabed cable. The design incorporates standardised offshore and subsea components. Models will be installed in water depths of 20m although the full-scale device is designed for water depths of m. Electricity generation is estimated at 6 cents per kw/h initially, falling to less than 4 cents per kw/h by the year A commercial concept envisages up to thirty-nine full size 750kW devices installed in a region with a wave resource of >50kW/m. 4. WAVE ENERGY ECONOMICS There is still no overall consensus on design or location that allows for a long-term definitive financial model based on standardised equipment. As with the early developments of the wind energy industry, larger turbines and more standardised equipment built on a larger scale will undoubtedly lead to improving economic models for wave energy. Many wave devices are still undergoing refinement and early one-off devices have been necessarily over-engineered so critical components can be properly assessed. There remains considerable scope for dramatic cost reductions offered by large-scale manufacturing and longerterm reliability. Yet, the cost of power from these current devices is continually reducing; the last decade has witnessed a 50% reduction in production and operating costs. It does not yet compete with fossil fuel generation but it is already competitive with other renewables. It is also competitive for niche markets such as remote islands, competing against conventional diesel generated electricity supply. Wave energy also offers better than favourable economic comparisons with the onshore wind industry at this stage in its development. Although there is no step-change technology waiting to radically change wave power, the next few years will see a continual but gradual cost reduction.

5 Figure 4-1: Improving economics of wave power (cents/kwh) Slow but steady improvements have improved the economics of wave power and are likely to continue through to Limpet Denniss Auld Osprey Hydra Pelamis Source: Aggregate IEA / DWA 0 The three different locations for wave energy devices have differing economics with variations in capex, installation, maintenance and operational costs. Offshore machines are generally rated to produce more output per wave (kw/m crest) but are faced with higher installation, maintenance and connection costs. Table 4-1: Wave devices - location comparative Shoreline Nearshore Offshore Power potential Low Medium High Connection Simple Difficult Difficult & expensive Servicing Low High Very high Maintenance Low High Very high Opex Low Medium High Capex Low Medium High Conversion method Turbine/generator Turbine/generator Turbine/genset or direct drive It is likely that shoreline and offshore devices will represent the central markets. Shoreline devices with their relatively low Opex, ease of connection and track record should grow progressively in the later part of the decade. Offshore devices with the benefit of increased power capture should grow at a faster rate, as offshore oil industry technology is used in moorings and cabling. Figure 4-2: Production costs by device type The production price of wave energy (8% discount rate) should enable the commercial application of many devices well before Source: Aggregate IEA/DWA cents/kwh Shoreline Nearshore Offshore

6 5. FUTURE INDUSTRY REQUIREMENTS As more and more devices are installed further offshore in the pursuit of greater productivity and predictability, a number of issues specific to marine renewables will need to be addressed. These include: - wave device survivability in extreme wave conditions. fast-tracking concept evaluation and prototype testing through to commercial deployment of wave and other marine renewable systems, e.g. tidal current turbines Two planned initiatives should help to bridge the crucial credibility gap between design and operational experience as well as accelerating the process of concept evaluation, prototype testing through to commercialisation. The first is Europe s largest dedicated wave research facility, which is to be built at Blyth in Northeast England. Containing a large converted dry-dock the facility is capable of testing full size devices of up to 30kW. This facility is being developed by EEST (Euro-seas Engineering Services and Testing Ltd, UK), a joint venture between CAPCIS Ltd (part of UMIST) and Hedley Purvis Ltd. Also, approval has also been given in-principle to the establishment of a European Test Centre for renewable energy generating devices from wave and tidal streams. The Centre is to sited at Stromness on Orkney and will operable by late summer A number of other specific issues, common to both the marine renewable and offshore wind sectors, should prove to be the key technological and commercial drivers influencing long-term expansion offshore. The commercial viability of both sectors is greatly influenced by the cost of initial installation and grid connection. Both sectors, therefore, need to develop low cost offshore installation methods and improved power transmission and connectivity solutions. For devices located in an offshore environment the issues of securing the device to the seabed and transmitting the generated power to the shore grow in importance. Fortunately, major advances in offshore oil and gas technology, and particularly in the subsea sector have removed many of the technical barriers. Subsea flexible power cables and connectors, floating mooring systems and subsea pumps and motors have all been developed to have a long life and low operating costs in the subsea or splash zone environments. In terms of power transmission and connection both sectors will require access to cost-effective solutions to embed the generated power into the onshore grid system. Most national grid networks have unsuitable capacity at their extremes. For example, in the UK most wave (and wind) energy is available on the west coasts. The development of a major electrical grid feeder running from the Western Isles to connect with the grid in England would open the way to major developments in wind and wave power. The cost and problems of coastal grid connection and reinforcement will be a major issue impacting the future development and major expansion of offshore wave and wind energy. It is generally recognised that embedded generation, and the associated new equipment, will radically alter the way electrical distribution networks are constructed and operated in the future. The technology of long distance, high voltage cabling offering minimal power degradation is still relatively un-proven. Previously stable and predictable network behaviour will become much more complex in the expanding offshore wind and marine renewable power generation environment and increasingly sophisticated control strategies and equipment will be required.

