Contents TRIGONOMETRIC METHODS PROBABILITY DISTRIBUTIONS

Save this PDF as:
Size: px
Start display at page:

Download "Contents TRIGONOMETRIC METHODS PROBABILITY DISTRIBUTIONS"

Transcription

1 ontents UNIT 7 TRIGONOMETRI METHODS Lesson 1 Trigonometric Functions onnecting ngle Mesures nd Liner Mesures Mesuring Without Mesuring Wht s the ngle? On Your Own Lesson 2 Using Trigonometry in ny Tringle The Lw of Sines The Lw of osines Tringle Models Two, One, or None? On Your Own Lesson 3 Looking ck UNIT 8 PROILITY DISTRIUTIONS Lesson 1 Proility Models The Multipliction Rule for Independent Events onditionl Proility The Multipliction Rule When Events re Not Independent On Your Own Lesson 2 Expected Vlue Wht s Fir Price? Expected Vlue of Proility Distriution On Your Own Lesson 3 The Witing-Time Distriution Witing for Doules The Witing-Time Formul Expected Witing Time On Your Own Lesson 4 Looking ck Glossry Index of Mthemticl Topics Index of ontexts xi

2 UNIT 7 TRIGONOMETRI Trigonometry, or tringle mesure, is n importnt tool used y surveyors, nvigtors, engineers, uilders, stronomers, nd other scientists. Tringultion nd trigonometry provide methods to indirectly determine otherwise inccessile distnces nd ngle mesures. The sme tools re useful in the design nd nlysis of mechnisms involving tringles in which the lengths of two sides of tringle re fixed while the length of the third side is llowed to vry. Through your work on the investigtions in this unit, you will develop the understnding nd skill needed to solve prolems using trigonometric methods. Key ides will e developed in two lessons. METHODS Lessons 1 Trigonometric Functions Use ngles in stndrd position in coordinte plne to define the trigonometric functions sine, cosine, nd tngent. Interpret nd pply those functions in the cse of situtions modeled with right tringles. 2 Using Trigonometry in ny Tringle Develop the Lw of Sines nd the Lw of osines, nd use those reltionships to find mesures of sides nd ngles in tringles. Solve equtions involving severl vriles for one of the vriles in terms of the others.

3 LESSON 2 Using Trigonometry in ny Tringle In Lesson 1, you lerned severl strtegies for using the Pythgoren Theorem nd the trigonometric functions (sine, cosine, nd tngent) to clculte unknown side lengths nd ngle mesures in situtions represented y right tringles. ut often, prolem situtions re modeled y tringles tht re not right tringles. onsider, for exmple, the prolem of developing n ccurte mp of the floor of the Grnd nyon. 488 UNIT 7

4 Think out This Sitution Suppose surveyor sights point, the tip of pointed spur deep in the cnyon, from tringultion points nd on the south rim. ws mesured to e 2.68 miles. Using trnsit, m ws found to e 64 ; m ws found to e 34. Drw nd lel tringle representing this sitution. Is the tringle right tringle? How cn you e sure of your nswer? c Wht side lies opposite the 34 ngle in your tringle? Is sin 34 equl to rtio of lengths of two sides of your tringle? If so, which ones? If not, why not? d How might you go out determining the distnces nd? In this lesson, you will investigte two importnt properties of ny tringle tht relte ngle mesures nd side lengths known s the Lw of Sines nd the Lw of osines. These properties will dd to the trigonometric methods ville to you for mking indirect mesurements nd for nlyzing mechnisms in which the lengths of two sides of tringle re fixed ut the length of the third side vries. Investigtion 1 The Lw of Sines If the tringle tht models sitution involving unknown distnces is not (or might not e) right tringle, then it is not so esy to determine the distnces; ut it cn e done. One method tht is sometimes helpful uses the Lw of Sines. s you work on the prolems of this investigtion, look for nswers to the following question: Wht is the Lw of Sines, nd how cn it e used to find side lengths or ngle mesures in tringles? Suppose tht two prk rngers who re in towers 10 miles prt in ntionl forest spot fire tht is fr wy from oth of them. Suppose tht one rnger recognizes the fire loction nd knows it is out 4.9 miles from tht tower. LESSON 2 Using Trigonometry in ny Tringle 489

5 With this informtion nd the ngles given in the digrm elow, the rngers cn clculte the distnce of the fire from the other tower. Fire 4.9 miles miles One wy to strt working on this prolem is to divide the otuse tringle into two right tringles s shown elow: h 4.9 miles x D 53 x t first, tht does not seem to help much. Insted of one segment of unknown length, there re now four! On the other hnd, there re now three tringles in which you cn see useful reltionships mong the known sides nd ngles. 1 Use trigonometry or the Pythgoren Theorem to find the length of. When you hve one sequence of clcultions tht gives the desired result, see if you cn find different pproch. 2 In one clss in Settle, Wshington, group of students presented their solution to Prolem 1 nd climed tht it ws the quickest method possile. heck ech step in their resoning nd explin why ech step is or is not correct. (1) _ h = sin 29 (3) _ h = sin (2) h = sin 29 (4) h = 4.9 sin 53 (5) sin 29 = 4.9 sin sin 53 (6) = _ sin 29 (7) 8.1 miles ompre your solution from Prolem 1 with this reported solution. 490 UNIT 7 Trigonometric Methods

