Atmospheric & Ocean Circulation- I

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Atmospheric & Ocean Circulation- I"

Transcription

1 Atmospheric & Ocean Circulation- I

2 First: need to understand basic Earth s Energy Balance 1) Incoming radiation 2) Albedo (reflectivity) 3) Blackbody Radiation

3 Atm/ Ocean movement ultimately derives from the Sun s rays Calvin J. Hamilton

4 But this picture would just imply that atmosphere/ ocean gets HOTTER Why would things CIRCULATE?

5 One Key: Uneven incoming solar energy with latitude Solar energy in high latitudes: Has a larger footprint Is reflected to a greater extent Passes through more atmosphere Therefore, less energy per square meter is absorbed at high latitudes

6 Uneven solar heating with latitude another way to visualize: how high is sun in sky?

7 2) ALBEDO ( Reflectivity )

8 Technically... Albedo: percentage of incident radiation that can reflect back to the atmosphere The Earths reflects about 30% of the sun s incident radiation Relative Albedo...

9 Albedo Much higher at poles! Mainly due to: Snow and Ice Cloud-cover

10 So is the Earth just getting hotter and hotter? Where does the energy go?

11 3) Black Body Radiation

12 As we continuously heat the ball, its color changes. Why?

13 Recall Light Spectrum- Recall that visible light is only small part of whole spectrum. Higher-Energy UV light Wavelength Lower-Energy Infra-red light

14 Constant temp (T) Radiation flux vs temperature Stefan-Boltzmann Law: High Temp = High Total Energy output (Total radiation flux emitted as a function of temperature) (T in Kelvin) Wien s Law: High energy = LOW wavelength (wave-length of maximum intensity as a function of Temp) 2898 T (T in Kelvin) max E T W m K 8-2 4

15 Sun emits primarily in visible (short wave radiation, SWR) Note: Sun emissions MUCH LARGER than Earth emissions (Stefan-Boltzmann Law) Earth emits primarily in IR (long wave radiation, LWR)

16 Overview : Blackbody radiation the major sink for incoming Solar Energy 1) All objects (with temperatures above absolute zero) radiate energy sun, light bulbs, earth, people (those cool IR cameras..) 2) The amount of energy & wavelength related to temperature Earth and people (~ cool ) * * lower energy in the (invisible) infrared Why does it get cool at night? because earth is radiating away energy it absorbed during day! For example: Sun and incandescent light bulbs (HOT) emit largely visible light

17 Now, we can create basic energy balance..

18 Simplified radiation budget Reflected solar 1) Energy arrives as visible (shortwave) sunlight About 30% is reflected albedo Higher reflection albedo at higher latitudes Earth Incoming visible The remainder leaves as outgoing infrared (longwave) radiation Outgoing infrared

19 But.you may be asking... Why does the ocean circulate again? Still have not answered this question!

20 Problem: this simple model does not Quite work out Reflected solar Earth Incoming visible Outgoing infrared

21 Predicts WAY too much heat at Equator (ie, predicts mid-latitudes warmer than they are..) WAY too little heat at poles (ie, predicts them to be colder than they are) Actual Means: a net heat gain is experienced in low latitudes A net heat loss is experienced in high latitudes BUT HOW?

22 How to explain Heat Loss/Gain that must be happening?

23 Basis of Global Wind Bands:

24 Recall.. Convection: (the soup analogy..)

25 Implications of differential warming: Convection in Atmosphere! Warm, low density air rises Cool, high density air sinks Creates circularmoving loop of air (convection cell) Figure 6-5

26 As with earth s crust: its still all about Density If air mass WARMS molecules move more quickly air mass expands DENSITY DECREASES AIR MASS RISES If air mass COOLS molecules move less quickly air mass contracts DENSITY INCREASES AIR MASS SINKS Up in atmosphere

27 High vs Low air Pressures A column of cool, dense air causes high pressure at the surface, which will lead to sinking air A column of warm, less dense air causes low pressure at the surface, which will lead to rising air Figure 6-6

28 A big result of Different Pressure zones: moisture. WIND As air rises, it cools, water condenses, lots of rain As air sinks, it warms, lots of evaporation LOW Pressure Equator WIND HIGH Pressure 30 N

29 So: Basic Global wind patterns RESULT differential heating/cooling. They are a redistribution of heat due to convection cells! Thinking about a circulation cell, WHAT WOULD YOU EXPECT THEM TO BE LIKE??

30 Ideal Circulation for a non-rotating Warm air would rise at the equator Cold air would sink at the poles Single circulation cell with equator-ward flow Earth Fig. 6-7

31 But, of course, it doesn t work in the ideal way. Why NOT? Density and pressure differences, coupled with rotation of earth create smaller cells of circulation!