7 6. RECOMMENDATIONS This paper has summarised some of the key commercial and technology drivers generic to the emerging wave energy sector and the more established offshore wind industry. There are clear benefits to be realised through improved dialogue and focused cross-sector collaborative effort to address some of the practical issues associated with offshore operations. Steps should be implemented now to achieve this. SeaPower Europe has recently been established as the European trade association for the emerging wave and tidal current energy sectors. Its members already include leading device developers and mainstream engineering businesses who see growing investment opportunities in marine renewable energy. The British Wind Energy Association (BWEA) and SeaPower Europe have agreed to form a strategic alliance to further accelerate growth of the wind and marine renewable energy sectors. An early initiative will be the instigation of a joint industry project focusing on issues, options and possible resolutions related to grid connection and reinforcement in the Western part of Scotland. The difficulties of grid connection and the transfer from coastlines to main demand load centres is undoubtedly the greatest challenge facing the combined UK sectors, and one which no single company or representative body can solve alone. REFERENCES Thorpe 1992, ETSU, "Review of Wave Energy", T W Thorpe 1992 House of Commons Science and Technology Enquiry on Wave and Tidal Energy, 2001 International Ocean Systems July/August 2001 pp26/27 The World Renewable Energy Report , DW Report No , Douglas-Westwood Associates

Wave Energy. ME922/927 Wave energy

Wave Energy. ME922/927 Wave energy Wave Energy ME922/927 Wave energy 1 Global ocean wave energy resource 102 48 38 15 15 24 50 97 32 49 19 18 25 33 92 70 38 19 17 21 50 12 38 34 14 40 43 78 20 41 18 10 37 72 84 48 Annual average in kw/m

More information

Harvesting the waves

Harvesting the waves TOM THORPE HEAD OF GLOBAL PROJECT MANAGEMENT, ENERGETECH AUSTRALIA PTY MARINE MATTERS Harvesting the waves The emergence of waves as a useful source of energy The potential for extracting useful energy

More information

Maritime Renewable Energy

Maritime Renewable Energy Maritime Renewable Energy Prospects & Opportunities Prof Minoo Patel minoo.patel@cranfield.ac.uk m.patel@bpp-tech.com Tel: +44 (0) 7711 980173 Contents Existing technologies in wave, wind and tidal energy:

More information

Ocean Energy Policy Brief

Ocean Energy Policy Brief Ocean Energy Policy Brief August 2013 Author and Primary Contact Prof JL (Wikus) van Niekerk wikus@sun.ac.za +27 (0)21 808 4251 Summary: South Africa has an exploitable wave energy resource that compares

More information

International and Niche Markets for Wave and Tidal Energy. Neil Ferguson

International and Niche Markets for Wave and Tidal Energy. Neil Ferguson International and Niche Markets for Wave and Tidal Energy Neil Ferguson Scottish Enterprise Scottish Enterprise aims to deliver a significant, lasting effect on the Scottish economy. Our four interconnected

More information

POWER YOUR FUTURE Universidade do Algarve - Faro. 7 th September 2007

POWER YOUR FUTURE Universidade do Algarve - Faro. 7 th September 2007 POWER YOUR FUTURE Universidade do Algarve - Faro Wave Energy The experience of wave energy in Portugal Eng.ª Sofia Patrício 7 th September 2007 Topics Wave Energy Resource Wave Energy in Portugal Wave

More information

Operating Principle, Performance and Applications of the Wave Mill

Operating Principle, Performance and Applications of the Wave Mill Journal of Energy and Power Engineering 11 (2017) 311-316 doi: 10.17265/1934-8975/2017.05.004 D DAVID PUBLISHING Operating Principle, Performance and Applications of the Wave Mill Ivan Voropaev Wave Power

More information

Carnegie Wave Energy Limited

Carnegie Wave Energy Limited Carnegie Wave Energy Limited Mr Kieran O Brien Executive Director European Business Development Copyright Carnegie Wave Energy Limited 2015 1 Disclaimer The information contained herein has been prepared

More information

Sustainable Energy Science and Engineering Center. Ocean Energy. Reference: Renewable Energy by Godfrey Boyle, Oxford University Press, 2004.

Sustainable Energy Science and Engineering Center. Ocean Energy. Reference: Renewable Energy by Godfrey Boyle, Oxford University Press, 2004. Ocean Energy Reference: Renewable Energy by Godfrey Boyle, Oxford University Press, 2004. Ocean Energy Oceans cover most of the (70%) of the earth s surface and they generate thermal energy from the sun

More information

Applicability and potential of wave power in China

Applicability and potential of wave power in China DEPARTMENT OF TECHNOLOGY AND BUILT ENVIRONMENT Applicability and potential of wave power in China Lihui Guo June 2010 Master s Thesis in Energy Systems 2 Preface This study was carried out as a final thesis

More information

DEVELOPMENTS IN WAVE ENERGY CONVERSION

DEVELOPMENTS IN WAVE ENERGY CONVERSION Türkiye Offshore Energy Conference, Istanbul, 19-21 June 2013 DEVELOPMENTS IN WAVE ENERGY CONVERSION António F. O. Falcão Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, Portugal SUMMARY

More information

Marine Energy industry in Scotland. April 2013

Marine Energy industry in Scotland. April 2013 Marine Energy industry in Scotland April 2013 Policy- Government Targets Scottish Targets 50% of electricity demand to be met by Renewables by 2015 100% of Scottish demand by 2020 Currently at 39% 30%

More information

Wave Energy Converters (WECs)