6 3 The pproch used in Prolem 2 to clculte the unknown side length of the given tringle illustrtes very useful generl reltionship mong sides nd ngles of ny tringle.. Explin why ech step in the following derivtion is correct for the cute elow. h_ = sin (1) h = sin (2) h_ = sin (3) h = sin (4) sin = sin (5) _ sin = _ sin (6). How would you modify the derivtion in Prt to show tht _ sin = _ sin? c The reltionship derived in Prolem 3 for cute ngles,, nd holds in ny tringle, for ll three of its sides nd their opposite ngles. It is clled the Lw of Sines nd cn e written in two equivlent forms. The cses for right tringle or n otuse tringle re derived in Extensions Tsks 22 nd 23. In ny tringle with sides of lengths,, nd c opposite,, nd, respectively: _ sin = _ sin or equivlently, = _ sin c c h c _ sin = _ sin = c_ sin. You cn use the Lw of Sines to clculte mesures of ngles nd lengths of sides in tringles with even less given informtion thn the fire-spotting prolem t the eginning of this investigtion. In prctice, you only use the equlity of two of the rtios t ny one time. LESSON 2 Using Trigonometry in ny Tringle 491

7 4 clss in Sn ntonio, Texs, greed on the following representtion of the surveying prolem in the Think out This Sitution (pge 489). Use wht you know out ngles in tringle nd the Lw of Sines to determine the distnces nd miles Suppose tht two rngers spot forest fire s indicted on the digrm elow. Find the distnces from ech tower to the fire. Fire miles 14 Summrize the Mthemtics The Lw of Sines sttes reltion mong sides nd ngles of ny tringle. It cn often e used to find unknown side lengths or ngle mesures from given informtion. Suppose you hve modeled sitution with PQR s shown elow. Wht miniml informtion out the sides nd ngles of PQR will llow you to find the length of QR R using the Lw of Sines? How would you use tht informtion to p clculte QR? q Q Wht miniml informtion out the sides nd ngles of PQR will llow you to find the mesure of Q? How r would you use tht informtion to clculte m Q? P e prepred to explin your thinking nd methods to the entire clss. 492 UNIT 7 Trigonometric Methods

INVESTIGATION 2. What s the Angle?

INVESTIGATION 2. What s the Angle? INVESTIGATION 2 Wht s the Angle? In the previous investigtion, you lerned tht when the rigidity property of tringles is comined with the ility to djust the length of side, the opportunities for useful

More information

Chp. 3_4 Trigonometry.notebook. October 01, Warm Up. Pythagorean Triples. Verifying a Pythagorean Triple... Pythagorean Theorem

Chp. 3_4 Trigonometry.notebook. October 01, Warm Up. Pythagorean Triples. Verifying a Pythagorean Triple... Pythagorean Theorem Chp. 3_4 Trigonometry.noteook Wrm Up Determine the mesure of the vrile in ech of the following digrms: x + 2 x x 5 x + 3 Pythgoren Theorem - is fundmentl reltionship mongst the sides on RIGHT tringle.

More information

Lesson 2 PRACTICE PROBLEMS Using Trigonometry in Any Triangle

Lesson 2 PRACTICE PROBLEMS Using Trigonometry in Any Triangle Nme: Unit 6 Trigonometri Methods Lesson 2 PRTIE PROLEMS Using Trigonometry in ny Tringle I n utilize the Lw of Sines nd the Lw of osines to solve prolems involving indiret mesurement in non-right tringles.

More information

Lesson 12.1 Right Triangle Trigonometry

Lesson 12.1 Right Triangle Trigonometry Lesson 12.1 Right Tringle Trigonometr 1. For ech of the following right tringles, find the vlues of sin, cos, tn, sin, cos, nd tn. (Write our nswers s frctions in lowest terms.) 2 15 9 10 2 12 2. Drw right

More information

MTH 112: Elementary Functions

MTH 112: Elementary Functions 1/14 MTH 112: Elementry Functions Section 8.1: Lw of Sines Lern out olique tringles. Derive the Lw os Sines. Solve tringles. Solve the miguous cse. 8.1:Lw of Sines. 2/14 Solving olique tringles Solving

More information

Chapter 5. Triangles and Vectors

Chapter 5. Triangles and Vectors www.ck12.org Chpter 5. Tringles nd Vectors 5.3 The Lw of Sines Lerning Objectives Understnd how both forms of the Lw of Sines re obtined. Apply the Lw of Sines when you know two ngles nd non-included side

More information

Apply the Law of Sines. You solved right triangles. You will solve triangles that have no right angle.

Apply the Law of Sines. You solved right triangles. You will solve triangles that have no right angle. 13.5 pply te Lw of Sines TEKS.1,.4, 2.4.; P.3.E efore Now You solved rigt tringles. You will solve tringles tt ve no rigt ngle. Wy? So you n find te distne etween frwy ojets, s in Ex. 44. Key Voulry lw

More information

The Pythagorean Theorem and Its Converse Is That Right?

The Pythagorean Theorem and Its Converse Is That Right? The Pythgoren Theorem nd Its Converse Is Tht Right? SUGGESTED LEARNING STRATEGIES: Activting Prior Knowledge, Mrking the Text, Shred Reding, Summrize/Prphrse/Retell ACTIVITY 3.6 How did Pythgors get theorem

More information

Why? DF = 1_ EF = _ AC

Why? DF = 1_ EF = _ AC Similr Tringles Then You solved proportions. (Lesson 2-) Now 1Determine whether two tringles re similr. 2Find the unknown mesures of sides of two similr tringles. Why? Simon needs to mesure the height

More information

Right Triangle Trigonometry

Right Triangle Trigonometry ONDENSED LESSON 1.1 Right Tringle Trigonometr In this lesson ou will lern out the trigonometri rtios ssoited with right tringle use trigonometri rtios to find unknown side lengths in right tringle use

More information

Math commonly used in the US Army Pathfinder School

Math commonly used in the US Army Pathfinder School Mth commonly used in the US Army Pthfinder School Pythgoren Theorem is used for solving tringles when two sides re known. In the Pthfinder Course it is used to determine the rdius of circulr drop zones

More information

Recall that the area of a triangle can be found using the sine of one of the angles.