32 90 N Sinking air High pressure zone Divergence Dry - Arctic / Polar H 60 N 30 N L H Atmospheric Cells Rising air Low pressure zone Convergence Wet - Temperate / Sub-Polar Sinking air High pressure zone Divergence Dry - Sub-tropical Equator L Rising air Low pressure zone Convergence Wet - Tropical

33 Overview: Atmospheric Circulation 1) Think of density differences driving vertical movements Warm air rises Cool air sinks 2) Think of pressure differences driving horizontal movements Air moves from HIGH TO LOW pressure

34 Major circulation cells global moisture bands WIND WIND LOW Pressure Equator HIGH Pres 30 N

35 Rainy equator? ITCZ Inter-tropical Convergence Zone

36 ITCZ - Intertropical Convergence Zone More evidence of Hadley cell Cooling as the air rises causes the water vapor to condense as clouds and rain - releasing its latent heat. The heat is then transported to higher latitudes by the Hadley cells.

37 So what creates the REAL wind bands.. Big Complication #2: The Earth rotates..

38 BREAK

39 Review: The Coriolis Effect Accounts for how things move relative to the earths surface (which is rotating underneath them!) Causes objects in motion to curve (relative to the earth!) To right in the North To left in the south

40 Coriolis effect N. Hemisphere Deviate to Right (relative to direction of motion) S. Hemisphere Deviate to Left (relative to direction of motion)

41 Coriolis Effect Consequence of something moving over a turning object.. Figure 6-9

42 The Earth rotates The Coriolis Effect "Image/Text/Data from the University of Illinois WW2010 Project."

43 Major Circulation cells - start with ideal Cells, then add the twisting of coriolis! Polar Cell Ferrel Cell Resultant cells Hadley Cell

44 90 N 60 N H L L L Polar Easterlies L L L Resulting Atmospheric Cells & Winds Prevailing Westerlies 30 N H H H H H H Equator L L L L L L H L Northeasterly Trade Winds 30 S H H H H H H H Southeasterly Trade Winds

45 BOUNDARIES BETWEEN WINDBELTS Polar Front Horse latitudes Intertropical Convergence Zone

46 The real world deviates even from from ideal cell model Regional or local pressure gradients can be influenced by: Seasons: Tilt of earth s axis - latitude of max. heating changes through the year Land: Variations in land topography and albedo Land - Sea contrasts These factors produce some persistent features (strong Highs and Low)

47 Land-driven Sea Breezes. Very near to shore. Heat capacity of rock is much less than that of water, so land heats up more quickly during the day than the water. Air above land warms and rises. At nighttime, no solar influx, but outgoing radiation remains. So both land and sea cool. However, land cools more rapidly than water because of a lower heat capacity. Circulation reverses.

48 Can experience this on our Coast: leads to afternoon onshore sea breezes.

49 Next: Main wind bands lead to Ocean Circulation!

50 END

51 Quiz! On top: name / TA & Section day/time Briefly answer following : 1) sketch and label: what are 3 main components of earth s radiation balance. 2) Why are mid-latitudes (30 N and S) relatively dry? 3) what was coolest organism you saw in tidepools on weekend?

52 Brief REVIEW of Atmospheric Circulation

53 Uneven heat balance Energy arrives as visible (shortwave) sunlight Reflected solar About 30% is reflected albedo Higher reflection albedo at higher latitudes Earth Incoming visible The remainder leaves as outgoing infrared (longwave) radiation Outgoing infrared

54 Heat Transport: How to explain Heat Loss/Gain that must be happening?

55 Convection: Ideal Circulation for a non-rotating Earth

56 90 N Sinking air High pressure zone Divergence Dry - Arctic / Polar H 60 N 30 N L H Atmospheric Cells Rising air Low pressure zone Convergence Wet - Temperate / Sub-Polar Sinking air High pressure zone Divergence Dry - Sub-tropical Equator L Rising air Low pressure zone Convergence Wet - Tropical

57 Coriolis Effect Consequence of something moving over a turning object.. Figure 6-9

58 Coriolis effect: Take home Info N. Hemisphere Deviate to Right (relative to direction of motion) S. Hemisphere Deviate to Left (relative to direction of motion)

59 The Earth rotates The Coriolis Effect "Image/Text/Data from the University of Illinois WW2010 Project."

60 Major Circulation cells - start with ideal Cells, then add the twisting of coriolis! Polar Cell Ferrel Cell Resultant cells Hadley Cell

61 90 N 60 N H L L L Polar Easterlies L L L Resulting Atmospheric Cells & Winds (note: winds are named by where they blow from) Prevailing Westerlies 30 N H H H H H H Equator L L L L L L H L Northeasterly Trade Winds 30 S H H H H H H H Southeasterly Trade Winds

62 BOUNDARIES BETWEEN WINDBELTS Polar Front Horse latitudes Intertropical Convergence Zone

63 The real world deviates even from from ideal cell model Regional or local pressure gradients can be influenced by: Seasons: Tilt of earth s axis - latitude of max. heating changes through the year Land: Variations in land topography and albedo Land - Sea contrasts These factors produce some persistent features (strong Highs and Low)

64 Land-driven Sea Breezes. Very near to shore. Heat capacity of rock is much less than that of water, so land heats up more quickly during the day than the water. Air above land warms and rises. At nighttime, no solar influx, but outgoing radiation remains. So both land and sea cool. However, land cools more rapidly than water because of a lower heat capacity. Circulation reverses.