Wave Energy Converters (WECs) Aquamarine Power Oyster* The Oyster is uniquely designed to harness wave energy in a near-shore environment. It is composed primarily of a simple mechanical hinged flap connected to the seabed at a depth

More information

ESB Ocean Energy Projects

ESB Ocean Energy Projects MRIA, February 2013 ESB Ocean Energy Projects Opportunities in an All-Islands Market John Fitzgerald ESB Ocean Energy Developing new lines of business for ESB and Ireland 200M Cleantech Fund Home Energy

More information

Ocean Energy in Ireland

Ocean Energy in Ireland Ocean Energy in Ireland Engineers Ireland, Midlands Region Fergus Sharkey, Technology Integration Engineer, ESB Ocean Energy 25 th February 2012 Agenda ESB and Ocean Energy Ocean Energy in Ireland Wave

More information

Maria Kamargianni Prof. Nikitas Nikitakos Dr. Theodoros Lilas

Maria Kamargianni Prof. Nikitas Nikitakos Dr. Theodoros Lilas 3rd International Scientific Conference Energy and Climate Change An overview of wave energy devices. Case study: wave energy in Agios Efstratios, the first greek green island Maria Kamargianni Prof. Nikitas

More information

AN APPROACH TO WAVE ENERGY CONVERTER APPLICATIONS ON TURKEY AND THEIR ELECTRICITY GENERATION CAPACITY

AN APPROACH TO WAVE ENERGY CONVERTER APPLICATIONS ON TURKEY AND THEIR ELECTRICITY GENERATION CAPACITY AN APPROACH TO WAVE ENERGY CONVERTER APPLICATIONS ON TURKEY AND THEIR ELECTRICITY GENERATION CAPACITY Abdi KUKNER 1 Akile Nese HALILBESE 2 Sertac BULUT 3 1 PhD, Professor, Department of Shipbuilding and

More information

Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott

Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott Technology and innovation challenges for UK Offshore Wind Energy Andrew Scott Offshore Wind Operations/Science Meets Industry, Bergen 2013 10 September 2013 2013 Energy Technologies Institute LLP The information

More information

Wave Energy. Penn Sustainability Review. Sasha Klebnikov. Volume 1 Issue 7 Optimizing Sustainability. Article

Wave Energy. Penn Sustainability Review. Sasha Klebnikov. Volume 1 Issue 7 Optimizing Sustainability. Article Penn Sustainability Review Volume 1 Issue 7 Optimizing Sustainability Article 7 12-1-2015 Wave Energy Sasha Klebnikov This paper is posted at ScholarlyCommons. http://repository.upenn.edu/psr/vol1/iss7/7

More information

Recent developments in wave energy along the coast of southern Africa

Recent developments in wave energy along the coast of southern Africa Recent developments in wave energy along the coast of southern Africa J. R. Joubert 1 and J. L. van Niekerk 2 1 Centre for Renewable Energy Studies, Mechanical & Mechatronic Engineering Department, Stellenbosch

More information

Tidal Energy. Definition of Tidal Energy. Tidal energy is energy derived from the movement of the ocean tides.

Tidal Energy. Definition of Tidal Energy. Tidal energy is energy derived from the movement of the ocean tides. Tidal Energy Definition of Tidal Energy Tidal energy is energy derived from the movement of the ocean tides. Water has mass. When it moves, it has kinetic energy which can be harnessed. Kinetic energy

More information

ASX Announcement. 27 February 2018 CETO Wave Energy Update

ASX Announcement. 27 February 2018 CETO Wave Energy Update ASX Announcement 27 February 2018 CETO Wave Energy Update Albany Wave Energy Project site specific design and development advances CETO 6 design, development and testing progress Significant European and

More information

Whitney Hauslein Global War Wa ming

Whitney Hauslein Global War Wa ming Whitney Hauslein Global Warming The Ocean has only recently been used and tested as a new resource to be used as an alternative energy source. This seems awful late in forthcoming since the ocean covers

More information

OFFSHORE WIND: A CRASH COURSE

OFFSHORE WIND: A CRASH COURSE OFFSHORE WIND: A CRASH COURSE OFFSHORE WIND: DEFINED OFFSHORE WIND: Construction of wind farms in bodies of water to generate electricity from wind. Unlike the typical usage of the term offshore in the

More information

InVEST model demo: Renewable Energy (Wave Energy) Gregg Verutes

InVEST model demo: Renewable Energy (Wave Energy) Gregg Verutes InVEST model demo: Renewable Energy (Wave Energy) Gregg Verutes Some WEC Devices Attenuator Point Absorber Oscillating Water Column Overtopping Device Oscillating Wave Surge Converter Submerged Pressure

More information

Report of the Committee to Study Offshore Wind Energy and the Development of Other Ocean Power Technology

Report of the Committee to Study Offshore Wind Energy and the Development of Other Ocean Power Technology Report of the Committee to Study Offshore Wind Energy and the Development of Other Ocean Power Technology HB 1312 (Chapter 180, Laws of 2014) Membership Representative Robert Cushing, Chair Representative

More information

ASX Announcement. May 4, Carnegie Wave All Energy Presentation

ASX Announcement. May 4, Carnegie Wave All Energy Presentation ASX Announcement May 4, 2016 Carnegie Wave All Energy Presentation Please find attached the Carnegie Wave Energy All Energy presentation delivered by Carnegie UK s CEO Tim Sawyer, on Wedneday May 4 th

More information

The power of the wind

The power of the wind The Vestas profile The power of the wind The wind has been a key factor in world economy for thousands of years. However, the fundamental principle remains the same transforming wind energy into motion.