Recall that the area of a triangle can be found using the sine of one of the angles. Nme lss Dte 14.1 Lw of Sines Essentil Question: How n you use trigonometri rtios to find side lengts nd ngle mesures of non-rigt tringles? Resoure Loker Explore Use n re Formul to Derive te Lw of Sines

More information

MATHEMATICAL PRACTICES In the Solve It, you used what you know about triangles to find missing lengths. Key Concept Law of Sines

MATHEMATICAL PRACTICES In the Solve It, you used what you know about triangles to find missing lengths. Key Concept Law of Sines 8-5 -20-5 Lw of Sines ontent Stndrds G.SRT.11 Understnd nd ppl the Lw of Sines... to find unknown mesurements in right nd non-right tringles... lso G.SRT.10 Ojetives To ppl the Lw of Sines 66 ft 35 135

More information

Starter. The Cosine Rule. What the Cosine Rule is and how to apply it to triangles. I can write down the Cosine Rule from memory.

Starter. The Cosine Rule. What the Cosine Rule is and how to apply it to triangles. I can write down the Cosine Rule from memory. Strter 1) Find the re of the green tringle. 12.8m 2) 2 4 ( + ) x 3 5 3 2 54.8 o 9.7m The Cosine Rule Tody we re lerning... Wht the Cosine Rule is nd how to pply it to tringles. I will know if I hve een

More information

Skills Practice Skills Practice for Lesson 4.1

Skills Practice Skills Practice for Lesson 4.1 Skills Prctice Skills Prctice for Lesson.1 Nme Dte Interior nd Exterior Angles of Tringle Tringle Sum, Exterior Angle, nd Exterior Angle Inequlity Theorems Vocbulry Write the term tht best completes ech

More information

In any right-angle triangle the side opposite to the right angle is called the Label the Hypotenuse in each diagram above.

In any right-angle triangle the side opposite to the right angle is called the Label the Hypotenuse in each diagram above. 9 Ademi Mth Dte: Pythgoren Theorem RIGHT ANGLE TRIANGLE - A right tringle is tringle with one 90 0 ngle. For exmple: In ny right-ngle tringle the side opposite to the right ngle is lled the Lbel the Hypotenuse

More information

Special Right Triangles

Special Right Triangles Pge of 5 L E S S O N 9.6 Specil Right Tringles B E F O R E Now W H Y? Review Vocbulr hpotenuse, p. 465 leg, p. 465 You found side lengths of right tringles. You ll use specil right tringles to solve problems.

More information

SUMMER ASSIGNMENT FOR FUNCTIONS/TRIGONOMETRY Bring to school the 1 st day of class!

SUMMER ASSIGNMENT FOR FUNCTIONS/TRIGONOMETRY Bring to school the 1 st day of class! SUMMER ASSIGNMENT FOR FUNCTIONS/TRIGONOMETRY Bring to school the st d of clss! This summer ssignment is designed to prepre ou for Functions/Trigonometr. Nothing on the summer ssignment is new. Everthing

More information

Skills Practice Skills Practice for Lesson 4.1

Skills Practice Skills Practice for Lesson 4.1 Skills Prctice Skills Prctice for Lesson.1 Nme Dte Interior nd Exterior Angles of Tringle Tringle Sum, Exterior Angle, nd Exterior Angle Inequlity Theorems Vocbulry Write the term tht best completes ech

More information

1 Measurement. What you will learn. World s largest cylindrical aquarium. Australian Curriculum Measurement and Geometry Using units of measurement

1 Measurement. What you will learn. World s largest cylindrical aquarium. Australian Curriculum Measurement and Geometry Using units of measurement Austrlin Curriulum Mesurement nd Geometry Using units of mesurement hpter 1 Mesurement Wht you will lern 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Conversion of units Perimeter Cirumferene Are Are of irle Surfe

More information

SUMMER ASSIGNMENT FOR FUNCTIONS/TRIGONOMETRY Due September 7 th

SUMMER ASSIGNMENT FOR FUNCTIONS/TRIGONOMETRY Due September 7 th SUMMER ASSIGNMENT FOR FUNCTIONS/TRIGONOMETRY Due Septemer 7 th This summer ssignment is designed to prepre ou for Functions/Trigonometr. Nothing on the summer ssignment is new. Everthing is review of topics

More information

5.5 The Law of Sines

5.5 The Law of Sines 434 HPTER 5 nlyti Trigonometry 5.5 Te Lw of Sines Wt you ll lern out Deriving te Lw of Sines Solving Tringles (S, S) Te miguous se (SS) pplitions... nd wy Te Lw of Sines is powerful extension of te tringle

More information

Apply the Pythagorean Theorem

Apply the Pythagorean Theorem 8. Apply the Pythgoren Theorem The Pythgoren theorem is nmed fter the Greek philosopher nd mthemtiin Pythgors (580500 B.C.E.). Although nient texts indite tht different iviliztions understood this property

More information

Grade 6. Mathematics. Student Booklet SPRING 2011 RELEASED ASSESSMENT QUESTIONS. Record your answers on the Multiple-Choice Answer Sheet.

Grade 6. Mathematics. Student Booklet SPRING 2011 RELEASED ASSESSMENT QUESTIONS. Record your answers on the Multiple-Choice Answer Sheet. Grde 6 Assessment of Reding, Writing nd Mthemtics, Junior Division Student Booklet Mthemtics SPRING 211 RELEASED ASSESSMENT QUESTIONS Record your nswers on the Multiple-Choice Answer Sheet. Plese note:

More information

17.3 Find Unknown Side Lengths

17.3 Find Unknown Side Lengths ? Nme 17.3 Find Unknown Side Lenths ALGEBRA Essentil Question How cn you find the unknown lenth of side in polyon when you know its perimeter? Geometry nd Mesurement 3.7.B MATHEMATICAL PROCESSES 3.1.A,

More information

Geometry. Trigonometry of Right Triangles. Slide 2 / 240. Slide 1 / 240. Slide 4 / 240. Slide 3 / 240. Slide 6 / 240.