65 Can experience this on our Coast: leads to afternoon onshore sea breezes.

66 Next: Main wind bands lead to Ocean Circulation!

Atmospheric & Ocean Circulation-

Atmospheric & Ocean Circulation- Atmospheric & Ocean Circulation- Overview: Atmosphere & Climate Atmospheric layers Heating at different latitudes Atmospheric convection cells (Hadley, Ferrel, Polar) Coriolis Force Generation of winds

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation Why do we say Earth's temperature is moderate? It may not look like it, but various processes work to moderate Earth's temperature across the latitudes. Atmospheric circulation

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

IN THE TABLE OF CONTENTS AND ON THE NEXT CLEAN PAGE, TITLE IT: WIND NOTES WIND!

IN THE TABLE OF CONTENTS AND ON THE NEXT CLEAN PAGE, TITLE IT: WIND NOTES WIND! IN THE TABLE OF CONTENTS AND ON THE NEXT CLEAN PAGE, TITLE IT: WIND NOTES WIND! Wind 8.10A recognize that the Sun provides the energy that drives convection within the atmosphere and oceans, producing

More information

Chapter 7 Weather and Climate

Chapter 7 Weather and Climate Chapter 7 Weather and Climate *Describe what weather is, what affects it, and where it occurs. *Explain the connection between air pressure and wind. * *Many factors affect a region s weather. * *atmosphere

More information

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation The tmosphere Write answers on your own paper 1. What is the primary energy source that drives all weather events, including precipitation, hurricanes, and tornados?. the Sun. the Moon C. Earth s gravity

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 1 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Air Pressure and Wind

Air Pressure and Wind Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The

More information

Chapter. Air Pressure and Wind

Chapter. Air Pressure and Wind Chapter Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. 19.1 Understanding Air Pressure Air Pressure Defined Air pressure

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 15 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

ATMS 310 Tropical Dynamics

ATMS 310 Tropical Dynamics ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any

More information

3 Global Winds and Local Winds

3 Global Winds and Local Winds CHAPTER 6 3 Global Winds and Local Winds SECTION The Atmosphere BEFORE YOU READ After you read this section, you should be able to answer these questions: What causes wind? What is the Coriolis effect?

More information

Water Budget I: Precipitation Inputs

Water Budget I: Precipitation Inputs Water Budget I: Precipitation Inputs Forest Cover Global Mean Annual Precipitation (MAP) Biomes and Rainfall Forests won t grow where P < 15 / yr Forest type depends strongly on rainfall quantity, type

More information

Global Winds and Local Winds

Global Winds and Local Winds Global Winds and Local Winds National Science Education Standards ES 1j What is the Coriolis effect? What are the major global wind systems on Earth? What Causes Wind? Wind is moving air caused by differences

More information

Global Winds AOSC 200 Tim Canty

Global Winds AOSC 200 Tim Canty Global Winds AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Global Wind Patterns Deserts Jet Stream Monsoons Ocean transport Ocean cycles Lecture 16 Oct 24

More information

Weather & Atmosphere Study Guide

Weather & Atmosphere Study Guide Weather & Atmosphere Study Guide 1. Draw a simple water cycle diagram using the following words: Precipitation, Evaporation, Condensation, Transpiration 2. In your own words, explain the difference between

More information

Air Pressure and Wind. Goal: Explain the formation of wind based on differences in air pressure

Air Pressure and Wind. Goal: Explain the formation of wind based on differences in air pressure Air Pressure and Wind Goal: Explain the formation of wind based on differences in air pressure What is Air Pressure? Reminder: Air pressure is thickest near Earth s surface and becomes thinner as we move

More information

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer 18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways.

More information

The General Circulation and El Niño. Dr. Christopher M. Godfrey University of North Carolina at Asheville

The General Circulation and El Niño. Dr. Christopher M. Godfrey University of North Carolina at Asheville The General Circulation and El Niño Dr. Christopher M. Godfrey University of North Carolina at Asheville Global Circulation Model Air flow broken up into 3 cells Easterlies in the tropics (trade winds)

More information

Circulation of the Atmosphere

Circulation of the Atmosphere Circulation of the Atmosphere World is made up of three regions: Atmosphere (air) Hydrosphere (water) Lithosphere (land) - Geosphere All regions interact to produce weather (day to day variations) and

More information

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces

MET 200 Lecture 11 Local Winds. Last Lecture: Forces. Review of Forces. Balance of Forces MET 200 Lecture 11 Local Winds Last Lecture: Forces Scales of Motion Eddies Sea Breeze Mountain-Valley Circulations Chinook - Snow Eater Drainage Wind - Katabatic Wind 1 2 Review of Forces 1. Pressure