More information

Wind and Tidal - Benefits and Opportunities in Australia

Wind and Tidal - Benefits and Opportunities in Australia Wind and Tidal - Benefits and Opportunities in Australia Presented by MR MATTHEW KEYS, BEng (Civil) Lead Analysis Engineer Carnegie Corporation Ltd 2007 Carnegie Corporation Ltd Outline Ocean Energy Introduction

More information

Marine Energy Supply Chain

Marine Energy Supply Chain Marine Energy Supply Chain Workshop 18 March 2015 Wave & Tidal Power Supply Chain Opportunities Agenda Sector overview wave & tidal power Project breakdown what are the opportunities How to get involved

More information

Development of TEU Type Mega Container Carrier

Development of TEU Type Mega Container Carrier Development of 8 700 TEU Type Mega Container Carrier SAKAGUCHI Katsunori : P. E. Jp, Manager, Ship & Offshore Basic Design Department, IHI Marine United Inc. TOYODA Masanobu : P. E, Jp, Ship & Offshore

More information

Solar Energy, Wind Energy, Hydro and Geothermal Energy: A Review of Ocean Energy Systems

Solar Energy, Wind Energy, Hydro and Geothermal Energy: A Review of Ocean Energy Systems Solar Energy, Wind Energy, Hydro and Geothermal Energy: A Review of Ocean Energy Systems Les Duckers and Wirongrong Mongkonthum * School of Science and the Environment Coventry University, Coventry, United

More information

PHYSICAL AND NUMERICAL MODELING OF THE WAVECAT WAVE ENERGY CONVERTER

PHYSICAL AND NUMERICAL MODELING OF THE WAVECAT WAVE ENERGY CONVERTER PHYSICAL AND NUMERICAL MODELING OF THE WAVECAT WAVE ENERGY CONVERTER Hernán Fernández 1, Gregorio Iglesias 1, Rodrigo Carballo 1, Alberte Castro 1 and Pedro Bartolomé 1 Wave energy presents a great potential

More information

Ocean Energy. Haley, Shane, Alston

Ocean Energy. Haley, Shane, Alston Ocean Energy Haley, Shane, Alston What is Ocean Energy? The world s oceans cover nearly 70% of the world's surface The oceans are the world's largest collector of the sun s energy that is continually

More information

Offshore wind power in the Baltic sea

Offshore wind power in the Baltic sea Offshore wind power in the Baltic sea Conditions for profitability Henrik Malmberg 2014-09-27 Content BACKGROUND... 2 PURPOSE... 2 ABOUT THE AUTHOR... 2 RELEVANT ISSUES... 3 WIND CONDITIONS AND ENERGY

More information

Development of Marine Energy in the Global Context. Dr. John Huckerby Chairman, ExecutiveCommitteeofOceanEnergySystems

Development of Marine Energy in the Global Context. Dr. John Huckerby Chairman, ExecutiveCommitteeofOceanEnergySystems Development of Marine Energy in the Global Context Dr. John Huckerby Chairman, ExecutiveCommitteeofOceanEnergySystems UNICPOLOS, New York 29 May 1 June 2012 OceanEnergyResources Ocean Energy Tidal Rise

More information

Portuguese Market Outlook up to 2040

Portuguese Market Outlook up to 2040 Portuguese Market Outlook up to 2040 POYRY A report to APREN Disclaimer The results and conclusions here presented are the outcome of an outsourced study developed by Pöyry, with APREN s guidance, but

More information

Optimisation of Wave Power Devices Towards Economic Wave Power Systems

Optimisation of Wave Power Devices Towards Economic Wave Power Systems Optimisation of Wave Power Devices Towards Economic Wave Power Systems Prof. Trevor Whittaker FREng. FICE FRINA CEng School of Civil Engineering Queen s University Belfast, David Keir Building, Stranmillis

More information

The transition to sustainable energy

The transition to sustainable energy ATSE Symposium The transition to sustainable energy Peter Littlewood 8 Nov 2016 The changing world economy Index 180 170 160 150 140 130 120 110 100 90 Economies less energy intensive Electricity less

More information

Wave Hub Update All Energy 21/22 May Stuart Herbert Commercial Director

Wave Hub Update All Energy 21/22 May Stuart Herbert Commercial Director Wave Hub Update All Energy 21/22 May 2014 Stuart Herbert Commercial Director Deployment Site EMEC, Orkney NaREC/EMEC Refined Prototype Testing Market penetration NaREC, Northumberland Market entry with

More information

HydroCOM: High energy savings and excellent controllability

HydroCOM: High energy savings and excellent controllability HydroCOM: High energy savings and excellent controllability Almost all applications require efficient capacity control systems Most of them simply waste energy, are slow and inaccurate. HydroCOM, however,

More information

Taking Stock: Building an Offshore Wind Research Agenda for the U.S. Industry

Taking Stock: Building an Offshore Wind Research Agenda for the U.S. Industry Taking Stock: Building an Offshore Wind Research Agenda for the U.S. Industry Walt Musial Manager Offshore Wind National Renewable Energy Laboratory 2016 MRP Workshop December 15, 2016 Pioneering Offshore