Geometry. Trigonometry of Right Triangles. Slide 2 / 240. Slide 1 / 240. Slide 4 / 240. Slide 3 / 240. Slide 6 / 240. Slide 1 / 240 New Jersey enter for Tehing nd Lerning Progressive Mthemtis Inititive This mteril is mde freely ville t www.njtl.org nd is intended for the non-ommeril use of students nd tehers. These mterils

More information

St Ac Ex Sp TOPICS (Text and Practice Books) 4.1 Triangles and Squares Pythagoras' Theorem - -

St Ac Ex Sp TOPICS (Text and Practice Books) 4.1 Triangles and Squares Pythagoras' Theorem - - MEP: Demonstrtion Projet UNIT 4 Trigonometry N: Shpe, Spe nd Mesures e,f St Ex Sp TOPIS (Text nd Prtie ooks) 4.1 Tringles nd Squres - - - 4. Pythgors' Theorem - - 4.3 Extending Pythgors' Theorem - - 4.4

More information

6 TRIGONOMETRY TASK 6.1 TASK 6.2. hypotenuse. opposite. adjacent. opposite. hypotenuse 34. adjacent. opposite. a f

6 TRIGONOMETRY TASK 6.1 TASK 6.2. hypotenuse. opposite. adjacent. opposite. hypotenuse 34. adjacent. opposite. a f 1 6 TIGONOMETY TK 6.1 In eh tringle elow, note the ngle given nd stte whether the identified side is in the orret position or not. 1. 4. opposite 41 2. djent 3. 58 63 djent 32 hypotenuse 5. 68 djent 6.

More information

Right Triangle Trigonometry

Right Triangle Trigonometry Right Tringle Trigonometry To the ncient Greeks, trigonometry ws the study of right tringles. Trigonometric functions (sine, cosine, tngent, cotngent, secnt, nd cosecnt) cn be defined s right tringle rtios

More information

7.2 Assess Your Understanding

7.2 Assess Your Understanding 538 HPTER 7 pplitions of Trigonometri Funtions 7. ssess Your Understnding re You Prepred? nswers re given t the end of these exerises. If you get wrong nswer, red the pges listed in red. 1. The differene

More information

Right Triangles and Trigonometry. Right Triangles and Trigonometry

Right Triangles and Trigonometry. Right Triangles and Trigonometry Right Tringles nd Trigonometr hpter Overview nd Pcing PING (ds) Regulr lock sic/ sic/ verge dvnced verge dvnced Geometric Men (pp. ) 0. 0. Find the geometric men etween two numers. Solve prolems involving

More information

Announcements. CS 188: Artificial Intelligence Spring Today. P4: Ghostbusters. Exact Inference in DBNs. Dynamic Bayes Nets (DBNs)

Announcements. CS 188: Artificial Intelligence Spring Today. P4: Ghostbusters. Exact Inference in DBNs. Dynamic Bayes Nets (DBNs) CS 188: Artificil Intelligence Spring 2010 Lecture 21: DBNs, Viteri, Speech Recognition 4/8/2010 Written 6 due tonight Project 4 up! Due 4/15 strt erly! Announcements Course contest updte Plnning to post

More information

Geometry Proofs: Chapter 7, Sections 7.1/7.2

Geometry Proofs: Chapter 7, Sections 7.1/7.2 Pythgoren Theorem: Proof y Rerrngement of re Given: Right tringle with leg lengths nd, nd hypotenuse length. Prove: 2 2 2 = + Proof #1: We re given figures I nd II s ongruent right tringles III with leg

More information

ERRATA for Guide for the Development of Bicycle Facilities, 4th Edition (GBF-4)

ERRATA for Guide for the Development of Bicycle Facilities, 4th Edition (GBF-4) Dvid Bernhrdt, P.E., President Commissioner, Mine Deprtment of Trnsporttion Bud Wright, Executive Director 444 North Cpitol Street NW, Suite 249, Wshington, DC 20001 (202) 624-5800 Fx: (202) 624-5806 www.trnsporttion.org

More information

Chapter 31 Pythagoras theorem and trigonometry (2)

Chapter 31 Pythagoras theorem and trigonometry (2) HPTR 31 86 3 The lengths of the two shortest sides of right-ngled tringle re m nd ( 3) m respetively. The length of the hypotenuse is 15 m. Show tht 2 3 108 Solve the eqution 2 3 108 Write down the lengths

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificil Intelligence Spring 2011 Lecture 19: Dynmic Byes Nets, Nïve Byes 4/6/2011 Pieter Aeel UC Berkeley Slides dpted from Dn Klein. Announcements W4 out, due next week Mondy P4 out, due next

More information

Open Access Regression Analysis-based Chinese Olympic Games Competitive Sports Strength Evaluation Model Research

Open Access Regression Analysis-based Chinese Olympic Games Competitive Sports Strength Evaluation Model Research Send Orders for Reprints to reprints@benthmscience.e The Open Cybernetics & Systemics Journl, 05, 9, 79-735 79 Open Access Regression Anlysis-bsed Chinese Olympic Gmes Competitive Sports Strength Evlution

More information

8.1 Right Triangle Trigonometry; Applications

8.1 Right Triangle Trigonometry; Applications SECTION 8.1 Right Tringle Trigonometry; pplitions 505 8.1 Right Tringle Trigonometry; pplitions PREPRING FOR THIS SECTION efore getting strted, review the following: Pythgoren Theorem (ppendix, Setion.,

More information

HCI Examination Please answer in Swedish or English

HCI Examination Please answer in Swedish or English HCI Exmintion 02.06.04 8.45-12.45 Plese nswer in Swedish or English PLEASE HAND IN FIRST PAGE OF EXAMINATION SHEET (TES) IF YOU ANSWER MULITPLE CHOICE HERE PART I: NECESSARY FOR PASS (GODKÄNT) 1. Multiple