More information

Water Budget I: Precipitation Inputs

Water Budget I: Precipitation Inputs Water Budget I: Precipitation Inputs Forest Cover Forests and Rainfall Forests won t grow where P < 15 / yr Forest type depends strongly on rainfall quantity, type (snow, rain) and timing (summer, winter)

More information

Influences on Weather and Climate Weather and Climate. Coriolis Effect

Influences on Weather and Climate Weather and Climate. Coriolis Effect Influences on Weather and limate Weather and limate oriolis Effect 1 limate is defined as the common weather conditions in one area over a long period of time. Temperature, humidity, rainfall, and wind

More information

The Coriolis Effect - Deflect the Arrows!

The Coriolis Effect - Deflect the Arrows! NAME: DATE: The Coriolis Effect - Deflect the Arrows Directions: The Circle below represents the Earth. The equator is present, dividing the image into the Northern and Southern hemispheres. The arrows

More information

Wind and Air Pressure

Wind and Air Pressure Wind and Air Pressure When air moves above the surface of the Earth, it is called wind. Wind is caused by differences in air pressure. When a difference in pressure exists, the air will move from areas

More information

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere GRADE 11 GEOGRAPHY SESSION 3: GLOBAL AIR CIRCULATION Key Concepts In this lesson we will focus on summarising what you need to know about: The mechanics present to create global wind and pressure belts

More information

9.3. Storing Thermal Energy. Transferring Thermal Energy

9.3. Storing Thermal Energy. Transferring Thermal Energy 9.3 If you have been to a beach on a hot summer day, you have likely cooled off by going for a dip in the water. The water, which is cooler than you are, removes thermal energy from your body, making you

More information

Global Wind Paerns. specific. higher. convection. rises. rotates. equator Equatorial. Subtropical High. long. lower. troposphere. sinks.

Global Wind Paerns. specific. higher. convection. rises. rotates. equator Equatorial. Subtropical High. long. lower. troposphere. sinks. Global Wind Paerns Global Winds Winds that b steadily from direcons long over distances. specific Created by the of Earth s surface. Result of Sun striking the surface at angles near the equator and at

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the air temperature remains constant, evaporating water into the air will the dew point and the relative

More information

Lesson: Ocean Circulation

Lesson: Ocean Circulation Lesson: Ocean Circulation By Keith Meldahl Corresponding to Chapter 9: Ocean Circulation As this figure shows, there is a connection between the prevailing easterly and westerly winds (discussed in Chapter

More information

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 3, Lecture 1 Mass emission rate, Atmospheric Stability Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Review homework Review quiz Mass emission

More information

El Niño Lecture Notes

El Niño Lecture Notes El Niño Lecture Notes There is a huge link between the atmosphere & ocean. The oceans influence the atmosphere to affect climate, but the atmosphere also influences the ocean, which can also affect climate.

More information

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG)

Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) Sea and Land Breezes METR 4433, Mesoscale Meteorology Spring 2006 (some of the material in this section came from ZMAG) 1 Definitions: The sea breeze is a local, thermally direct circulation arising from

More information

Air moves towards ITCZ in tropics because of rising air - convection. Horizontal extent of Hadley cell is modified by Friction Coriolis Force

Air moves towards ITCZ in tropics because of rising air - convection. Horizontal extent of Hadley cell is modified by Friction Coriolis Force Air moves towards ITCZ in tropics because of rising air - convection Horizontal extent of Hadley cell is modified by Friction Coriolis Force Speed from rotation Objects at rest on Earth move at very different

More information

Learning Target: Today we will begin learning about weather systems and fronts.

Learning Target: Today we will begin learning about weather systems and fronts. October 31st, 2014 Thank you for not chewing gum Materials: Pencil, science notebook, Science book Today s Agenda: Bell work Vocabulary quiz Finish reading 3.1 Notes Learning Target: Today we will begin

More information

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery

Overview Atmosphere. Meeting Individual Needs. Directed Reading for Content Mastery Overview Directions: Complete the concept map using the terms in the list below. weather exosphere coldest air temperature ionosphere stratosphere 1. which is the region of space travel thermosphere which

More information

Local Winds & Microclimates. Unit 2- Module 1

Local Winds & Microclimates. Unit 2- Module 1 Local Winds & Microclimates Unit 2- Module 1 Objectives Overview of local winds (sea & land breezes, valley winds) Overview of microclimates (valley, urban, woodland) Local Winds Local Winds Local winds

More information

11. WIND SYSTEMS A&B: Ch 8 (p )

11. WIND SYSTEMS A&B: Ch 8 (p ) 1 11. WIND SYSTEMS A&B: Ch 8 (p 214-238) Concepts: I. Scale II. Differential heating III. Wind direction 1. Scales: Three major divisions Space Time Micro meters seconds - minutes Meso kilometers seconds