More information

Marine Energy. Dr Gareth Harrison University of Edinburgh

Marine Energy. Dr Gareth Harrison University of Edinburgh Marine Energy Dr Gareth Harrison University of Edinburgh Overview What is marine energy? Wave power Tidal power Marine Energy Marine energy covers all methods for extracting energy from the oceans Wave

More information

Energy from seas and oceans

Energy from seas and oceans Energy from seas and oceans Marine energy can represent an important source of renewable energy in the near future. In Italy, activities performed in this sector are growing rapidly both in terms of assessment

More information

Wind Mills of the Mind Delivering large scale offshore wind. Andy Kinsella CEO, Offshore November 24th, 2011, Dundalk

Wind Mills of the Mind Delivering large scale offshore wind. Andy Kinsella CEO, Offshore November 24th, 2011, Dundalk Wind Mills of the Mind Delivering large scale offshore wind Andy Kinsella CEO, Offshore November 24th, 2011, Dundalk Delivering Large Scale Offshore Wind The Task Mountains of the Mind Delivering large-scale

More information

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences.

Innovative and Robust Design. With Full Extension of Offshore Engineering and Design Experiences. Innovative and Robust Design by VL Offshore With Full Extension of Offshore Engineering and Design Experiences www.vloffshore.com Y Wind Semi Designed by VL Offshore The Y Wind Semi platform (foundation)

More information

Wave Energy Conversion for French Polynesia

Wave Energy Conversion for French Polynesia Wave Energy Conversion for French Polynesia AGENDA 1) Introduction to Wave Energy 2) Wave Energy in French Polynesia 3) CalWave Potential Ocean Energy or Marine Hydrokinetics (MHK) Ocean Energy Technology

More information

Overtopping Breakwater for Wave Energy Conversion at the Port of Naples: Status and Perspectives

Overtopping Breakwater for Wave Energy Conversion at the Port of Naples: Status and Perspectives Overtopping Breakwater for Wave Energy Conversion at the Port of Naples: Status and Perspectives Diego Vicinanza, Pasquale Contestabile, Enrico Di Lauro 1. INTRODUCTION Nowadays over 1500 Wave Energy Converter

More information

WAVE ENERGY BREAKWATERS - A DEVICE COMPARISON

WAVE ENERGY BREAKWATERS - A DEVICE COMPARISON CONFERENCE IN OCEAN ENGINEERING - COE'96 17-20 December 1996, Madras, INDIA WAVE ENERGY BREAKWATERS - A DEVICE COMPARISON PROF. DR.-ING. KAI-UWE GRAW Universitätsprofessor, University of Leipzig Marschnerstraße

More information

La Rance tidal power plant in La Rance, France. Tidal and Wave Energy

La Rance tidal power plant in La Rance, France. Tidal and Wave Energy La Rance tidal power plant in La Rance, France Tidal and Wave Energy Tides Tides are caused by the pull of the moon. Tides involve the rise and fall of sea levels. Around the coast of Ireland, the sea

More information

Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations

Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations Norway s solution: Hywind- world s first full scale floating turbine Dr. Nenad Keseric Asset Manager/Specialist Statoil ASA MPR RE Operations Strategy and Support Leveraging Statoil s offshore oil and

More information

Wave Power Conversion Systems for POWER GENERATION

Wave Power Conversion Systems for POWER GENERATION International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Wave Power Conversion Systems for POWER GENERATION B.Koteswararao a,d.ravi b,p.appalaraju c a,b,c Assistant Professor

More information

Potential and Strategy for the Development of Wave Energy in Portugal

Potential and Strategy for the Development of Wave Energy in Portugal WAVE ENERGY CENTRE Potential and Strategy for the Development of Wave Energy in Portugal Version 0.1 1 INDEX 11.. TTHHEE EENNEERRGGEETTIICC RREESSOOUURRCCEE... 3 22.. AACCTTUUAALL PPRROOTTOOTTYYPPEESS

More information

The Application of Wave Energy Converter in Hybrid Energy System

The Application of Wave Energy Converter in Hybrid Energy System Send Orders for Reprints to reprints@benthamscience.ae 936 The Open Mechanical Engineering Journal, 2014, 8, 936-940 Open Access The Application of Wave Energy Converter in Hybrid Energy System Song Ding

More information

A NEW PROCESS FOR IMPROVED LIQUEFACTION EFFICIENCY

A NEW PROCESS FOR IMPROVED LIQUEFACTION EFFICIENCY WHITE PAPER A NEW PROCESS FOR IMPROVED LIQUEFACTION EFFICIENCY Author(s): Adam Jones and Grant Johnson, Costain Natural Resources First published: GPAE, September 2014 www.costain.com A New Process for

More information

Toray s Global Operations. Share it...