More information

Name Class Date SAMPLE. Complete the missing numbers in the sequences below. 753, ,982. The area of the shape is approximately cm 2

Name Class Date SAMPLE. Complete the missing numbers in the sequences below. 753, ,982. The area of the shape is approximately cm 2 End of term: TEST A You will need penil. Yer 5 Nme Clss Dte 1 2 Complete the missing numers in the sequenes elow. 200 3926 4926 400 500 700 7926 753,982 553,982 Estimte the re of the shpe elow. The re

More information

Bicycle wheel and swivel chair

Bicycle wheel and swivel chair Aim: To show conservtion of ngulr momentum. To clrify the vector chrcteristics of ngulr momentum. (In this demonstrtion especilly the direction of ngulr momentum is importnt.) Subjects: Digrm: 1Q40 (Conservtion

More information

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. The tennis serve technology based on the AHP evaluation of consistency check

An Indian Journal FULL PAPER ABSTRACT KEYWORDS. Trade Science Inc. The tennis serve technology based on the AHP evaluation of consistency check [Type text] [Type text] [Type text] ISSN : 097-7 Volume 0 Issue 0 BioTechnology 0 An Indin Journl FULL PAPER BTAIJ, 0(0), 0 [-7] The tennis serve technology bsed on the AHP evlution of consistency check

More information

2014 Victorian Shooting Championship

2014 Victorian Shooting Championship 2014 Victorin Shooting Chmpionship VPCI, in conjunction with the Stte Coches nd the Stte Umpires invite ll PFA licensed petnque plyers in the Stte of Victori to tke prt in the 2014 Victorin Shooting Chmpionship.

More information

AHP-based tennis service technical evaluation consistency test

AHP-based tennis service technical evaluation consistency test Avilble online.jocpr.com Journl of Chemicl nd Phrmceuticl Reserch, 0, ():7-79 Reserch Article ISSN : 097-78 CODEN(USA) : JCPRC AHP-bsed tennis service technicl evlution consistency test Mio Zhng Deprtment

More information

SAMPLE EVALUATION ONLY

SAMPLE EVALUATION ONLY mesurement nd geometry topic 15 Pythgors theorem 15.1 Overview Why lern this? Pythgors ws fmous mthemtiin who lived out 2500 yers go. He is redited with eing the fi rst person to prove tht in ny rightngled

More information

Listening & Speaking. Grade 1. Supports. instructi GRADE. Develops oral and receptive language. 15- to 20-minute daily activities

Listening & Speaking. Grade 1. Supports. instructi GRADE. Develops oral and receptive language. 15- to 20-minute daily activities Grde 1 to Stte Correlted Stndrds GRADE Develops orl nd receptive lnguge 1 EMC 2416 15- to 20-minute dily ctivities Listening & Home School Connection resources Supports t s r i F g n i Red ding E- bo ok

More information

Physics 20 Lesson 11 Relative Motion

Physics 20 Lesson 11 Relative Motion Physics 20 Lesson 11 Reltie Motion In Lessons 9 nd 10, we lerned how to dd rious dislcement ectors to one nother nd we lerned numer of methods nd techniques for ccomlishin these ector dditions. Now we

More information

Learning Goal: I can explain when to use the Sine, Cosine and Tangent ratios and use the functions to determine the missing side or angle.

Learning Goal: I can explain when to use the Sine, Cosine and Tangent ratios and use the functions to determine the missing side or angle. MFM2P Trigonometry Checklist 1 Goals for this unit: I can solve problems involving right triangles using the primary trig ratios and the Pythagorean Theorem. U1L4 The Pythagorean Theorem Learning Goal:

More information

Physics 20 Lesson 12 Relative Motion

Physics 20 Lesson 12 Relative Motion Physics 20 Lesson 12 Reltie Motion In Lessons 10 nd 11, we lerned how to dd rious dislcement ectors to one nother nd we lerned numer of methods nd techniques for ccomlishin these ector dditions. Now we

More information

Math-3. Lesson 6-5 The Law of Sines The Ambiguous Case

Math-3. Lesson 6-5 The Law of Sines The Ambiguous Case Math-3 Lesson 6-5 The Law of Sines The miguous Case Quiz 6-4: 1. Find the measure of angle θ. Ө = 33.7 2. What is the cosecant ratio for ϴ? Csc Ө = 2 5 5 3. standard position angle passes through the point

More information

OVERVIEW Similarity Leads to Trigonometry G.SRT.6

OVERVIEW Similarity Leads to Trigonometry G.SRT.6 OVERVIEW Similarity Leads to Trigonometry G.SRT.6 G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric

More information

A Measurement Framework for National Key Performance Measures

A Measurement Framework for National Key Performance Measures MINISTERIAL COUNCIL ON EDUCATION, EMPLOYMENT, TRAINING AND YOUTH AFFAIRS Performnce Mesurement nd Reporting Tskforce Working for qulity eduction outcomes A Mesurement Frmework for Ntionl Key Performnce

More information

Chapter 4 Group of Volunteers

Chapter 4 Group of Volunteers CHAPTER 4 SAFETY CLEARANCE, FREEBOARD AND DRAUGHT MARKS 4-1 GENERAL 4-1.1 This chpter specifies the minimum freebord for inlnd wterwy vessels. It lso contins requirements concerning the indiction of the

More information

Congruence Axioms. Data Required for Solving Oblique Triangles. 1 of 8 8/6/ THE LAW OF SINES

Congruence Axioms. Data Required for Solving Oblique Triangles. 1 of 8 8/6/ THE LAW OF SINES 1 of 8 8/6/2004 8.1 THE LAW OF SINES 8.1 THE LAW OF SINES Congrueny and Olique Triangles Derivation of the Law of Sines Appliations Amiguous Case Area of a Triangle Until now, our work with triangles has