More information

Chapter 4 Global Climates and Biomes

Chapter 4 Global Climates and Biomes Chapter 4 Global Climates and Biomes Global Processes Determine Weather and Climate - the short term conditions of the atmosphere in a local area. These include temperature, humidity, clouds, precipitation,

More information

1 What Causes Climate?

1 What Causes Climate? Section 1 What Causes Climate? 1 What Causes Climate? Objectives After this lesson, students will be able to I.4.1.1 Identify factors that influence temperature and precipitation. I.4.1.2 Explain what

More information

Chapter 7: Circulation And The Atmosphere

Chapter 7: Circulation And The Atmosphere Chapter 7: Circulation And The Atmosphere Highly integrated wind system Main Circulation Currents: series of deep rivers of air encircling the planet Various perturbations or vortices (hurricanes, tornados,

More information

D) water having a higher specific heat than land B) B C) expansion, cooling to the dewpoint, and condesation

D) water having a higher specific heat than land B) B C) expansion, cooling to the dewpoint, and condesation Base your answers to questions 1 through 4 on the map and the passage below and on your knowledge of Earth science. The map shows four different locations in India, labeled, A, B, C, and D, where vertical

More information

CHAPTER 7 Ocean Circulation

CHAPTER 7 Ocean Circulation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CHAPTER 7 Ocean Circulation Words Ocean currents Moving seawater Surface ocean currents Transfer heat from warmer to cooler areas Similar to pattern of major wind belts

More information

Traveling on a Rotating Sphere

Traveling on a Rotating Sphere Traveling on a Rotating Sphere Table of Contents Page Click the titles below to jump through the lesson 2 Spin-offs of a Rotating Sphere 3 What Do You Know? 3 Heated Fluid Circulation 4 Where Do The Trade

More information

Scales of Atmospheric Motion

Scales of Atmospheric Motion Lecture 12 Local Wind Systems Scales of Atmospheric Motion Small turbulent eddies (swirls) A synoptic eddy 1 Coriolis Effect The larger the scale, the longer the life time. Wind shear and turbulent eddy

More information

OCEANOGRAPHY STUDY GUIDE

OCEANOGRAPHY STUDY GUIDE OCEANOGRAPHY STUDY GUIDE Chapter 2 Section 1 1. Most abundant salt in ocean. Sodium chloride; NaCl 2. Amount of Earth covered by Water 71% 3. Four oceans: What are they? Atlantic, Pacific, Arctic, Indian

More information

Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres

Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres Sailing the Seas: Wind Driven Ocean Circulation Ocean Gyres Ocean Currents What Happens at the Coast? Readings: Ch 9: 9.2-9.6, 9.8-9.13 Graphic: America's Cup sailboat race off Newport, Rhode Island. J.

More information

First of all, you should know that weather and climate are not the same thing.

First of all, you should know that weather and climate are not the same thing. First of all, you should know that weather and climate are not the same thing. WEATHER IS: Short term Limited area Can change rapidly Difficult to predict WEATHER is what s happening outside your window

More information

GLOBE Data Explorations

GLOBE Data Explorations Rainfall in the GLOBE Africa Region: A GLOBE Data Exploration Purpose Through explorations of GLOBE rain depth data from Africa, students learn about seasonal patterns in locations affected by monsoons.

More information

2.4. Applications of Boundary Layer Meteorology

2.4. Applications of Boundary Layer Meteorology 2.4. Applications of Boundary Layer Meteorology 2.4.1. Temporal Evolution & Prediction of the PBL Earlier, we saw the following figure showing the diurnal evolution of PBL. With a typical diurnal cycle,

More information

SESSION THREE: FACTORS THAT INFLUENCE WEATHER IN SOUTH AFRICA

SESSION THREE: FACTORS THAT INFLUENCE WEATHER IN SOUTH AFRICA SESSION THREE: FACTORS THAT INFLUENCE WEATHER IN SOUTH AFRICA KEY CONCEPTS: In this section we will focus on the following aspects: Factors determining the weather of South Africa Influence of the oceans

More information

5.1: The Nature of Heat (pg 82 85) Reminder: The Particle Theory of Matter

5.1: The Nature of Heat (pg 82 85) Reminder: The Particle Theory of Matter 5.1: The Nature of Heat (pg 82 85) Reminder: The Particle Theory of Matter Robert Brown: In the 1800's, he was looking at pollen grains in a drop of water with a microscope. He noticed that even though

More information

Latitude Altitude (Elevation) Proximity to large bodies of water Ocean Currents. larger. concentrated. direct. heating. heating.

Latitude Altitude (Elevation) Proximity to large bodies of water Ocean Currents. larger. concentrated. direct. heating. heating. Climographs Climographs Climographs Roles of Temperature and Precipitation on Climate Roles of Temperature and Precipitation on Climate : Altitude (Elevation) Proximity to large bodies of water Ocean Currents

More information

Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are.

Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are. Name Date L.O: SWBAT explain what breezes, planetary winds, ocean currents & monsoons are. 1. A cool breeze is blowing toward the land from the ocean on a warm, cloudless summer day. This condition is

More information

170 points. 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description.

170 points. 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description. Ch 15 Earth s Oceans SECTION 15.1 An Overview of Oceans 38 points In your textbook, read about modern oceanography. For each item write the word that meets the description. (5 points) 1. German research

More information

REMINDERS: Problem Set 2: Due Monday (Feb 3)

REMINDERS: Problem Set 2: Due Monday (Feb 3) REMINDERS: Problem Set 2: Due Monday (Feb 3) Midterm 1: Next Wednesday, Feb 5 - Lecture material covering chapters 1-5 - Multiple Choice, Short Answers, Definitions - Practice midterm will be on course

More information

Monsoon. Arabic word mausim means season. Loose definition: a wind/precipitation pattern that shifts seasonally

Monsoon. Arabic word mausim means season. Loose definition: a wind/precipitation pattern that shifts seasonally Monsoon Arabic word mausim means season Loose definition: a wind/precipitation pattern that shifts seasonally Classical criteria (Ramage 1971) Prevailing wind shifts 120 o between Jan & July Average frequency

More information

4.2 Pressure and Air Masses (6.3.2)

4.2 Pressure and Air Masses (6.3.2) 4.2 Pressure and Air Masses (6.3.2) Explore This Phenomena www.ck12.org Everybody loves a picnic. Your friends and you are headed up the canyon to enjoy the mountains. While driving you feel a slight discomfort

More information

Section 6.7 The Atmosphere

Section 6.7 The Atmosphere Section 6.7 The Atmosphere Our atmosphere does more than just provide the oxygen we breathe. This layer of gas helps to maintain the earth s surface temperature and shields us from both interplanetary

More information

Exercise: Satellite Imagery Analysis. 29 June 2016 Japan Meteorological Agency

Exercise: Satellite Imagery Analysis. 29 June 2016 Japan Meteorological Agency Exercise: Satellite Imagery Analysis 29 June 2016 Japan Meteorological Agency Contents 1. Fog/Stratiform Cloud 2. Cb (Cumulonimbus)/Cg (Cumulus congestus) 3. Upper-level Flow Jet stream, upper trough,

More information

Atmospheric Forces and Force Balances METR Introduction

Atmospheric Forces and Force Balances METR Introduction Atmospheric Forces and Force Balances METR 2021 Introduction In this lab you will be introduced to the forces governing atmospheric motions as well as some of the common force balances. A common theme

More information

Role of the oceans in the climate system

Role of the oceans in the climate system Role of the oceans in the climate system heat exchange and transport hydrological cycle and air-sea exchange of moisture wind, currents, and upwelling gas exchange and carbon cycle Heat transport Two Primary

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

Historical and Current Climate in the Rio Grande National Forest Area. Peter Goble Nolan Doesken 10/19/2016

Historical and Current Climate in the Rio Grande National Forest Area. Peter Goble Nolan Doesken 10/19/2016 Historical and Current Climate in the Rio Grande National Forest Area Peter Goble Nolan Doesken 10/19/2016 Geographic Orientation Geographic Orientation Geographic Orientation Rio Grande National Forest

More information

The Composition of Seawater

The Composition of Seawater The Composition of Seawater Salinity Salinity is the total amount of solid material dissolved in water. Most of the salt in seawater is sodium chloride, common table salt. Element Percent Element Percent

More information

Chapter 19 Air Pressure and Wind

Chapter 19 Air Pressure and Wind Chapter 19 Air Pressure and Wind Section 1 Understanding Air Pressure Key Concepts Describe how air pressure is exerted on objects. What happens to the mercury column of a barometer when air pressure changes?

More information

Name: Date: Day/Period: CGC1P1: Interactions in the Physical Environment. Factors that Affect Climate

Name: Date: Day/Period: CGC1P1: Interactions in the Physical Environment. Factors that Affect Climate Name: Date: Day/Period: CGC1P1: Interactions in the Physical Environment PART A: Weather and Climate Factors that Affect Climate 1. The words weather and climate are often incorrectly used interchangeably.

More information

Lecture 13. Global Wind Patterns and the Oceans EOM

Lecture 13. Global Wind Patterns and the Oceans EOM Lecture 13. Global Wind Patterns and the Oceans EOM Global Wind Patterns and the Oceans Drag from wind exerts a force called wind stress on the ocean surface in the direction of the wind. The currents

More information

Atmospheric and Ocean Circulation Lab

Atmospheric and Ocean Circulation Lab Atmospheric and Ocean Circulation Lab name Key Objectives: The main goal of this lab is to learn about atmospheric and oceanic circulation and how these two processes are strongly inter-dependent and strongly

More information

What Causes Weather Patterns?