Toray s Global Operations. Share it... Toray s Global Operations Share it... 23 With strategic presence and advanced technology, growing with communities Toray Group s global production began to expand in 1963 with the commencement of fiber

More information

Characterizing Ireland s wave energy resource

Characterizing Ireland s wave energy resource Snapshots of Doctoral Research at University College Cork 2011 Characterizing Ireland s wave energy resource Brendan Cahill Hydraulics & Maritime Research Centre, UCC Introduction In theory, the energy

More information

Global Expansion Guided by Long-term Perspectives and the Made in Toray * Spirit

Global Expansion Guided by Long-term Perspectives and the Made in Toray * Spirit Toray s Global Operations Toray s way Global Expansion Guided by Long-term Perspectives and the Made in Toray * Spirit Toray is continually strengthening and expanding its global production network in

More information

Oceanic Energy. Associate Professor Mazen Abualtayef. Environmental Engineering Department. Islamic University of Gaza, Palestine

Oceanic Energy. Associate Professor Mazen Abualtayef. Environmental Engineering Department. Islamic University of Gaza, Palestine Oceanic Energy Associate Professor Mazen Abualtayef Environmental Engineering Department Islamic University of Gaza, Palestine 1 Adapted from a presentation by Professor S.R. Lawrence Leeds School of Business,

More information

Challenges of up-scaling to a grid connected array. PECC Energy Transition June Arturo Troncoso, Director CWE Chile

Challenges of up-scaling to a grid connected array. PECC Energy Transition June Arturo Troncoso, Director CWE Chile Challenges of up-scaling to a grid connected array PECC Energy Transition 2013-2014 24 June 2014 Arturo Troncoso, Director CWE Chile Copyright Carnegie Wave Energy Limited 2014 1 Disclaimer The information

More information

Aalborg Universitet. The Wave Energy Challenge Christensen, L.; Friis-Madsen, E.; Kofoed, Jens Peter

Aalborg Universitet. The Wave Energy Challenge Christensen, L.; Friis-Madsen, E.; Kofoed, Jens Peter Aalborg Universitet The Wave Energy Challenge Christensen, L.; Friis-Madsen, E.; Kofoed, Jens Peter Published in: Proceedings of the POWER-GEN 2005 Europe Conference Publication date: 2005 Document Version

More information

A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira

A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira A.J.C. Crespo, J.M. Domínguez, C. Altomare, A. Barreiro, M. Gómez-Gesteira OUTLINE Oscillating Water Column - What OWC is? - Numerical modelling of OWC SPH functionalities - Wave generation (1 st order

More information

Vestas Capital Markets Day MHI Vestas Offshore Wind A/S

Vestas Capital Markets Day MHI Vestas Offshore Wind A/S Vestas Capital Markets Day MHI Vestas Offshore Wind A/S 1 MHI Vestas Offshore Wind A/S Vestas Capital Markets Day, Copenhagen 29 November 218 PHILIPPE KAVAFYAN CEO LARS BONDO KROGSGAARD Co-CEO Journey

More information

Alstom Ocean Energy Path towards Industrailsation. Ken Street 18 th April 2013

Alstom Ocean Energy Path towards Industrailsation. Ken Street 18 th April 2013 Alstom Ocean Energy Path towards Industrailsation Ken Street 18 th April 2013 Three main activities in four Sectors Equipment & services for power generation Equipment & services for rail transport ALSTOM

More information

Wind Power. Kevin Clifford METR 112 April 19, 2011

Wind Power. Kevin Clifford METR 112 April 19, 2011 Wind Power Kevin Clifford METR 112 April 19, 2011 Outline Introduction Wind Turbines Determining Wind Power Output The Price of Wind Power Wind Power Availability across the World and US California Wind

More information

Energy capture performance

Energy capture performance Energy capture performance Cost of energy is a critical factor to the success of marine renewables, in order for marine renewables to compete with other forms of renewable and fossil-fuelled power generation.

More information

OECS Regional Engineering Workshop September 29 October 3, 2014

OECS Regional Engineering Workshop September 29 October 3, 2014 B E A C H E S. M A R I N A S. D E S I G N. C O N S T R U C T I O N. OECS Regional Engineering Workshop September 29 October 3, 2014 Coastal Erosion and Sea Defense: Introduction to Coastal Dynamics David

More information

Wave Energy Atlas in Vietnam

Wave Energy Atlas in Vietnam Wave Energy Atlas in Vietnam Nguyen Manh Hung, Duong Cong Dien 1 1 Institute of Mechanics, 264 Doi Can Str. Hanoi, Vietnam nmhungim@gmail.com; duongdienim@gmail.com Abstract Vietnam has achieved remarkable

More information

WAVE ENERGY UTILIZATION

WAVE ENERGY UTILIZATION Università degli Studi di Firenze, 18-19 April 2012 WAVE ENERGY UTILIZATION António F. O. Falcão Instituto Superior Técnico, Universidade Técnica de Lisboa Part 2 Introduction to Wave Energy Conversion

More information

Tidal energy is produced by the surge of ocean waters during the rise and fall of tides. Tidal energy is a renewable source of energy.