More information

Announcements. CS 188: Artificial Intelligence Spring Announcements II. P4: Ghostbusters 2.0. Today. Dynamic Bayes Nets (DBNs)

Announcements. CS 188: Artificial Intelligence Spring Announcements II. P4: Ghostbusters 2.0. Today. Dynamic Bayes Nets (DBNs) CS 188: Artificil Intelligence Spring 2011 Lecture 19: Dynmic Byes Nets, Nïve Byes 4/6/2011 Announcements W4 out, due next week Mondy P4 out, due next week Fridy Mid-semester survey Pieter Aeel UC Berkeley

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificil Intelligence Spring 2011 Lecture 19: Dynmic Byes Nets, Nïve Byes 4/6/2011 Pieter Aeel UC Berkeley Slides dpted from Dn Klein. Announcements W4 out, due next week Mondy P4 out, due next

More information

The Discussion of this exercise covers the following points: The open-loop Ziegler-Nichols method. The open-loop Ziegler-Nichols method

The Discussion of this exercise covers the following points: The open-loop Ziegler-Nichols method. The open-loop Ziegler-Nichols method Exercise 6-3 Level Process Control EXERCISE OBJECTIVE In this exercise, you will perform PID control of level process. You will use the open-loop step response method to tune the controller. DISCUSSION

More information

Design and Calibration of Submerged Open Channel Flow Measurement Structures: Part 3 - Cutthroat Flumes

Design and Calibration of Submerged Open Channel Flow Measurement Structures: Part 3 - Cutthroat Flumes Uth Stte University DigitlCommons@USU Reports Uth Wter Reserch Lbortory Jnury 1967 Design nd Clibrtion of Submerged Open Chnnel Flow Mesurement Structures: Prt 3 - Cutthrot Flumes Gylord V. Skogerboe M.

More information

Renewable Energy xxx (2011) 1e10. Contents lists available at SciVerse ScienceDirect. Renewable Energy

Renewable Energy xxx (2011) 1e10. Contents lists available at SciVerse ScienceDirect. Renewable Energy Renewle Energy xxx () e Contents lists ville t SciVerse ScienceDirect Renewle Energy journl homepge: www.elsevier.com/locte/renene Wke effect in wind frm performnce: Stedy-stte nd dynmic ehvior F. González-Longtt

More information

1. A right triangle has legs of 8 centimeters and 13 centimeters. Solve the triangle completely.

1. A right triangle has legs of 8 centimeters and 13 centimeters. Solve the triangle completely. 9.7 Warmup 1. A right triangle has legs of 8 centimeters and 13 centimeters. Solve the triangle completely. 2. A right triangle has a leg length of 7 in. and a hypotenuse length of 14 in. Solve the triangle

More information

Performance Comparison of Dynamic Voltage Scaling Algorithms for Hard Real-Time Systems

Performance Comparison of Dynamic Voltage Scaling Algorithms for Hard Real-Time Systems Performnce Comprison of Dynmic Voltge Scling Algorithms for Hrd Rel-Time Systems Woonseok Kim Λ Dongkun Shin y Hn-Sem Yun y Jihong Kim y Sng Lyul Min Λ School of Computer Science nd Engineering Seoul Ntionl

More information

1985 BFS CLINICS. BFS Clinic-Assembly in Kamloops, British Columbia. Westsyde High School. Bob Bridges is the Football Coach.

1985 BFS CLINICS. BFS Clinic-Assembly in Kamloops, British Columbia. Westsyde High School. Bob Bridges is the Football Coach. 1985 BFS CLINICS BFS Clinic-Assembly in Kmloops, British Columbi. Westsyde High School. Bob Bridges is the Footbll Coch. BFS Clinicin Rick Anderson detils BFS Nutrition Progrm t Lke Hvsu High School in

More information

First Aid in School Policy

First Aid in School Policy First Aid in School Policy Approved y the Governing Body of West Monkton Church of Englnd Primry School: Reviewed y Governors nd Agreed: Septemer 2017 At West Monkton we im to e n inspirtionl community,

More information

8.3 Trigonometric Ratios-Tangent. Geometry Mr. Peebles Spring 2013

8.3 Trigonometric Ratios-Tangent. Geometry Mr. Peebles Spring 2013 8.3 Trigonometric Ratios-Tangent Geometry Mr. Peebles Spring 2013 Bell Ringer 3 5 Bell Ringer a. 3 5 3 5 = 3 5 5 5 Multiply the numerator and denominator by 5 so the denominator becomes a whole number.

More information

Similar Right Triangles

Similar Right Triangles MATH 1204 UNIT 5: GEOMETRY AND TRIGONOMETRY Assumed Prior Knowledge Similar Right Triangles Recall that a Right Triangle is a triangle containing one 90 and two acute angles. Right triangles will be similar

More information

Chapter 7. Right Triangles and Trigonometry

Chapter 7. Right Triangles and Trigonometry Chapter 7 Right Triangles and Trigonometry 4 16 25 100 144 LEAVE IN RADICAL FORM Perfect Square Factor * Other Factor 8 20 32 = = = 4 *2 = = = 75 = = 40 = = 7.1 Apply the Pythagorean Theorem Objective:

More information

2014 WHEAT PROTEIN RESPONSE TO NITROGEN

2014 WHEAT PROTEIN RESPONSE TO NITROGEN 2014 WHEAT PROTEIN RESPONSE TO NITROGEN Aron Wlters, Coopertor Ryford Schulze, Coopertor Dniel Hthcot, Extension Progrm Specilist Dr. Clrk Neely, Extension Stte Smll Grins Specilist Ryn Collett, Extension

More information

Coroutines in Propeller Assembly Language

Coroutines in Propeller Assembly Language www.prllxsemiondutor.om sles@prllxsemiondutor.om support@prllxsemiondutor.om phone: 916 632 4664 fx:916 624 8003 pplition Note oroutines in Propeller ssemly Lnguge strt: The multiore P8X32 does not require