What Causes Weather Patterns? What Causes Weather Patterns? INVESTlGATlON: Water on the Move If you ve ever been soaked in a rainstorm or even surprised by a thundershower in the desert, you know that water is a big part of the weather.

More information

The Westerlies. Key. PF = polar front FZ = frontal zone SWW = subtropopausal west winds from ITCZ to

The Westerlies. Key. PF = polar front FZ = frontal zone SWW = subtropopausal west winds from ITCZ to The Westerlies The system of the westerlies is the main cause of the daily weather pattern of the temperate zone on the northern as well as in the southern hemisphere and therefore, also for Central Europe.

More information

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 15 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Ocean Currents Unit (4 pts)

Ocean Currents Unit (4 pts) Name: Section: Ocean Currents Unit (Topic 9A-1) page 1 Ocean Currents Unit (4 pts) Ocean Currents An ocean current is like a river in the ocean: water is flowing traveling from place to place. Historically,

More information

Study of the Indonesia Wind Power Energy using Secondary Data

Study of the Indonesia Wind Power Energy using Secondary Data Volume 5 Issue 01 January-2017 Pages-6156-6161 ISSN(e):2321-7545 Website: http://ijsae.in Index Copernicus Value- 56.65 DOI: http://dx.doi.org/10.18535/ijsre/v5i01.03 Study of the Indonesia Wind Power

More information

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation.

4/29/2011. Concept of Stability Lapse Rates Determine Stability and Stability Indices. Air pressure decreases with elevation. Chapter 6: Stability Concept of Stability Concept of Stability Lapse Rates Determine Stability and Stability Indices Air Parcel Expands as It Rises Air Parcel Expands As It Rises Air pressure decreases

More information

Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds

Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds Understanding Air Pressure: -pressure exerted by the weight

More information

Chapter. The Dynamic Ocean

Chapter. The Dynamic Ocean Chapter The Dynamic Ocean An ocean current is the mass of ocean water that flows from one place to another. 16.1 The Composition of Seawater Surface Circulation Surface Currents Surface currents are movements

More information

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

Name Class Date. Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used. Assessment Chapter Test B The Movement of Ocean Water USING KEY TERMS Use the terms from the following list to complete the sentences below. Each term may be used only once. Some terms may not be used.

More information

LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS

LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS Introduction LAB H - ATMOSPHERE AND CLIMATE LAB II STABILITY AND PRECIPITATION PATTERNS This lab will provide students with the opportunity to become familiar with the concepts of atmospheric stability

More information

Chapter 10 Lecture Outline. The Restless Oceans

Chapter 10 Lecture Outline. The Restless Oceans Chapter 10 Lecture Outline The Restless Oceans Focus Question 10.1 How does the Coriolis effect influence ocean currents? The Ocean s Surface Circulation Ocean currents Masses of water that flow from one

More information

Adiabatic Lapse Rates and Atmospheric Stability

Adiabatic Lapse Rates and Atmospheric Stability 8 Adiabatic Lapse Rates and Atmospheric Stability Learning Goals After studying this chapter, students should be able to: 1. describe adiabatic processes as they apply to the atmosphere (p. 174); 2. apply

More information

Atmospheric Stability/Skew-T Diagrams. Fall 2016

Atmospheric Stability/Skew-T Diagrams. Fall 2016 Atmospheric Stability/Skew-T Diagrams Fall 2016 Air Parcel Consider a parcel of infinitesimal dimensions that is: Thermally isolated from the environment so that its temperature changes adiabatically as

More information

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected)

Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular (neglected) Supplement Wind, Fetch and Waves Scales of Atmospheric Motion Scale Length Scale (m) Time Scale (sec) Systems/Importance Molecular 10-7 - 10-2 10-1 (neglected) Coriolis not important Turbulent 10-2 10

More information

surface salinities temperature profiles of the ocean; the thermocline seawater density dynamics deep ocean pressures

surface salinities temperature profiles of the ocean; the thermocline seawater density dynamics deep ocean pressures NATURE OF SEAWATER: SALINITY, TEMPERATURE, DENSITY, AND PRESSURE surface salinities temperature profiles of the ocean; the thermocline seawater density dynamics deep ocean pressures Part A. Surface Salinities

More information

Air Pollution Dispersion

Air Pollution Dispersion Air Pollution Dispersion Dispersion Processes Convective Dispersion Air Parcel Dynamics Adiabatic Process Lapse Rate Equilibrium and Stability Atmospheric Stability Stability and Dispersion Temperature

More information

Indian Ocean Seasonal Cycle Jérôme Vialard (IRD) LOCEAN Paris France From Schott & McCreary (Prog. Oc.