Tidal energy is produced by the surge of ocean waters during the rise and fall of tides. Tidal energy is a renewable source of energy. Encyclopedic Entry For Educator tidal energy For the complete encyclopedic entry with media resources, visit: http://www.connectenergyed.org/education/encyclopedia/tidal-energy/ Tidal energy is produced

More information

AUSTAL WIND EXPRESS SERIES

AUSTAL WIND EXPRESS SERIES WIND EXPRESS SERIES ABOUT AUSTAL AUSTAL WIND EXPRESS SERIES Austal is the world s leading designer and builder of customised, high performance aluminium vessels for both commercial and defence applications

More information

System Performance, Availability and Reliability Trend Analysis Portfolio Review 2016

System Performance, Availability and Reliability Trend Analysis Portfolio Review 2016 System Performance, Availability and Reliability Trend Analysis Portfolio Review 2 Published in March 217 SPARTA by numbers 2 TWh Produced by portfolio in reporting period 1 Number one First benchmarking

More information

ACCESS the BLUE ECONOMY ALL OCEANS Engineering Ltd

ACCESS the BLUE ECONOMY ALL OCEANS Engineering Ltd Subsea Expo 2018 ROV Conference 07.02.2018 ACCESS the BLUE ECONOMY The BLUE ECONOMY - DEFINITION The Blue Economy is a book by Gunter Pauli publish in 2010 based on the idea that he developed in 2004 In

More information

WAVE HUB. Dr Mike Patching. A Future for Wave Energy in Cornwall. BEng, PhD, CEng, MEI

WAVE HUB. Dr Mike Patching. A Future for Wave Energy in Cornwall. BEng, PhD, CEng, MEI WAVE HUB A Future for Wave Energy in Cornwall Dr Mike Patching BEng, PhD, CEng, MEI 1 Pelamis - Wave Energy in Action!! 2 Wave Hub - What is it? Simple idea! An area of sea with an electrical cable and

More information

The Carnegie Wave Energy CETO Wave Energy Project

The Carnegie Wave Energy CETO Wave Energy Project The Carnegie Wave Energy CETO Wave Energy Project -Progress towards Commercialisation Dr Laurence Mann Research and IP Manager Carnegie Wave Energy Limited. October 2009 2009 Carnegie Wave Energy Limited

More information

Energy Outlook Global and Domestic Trends and Challenges. Dr. John Caldwell Director of Economics, EEI 1

Energy Outlook Global and Domestic Trends and Challenges. Dr. John Caldwell Director of Economics, EEI 1 Energy Outlook Global and Domestic Trends and Challenges Dr. John Caldwell Director of Economics, EEI 1 World GDP Growth Other Economies are Outpacing the U.S. Other, 7996.16, 11% Africa, 3962.51, 6% Latin

More information

Deployment of Ocean Energy Technologies: Scope, Challenges & Opportunity

Deployment of Ocean Energy Technologies: Scope, Challenges & Opportunity aerd Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 3, March -2015 Deployment

More information

Wave energy technologies are designed to extract energy from the energy contained in the movement of waves.

Wave energy technologies are designed to extract energy from the energy contained in the movement of waves. 4. Wave Wave energy technologies are designed to extract energy from the energy contained in the movement of waves. 4.1. History and Development Intensive research into wave energy began in the 1970s when

More information

Offshore Energy Årsmøde Offshore Wind Energy in Europe

Offshore Energy Årsmøde Offshore Wind Energy in Europe Analyst PRESENTATION Årsmøde Offshore Wind Energy in Europe Michael Guldbrandtsen mg@consultmake.com Offshore wind development Offshore wind farms have grown significantly 1991 22 22 Vindeby Horns Rev

More information

Background. that may differ from the rest of the world.

Background. that may differ from the rest of the world. Background ¾Climate Change impacts in the Pacific very serious and will impact the lives and livelihoods of the people people. ¾Sea level rise is a major threat need to help reduce carbon emission. One

More information

The economic value of the EU shipping industry. Andrew P Goodwin

The economic value of the EU shipping industry. Andrew P Goodwin The economic value of the EU shipping industry Andrew P Goodwin 2 nd April 2014 Introduction Shipping is a vital facilitator of world trade 135 % Increase in world GDP in the last two decades 180 % Increase

More information

INNOVATIVE MOORING SYSTEMS

INNOVATIVE MOORING SYSTEMS INNOVATIVE MOORING SYSTEMS VESSEL AUTOMOORING MODULES QUAY AUTOMOORING INSTALLATIONS DOCKLOCK brings mooring to a next level PAGE 2 FOR OVER A CENTURY THE WORLD S LEADING EXPERT IN MOORING, BERTHING AND

More information

Press release LAUNCH. FlanSea WAVE PIONEER Wave energy converter

Press release LAUNCH. FlanSea WAVE PIONEER Wave energy converter LAUNCH FlanSea WAVE PIONEER Wave energy converter TUESDAY 23 APRIL 2013 VLIZ - Flanders Marine Institute WANDELAARKAAI 7, B-8400 OOSTENDE BELGIUM Press release FlanSea WAVE PIONEER THE FORCE OF THE WAVES

More information

Chandirekera Sarah Mutubuki-Makuyana Senior Advisor Renewable Energy SNV Netherlands Development Organisation Zimbabwe

Chandirekera Sarah Mutubuki-Makuyana Senior Advisor Renewable Energy SNV Netherlands Development Organisation Zimbabwe Chandirekera Sarah Mutubuki-Makuyana Senior Advisor Renewable Energy SNV Netherlands Development Organisation Zimbabwe How to Drive the Development of an Ocean Energy Industry in your country Recent developments

More information

SOURCES of OCEAN ENERGY

SOURCES of OCEAN ENERGY Ocean Energy in South Africa Centre for Renewable and Sustainable Energy Studies Wave Power Seminar 8 th June 2007 Deon Retief PRESTEDGE RETIEF DRESNER WIJNBERG (PTY) LTD CONSULTING PORT, COASTAL AND ENVIRONMENTAL

More information

Ocean Wave Technology Street Address:- Suite 4 / 16 Phillimore Street, Fremantle WA 6160.