More information

Workfit -SR, Dual Monitor Short Surface

Workfit -SR, Dual Monitor Short Surface User's Guide Workfit -SR, Dul Monitor Short Surfce Do not throw wy! Crdord locks needed for instlltion. Visit http://www.ergotron.com/workfi t-sr-instll for instlltion instructionl video. NOTE: 10 feet

More information

TECHNICAL BULLETINApril 2016

TECHNICAL BULLETINApril 2016 SYN-86 TECHNICAL BULLETINApril 216 Synovex One-Feedlot Implnts in Feedlot Steers: Phse IIIB Studies in Nersk nd Texs Zoetis Florhm Prk, NJ 7932 Summry Two Phse IIIB studies 1,2 were conducted in feedlot

More information

In previous examples of trigonometry we were limited to right triangles. Now let's see how trig works in oblique (not right) triangles.

In previous examples of trigonometry we were limited to right triangles. Now let's see how trig works in oblique (not right) triangles. The law of sines. In previous examples of trigonometry we were limited to right triangles. Now let's see how trig works in oblique (not right) triangles. You may recall from Plane Geometry that if you

More information

Math Practice Use Clear Definitions

Math Practice Use Clear Definitions Prllel Lines nd Trnsversls How cn you descrie ngles formed y rllel lines nd rnsversls? Trnsverse When n ojec is rnsverse, i is lying or exending cross somehing ACTIVITY: A Proery of Prllel Lines Work wih

More information

Chapter 8: Right Triangles (page 284)

Chapter 8: Right Triangles (page 284) hapter 8: Right Triangles (page 284) 8-1: Similarity in Right Triangles (page 285) If a, b, and x are positive numbers and a : x = x : b, then x is the between a and b. Notice that x is both in the proportion.

More information

Michelangelo,

Michelangelo, Michelngelo Red Section 3 to lern bout this Renissnce figure. Renissnce Figure 7 Michelngelo, 1475 1564 Techers Curriculum Institute Leding Figures of the Renissnce 1 Titin Red Section 4 to lern bout this

More information

Lesson 5.1 Polygon Sum Conjecture

Lesson 5.1 Polygon Sum Conjecture Lesson 5.1 Polgon Sum onjeture In Eerise 1, find eh lettered ngle mesure. 1.,,, d, e e d 97 26 2. ne eterior ngle of regulr polgon mesures 10. Wht is the mesure of eh interior ngle? How mn sides does the

More information

PRESSURE LOSSES DUE TO THE LEAKAGE IN THE AIR DUCTS - A SAFETY PROBLEM FOR TUNNEL USERS?

PRESSURE LOSSES DUE TO THE LEAKAGE IN THE AIR DUCTS - A SAFETY PROBLEM FOR TUNNEL USERS? - 7 - PRESSURE LOSSES DUE TO THE LEAKAGE IN THE AIR DUCTS - A SAFETY PROBLEM FOR TUNNEL USERS? Pucher Krl, Grz Uniersity of Technology, Austri E-Mil: pucherk.drtech@gmx.t Pucher Robert, Uniersity of Applied

More information

Functions - Trigonometry

Functions - Trigonometry 10. Functions - Trigonometry There are si special functions that describe the relationship between the sides of a right triangle and the angles of the triangle. We will discuss three of the functions here.

More information

Lateral Earth Pressure on Lagging in Soldier Pile Wall Systems

Lateral Earth Pressure on Lagging in Soldier Pile Wall Systems Lterl Erth Pressure on Lgging in Soldier Pile Wll Systems Howrd A. Perko, Ph.D, P.E., CTL Thompson, Fort Collins, CO, USA hperko@ctlthompson.com John J Boulden, SGM, Inc., Grnd Junction, CO johnb@sgm-inc.com

More information

How To Demonstrate Guide E24 & E26

How To Demonstrate Guide E24 & E26 Pre-Demonstrtion Checklist Clen the entire mchine Chrge tteries Check squeegee ldes Bring proper rushes nd/or pds Clening cost nlysis Prepre quottion with lese pyments E24 & E26 literture nd fct sheet

More information

8.7 Extension: Laws of Sines and Cosines

8.7 Extension: Laws of Sines and Cosines www.ck12.org Chapter 8. Right Triangle Trigonometry 8.7 Extension: Laws of Sines and Cosines Learning Objectives Identify and use the Law of Sines and Cosines. In this chapter, we have only applied the

More information

Reproduction. Not for. Mower - Roller Bar WARNING. Installation and Leveling Instructions. Attention Setup Personnel: Model: ,

Reproduction. Not for. Mower - Roller Bar WARNING. Installation and Leveling Instructions. Attention Setup Personnel: Model: , Mower - Roller Br Instlltion nd Leveling Instructions 4 Model: 9555, 9594 Attention Setup Personnel: 5 4 5 Model: 958, 9595 Model: 9559 Model: 959 The sfety wrnings provided in this guide nd in the trctor's

More information

MATHEMATICS OF FLIGHT: CROSSWINDS

MATHEMATICS OF FLIGHT: CROSSWINDS MTHEMTIS OF FLIGHT: ROSSWINDS Students will have a basic understanding of math applications used in flight. This includes the effects of crosswinds on aircraft course and direction. Students will solve

More information

Lesson 8: Application Technology

Lesson 8: Application Technology The type of ppliction equipment used must suit the type of ppliction. In this module, you ll lern the prts of the most common types of ppliction equipment used by ssistnt pplictors, s well s how to properly

More information

Integration of modelling and monitoring to optimize network control: two case studies from Lisbon