Indian Ocean Seasonal Cycle Jérôme Vialard (IRD) LOCEAN Paris France From Schott & McCreary (Prog. Oc. Indian Ocean Seasonal Cycle Jérôme Vialard (IRD) LOCEAN Paris France jerome.vialard@ird.fr From Schott & McCreary (Prog. Oc. 2001) Outline The monsoon cycle The basin-scale dynamical response Thermocline

More information

Zonal (East-West) Currents. Wind-Driven Ocean Currents. Zonal (East-West) Currents. Meridional (N-S) Currents

Zonal (East-West) Currents. Wind-Driven Ocean Currents. Zonal (East-West) Currents. Meridional (N-S) Currents Wind-Driven Ocean Currents Similarities between winds & surface currents Zonal (East-West) Currents Trade winds push currents westward north & south of the equator Equatorial currents. Up to 100 cm/sec.

More information

Redistribution of Solar Heat Energy

Redistribution of Solar Heat Energy Introduction to Oceanography Chris enze, NASA Ames, Public Domain, http://people.nas.nasa.gov/ ~chenze/fvgcm/frances_02.mpg Redistribution of Solar eat Energy ecture 11: 2, Atmospheric water vapor map,

More information

Atmospheric Pressure, Winds, and Circulation Patterns

Atmospheric Pressure, Winds, and Circulation Patterns Atmospheric Pressure, Winds, and Circulation Patterns 5 CAPTER PREVIEW Latitudinal differences in temperature (as a result of differential receipt of insolation) provide a partial explanation for latitudinal

More information

Chapter 12 Case Studies and Study Guide: Ocean Currents, Winds and Weather

Chapter 12 Case Studies and Study Guide: Ocean Currents, Winds and Weather Chapter 12 Case Studies and Study Guide: Ocean Currents, Winds and Weather Case Study 1: Shifts in Water and Air Flow during El Niño and La Niña Figure 12.17 Global sea surface temperature (SST) anomalies

More information

Physics 107 Ideas of Modern Physics

Physics 107 Ideas of Modern Physics Physics 107 Ideas of Modern Physics Course home page: http://uw.physics.wisc.edu/~himpsel/107/lectures/lectures.htm Syllabus: http://uw.physics.wisc.edu/~himpsel/107/lectures/syllabus.pdf Course info:

More information

Conditions for Offshore Wind Energy Use

Conditions for Offshore Wind Energy Use Carl von Ossietzky Universität Oldenburg Institute of Physics Energy Meteorology Group Detlev Heinemann Conditions for Offshore Wind Energy Use Detlev Heinemann ForWind Carl von Ossietzky Universität Oldenburg

More information

Oceanography. Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS

Oceanography. Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS Oceanography Chapter 7 CIRCULATION PATTERNS AND OCEAN CURRENTS أ. راي د مرعي الخالدي Circulation Patterns and Ocean Currents 7.1 Density-Driven Driven Circulation 7.2 Thermohaline Circulation 7.3 The Layered

More information

Name Date Class. Overview Oceans. Directions: Use the following terms to complete the concept map below. wind salts climate gases.

Name Date Class. Overview Oceans. Directions: Use the following terms to complete the concept map below. wind salts climate gases. Directed Reading for Content Mastery Overview Oceans Directions: Use the following terms to complete the concept map below. wind salts climate gases densitytides nekton Seawater contains dissolved 1. and

More information

Atmospheric Dispersion, Transport and Deposition. Dispersion. Wind Speed. EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D.

Atmospheric Dispersion, Transport and Deposition. Dispersion. Wind Speed. EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D. Atmospheric Dispersion, Transport and Deposition EOH 468 Spring 2008 Dr. Peter Bellin, CIH, Ph.D. Dispersion Atmospheric process affect dilution. Wind speed and lapse rate impact on emissions. Planetary

More information

Intended Audience. Graphic Justifications

Intended Audience. Graphic Justifications John Fuller BSU ED TECH 506 4/29/2012 Intended Audience The following unit of instruction is intended for Roseville High School students enrolled in CP Earth Science. Classes consist mainly of 9 th and

More information

MIRAGES MONSOON. Overview. Further Reading. See also

MIRAGES MONSOON. Overview. Further Reading. See also MONSOONS / Overview 1365 Like the SAO, the theoretical understanding of the QBO is that it is forced by momentum transfer by vertically propagating waves forced in the lower atmosphere, interacting with

More information

A It is halved. B It is doubled. C It is quadrupled. D It remains the same.

A It is halved. B It is doubled. C It is quadrupled. D It remains the same. WAVES UNIT REVIEW EN: CALIFORNIA STATE QUESTIONS: 1. A sound wave is produced in a metal cylinder by striking one end. Which of the following occurs as the wave travels along the cylinder? A Its amplitude

More information

Weather and Climate. California Climate and Local Weather Patterns California s climate is primarily mediterranean and highland.

Weather and Climate. California Climate and Local Weather Patterns California s climate is primarily mediterranean and highland. Weather and Climate Many factors affect weather and climate. LESSON 1 Weather Weather describes the atmospheric conditions of a place at a certain time. LESSON 2 Weather Patterns Several factors drive

More information