Ocean Wave Technology Street Address:- Suite 4 / 16 Phillimore Street, Fremantle WA 6160. Ocean Wave Technology Street Address:- Suite 4 / 16 Phillimore Street, Fremantle WA 6160. Postal Address:- PO Box 847, Fremantle WA 6959. Phone:- + 61 8 6102 4894 Mobile:- +61 435 257 044 Email:- john.drake@oceanwavetech.com

More information

Wave energy conversion systems: optimal localization procedure

Wave energy conversion systems: optimal localization procedure Coastal Processes 129 Wave energy conversion systems: optimal localization procedure G. Benassai 1, M. Dattero 2 & A. Maffucci 1 1 Department of Applied Sciences, University of Naples Parthenope, Italy

More information

Offshore engineering science

Offshore engineering science Offshore engineering science In this research stream theoretical models advanced geotechnical models and new numerical techniques were used in applied offshore engineering topics such as loading, design

More information

wave energy, reloaded series 25 - wave energy converters

wave energy, reloaded series 25 - wave energy converters wave energy, reloaded series 25 - wave energy converters Michele Grassi is a mathematician who graduated from Scuola Normale Superiore in Pisa, Italy, and gained a PhD in mathematics from the University

More information

Offshore // Marine // Subsea Cable solutions that thrive under pressure

Offshore // Marine // Subsea Cable solutions that thrive under pressure Offshore // Marine // Subsea Cable solutions that thrive under pressure Underwater and pressure resistant cables and harnesses for your needs For over 40 years Habia Cable has developed and manufactured

More information

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK

DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK The 9 th International Conference on Coasts, Ports and Marine Structures (ICOPMAS 2010) 29 Nov.-1 Dec. 2010 (Tehran) DETRMINATION OF A PLUNGER TYPE WAVE MAKER CHARACTERISTICE IN A TOWING TANK sayed mohammad

More information

Renewable and Alternative Energies

Renewable and Alternative Energies Department of Electrical and Energy Engineering This work is published under a license: Creative Commons BY-NC-SA 4.0 Contents Topic 1. Wind energy. Topic 2. Solar energy.. Topic 4. Hydropower. Topic 5.

More information

Designing Wave Energy Converting Device. Jaimie Minseo Lee. The Academy of Science and Technology The Woodlands College Park High School, Texas

Designing Wave Energy Converting Device. Jaimie Minseo Lee. The Academy of Science and Technology The Woodlands College Park High School, Texas Designing Wave Energy Converting Device Jaimie Minseo Lee The Academy of Science and Technology The Woodlands College Park High School, Texas Table of Contents Abstract... i 1.0 Introduction... 1 2.0 Test

More information

Global SURF (Subsea Umbilicals, Risers and Flowlines) Market: 2018 World Market Review and Forecast to 2023

Global SURF (Subsea Umbilicals, Risers and Flowlines) Market: 2018 World Market Review and Forecast to 2023 Global SURF (Subsea Umbilicals, Risers and Flowlines) Market: 2018 World Market Review and Forecast to 2023 By Water Depth Shallow Water and Deep Water By Type- Umbilical, Riser and Flowlines By Umbilical

More information

University of Leeds Travel Plan

University of Leeds Travel Plan University of Leeds Travel Plan 2015-2018 Contents 1: Introduction 1.1 What is a Travel Plan? 1.2 Why do we need one? 1.3 Sustainability Strategy 2: Overview 2.1 The bigger picture 2.2 The City scale 2.3

More information

RAMSTM. 360 Riser and Anchor-Chain Integrity Monitoring for FPSOs

RAMSTM. 360 Riser and Anchor-Chain Integrity Monitoring for FPSOs RAMS 360 Riser and Anchor-Chain Integrity Monitoring for FPSOs Introduction to RAMS Tritech s RAMS is a 360 anchor-chain and riser integrity monitoring system for Floating Production Storage and Offloading

More information

Offshore Wind Vessels. Steven Kopits Douglas-Westwood LLC

Offshore Wind Vessels. Steven Kopits Douglas-Westwood LLC Offshore Wind Vessels Steven Kopits Douglas-Westwood LLC Offshore Wind: Removing Market Barriers DOE Webinar July 25, 2012 1 www.dw-1.com Our business History and Office Locations Established 1990 Aberdeen,

More information

Computational Fluid Dynamics

Computational Fluid Dynamics Computational Fluid Dynamics A better understanding of wind conditions across the whole turbine rotor INTRODUCTION If you are involved in onshore wind you have probably come across the term CFD before

More information

The End of Hyper growth: Political and Economic Responses to a Slowing China

The End of Hyper growth: Political and Economic Responses to a Slowing China The End of Hyper growth: Political and Economic Responses to a Slowing China Barry Naughton IR/PS, UC San Diego 5 th Annual G2 at GW Conference October 12, 2012 Conclusions (Seriously) Forces that are

More information

Ocean Wave Converters: State of the Art and Current Status

Ocean Wave Converters: State of the Art and Current Status Ocean Wave Converters: State of the Art and Current Status Mouna Lagoun, Atallah Benalia, Mohamed Benbouzid To cite this version: Mouna Lagoun, Atallah Benalia, Mohamed Benbouzid. Ocean Wave Converters:

More information