Integration of modelling and monitoring to optimize network control: two case studies from Lisbon Aville online t www.sciencedirect.com ScienceDirect Procedi Engineering 70 ( 2014 ) 555 562 12th Interntionl Conference on Computing nd Control for the Wter Industry, CCWI2013 Integrtion of modelling nd

More information

The development of a truck concept to allow improved direct vision of vulnerable road users by drivers

The development of a truck concept to allow improved direct vision of vulnerable road users by drivers Loughorough University Institutionl Repository The development of truck concept to llow improved direct vision of vulnerle rod users y drivers This item ws sumitted to Loughorough University's Institutionl

More information

Application of Geometric Mean

Application of Geometric Mean Section 8-1: Geometric Means SOL: None Objective: Find the geometric mean between two numbers Solve problems involving relationships between parts of a right triangle and the altitude to its hypotenuse

More information

Geom- Chpt. 8 Algebra Review Before the Chapter

Geom- Chpt. 8 Algebra Review Before the Chapter Geom- Chpt. 8 Algebra Review Before the Chapter Solving Quadratics- Using factoring and the Quadratic Formula Solve: 1. 2n 2 + 3n - 2 = 0 2. (3y + 2) (y + 3) = y + 14 3. x 2 13x = 32 1 Working with Radicals-

More information

United States Patent (19)

United States Patent (19) United Sttes Ptent (19) Mobley (11) 45) Ptent Number: Dte of Ptent: Nov. 19, 1991 (54) BICYCLE RACK FORMOUNTING ON A VAN 76 Inventor: Mrk H. Mobley, P.O. Box 636, Norris, Tenn. 37828 21 Appl. No.: 436,492

More information

TeeJay Publishers Homework for Level C book Ch 12 - Length & Area

TeeJay Publishers Homework for Level C book Ch 12 - Length & Area Chpter 12 Exerise Perentges 1 Length & Are 1. Would you use ruler, tpe mesure or r odometer to mesure : your tehers height the length of 5 note the length of your edroom d the distne from Glsgow to Crlisle?

More information

Student Instruction Sheet: Unit 4, Lesson 4. Solving Problems Using Trigonometric Ratios and the Pythagorean Theorem

Student Instruction Sheet: Unit 4, Lesson 4. Solving Problems Using Trigonometric Ratios and the Pythagorean Theorem Student Instruction Sheet: Unit 4, Lesson 4 Suggested Time: 75 minutes Solving Problems Using Trigonometric Ratios and the Pythagorean Theorem What s important in this lesson: In this lesson, you will

More information

Chance. PARAMOUNT LDS 1st & 3rd Ward

Chance. PARAMOUNT LDS 1st & 3rd Ward FRONTIER DISTRICT MERIT BADGE DA Y

More information

USA Field Hockey s Modifications to the 2017 FIH Rules of Hockey

USA Field Hockey s Modifications to the 2017 FIH Rules of Hockey USA Field Hockey hs estlished tht the Interntionl Hockey Federtion (FIH) will e the ultimte uthority for rules governing the sport of hockey in the United Sttes. This rule ook is reprinted under the uthority

More information

*Definition of Cosine

*Definition of Cosine Vetors - Unit 3.3A - Problem 3.5A 3 49 A right triangle s hypotenuse is of length. (a) What is the length of the side adjaent to the angle? (b) What is the length of the side opposite to the angle? ()

More information

Incremental Dependency Parsing

Incremental Dependency Parsing Inrementl Dependeny Prsing Mihel Fell 9 June 2011 1 Overview - Inrementl Dependeny Prsing - two lgorithms - evlution - enerl ritiism on present pprohes - possile improvements - ummry 2 Dependeny Prsing

More information

Working Paper: Reversal Patterns

Working Paper: Reversal Patterns Remember to welcome ll ides in trding. AND remember to reserve your opinion until you hve independently vlidted the ide! Working Pper: Reversl Ptterns Working Pper In this pper I wnt to review nd (hopefully)

More information

A life not lived for others is not a life worth living. Albert Einstein

A life not lived for others is not a life worth living. Albert Einstein life not lived for others is not a life worth living. lbert Einstein Sides adjacent to the right angle are legs Side opposite (across) from the right angle is the hypotenuse. Hypotenuse Leg cute ngles

More information

PROTECTION FROM HAND-ARM TRANSMITTED VIBRATION USING ANTIVIBRATON GLOVES

PROTECTION FROM HAND-ARM TRANSMITTED VIBRATION USING ANTIVIBRATON GLOVES PROTECTION FROM HAND-ARM TRANSMITTED VIBRATION USING ANTIVIBRATON GLOVES VLADO GOGLIA IGOR ĐUKIĆ JOSIP ŢGELA Abstrct There re vrious wys of reducing the helth-hzrds of hnd-trnsmitted vibrtion. One of the

More information

VB-7253 Series. Application. Features. Applicable Literature

VB-7253 Series. Application. Features. Applicable Literature VB-7253 Series 1/2 to 2 Screwed NPT Stinless Steel Trim with Teflon Disc Stem Up Open, Two-Wy Vlves Generl Instructions Appliction VB-7253 series single set, stem down to close, two wy vlves control wter

More information

BASICS OF TRIGONOMETRY

BASICS OF TRIGONOMETRY Mathematics Revision Guides Basics of Trigonometry Page 1 of 9 M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Foundation Tier BASICS OF TRIGONOMETRY Version: 1. Date: 09-10-015 Mathematics Revision

More information

6E Introducing rates 6F Ratios and rates and the unitary method 6G Solving rate problems (Extending) 6H Speed (Extending)

6E Introducing rates 6F Ratios and rates and the unitary method 6G Solving rate problems (Extending) 6H Speed (Extending) Chpter 6 Rtios nd rtes Wht you will lern 6A Introduing rtios 6B Simplifying rtios 6C Dividing quntity in given rtio (Extending) 6D Sle drwings 6E Introduing rtes 6F Rtios nd rtes nd the unitry method 6G

More information