(a) Deflection to the left, slower velocity means greater deflection, greatest deflection at the south pole

Size: px
Start display at page:

Download "(a) Deflection to the left, slower velocity means greater deflection, greatest deflection at the south pole"

Transcription

1 1 Test 2 Aid Sheet Exam: A single 8.5 by 11 inch aid sheet (both sides) and Type 2 nonprogrammable calculators are permitted. The time allowed for this Test (Part A plus Part B combined) is 90 minutes. Answers are to be written on the answer sheet given NOT on this question sheet. ENV346 students take Part A ONLY. PART A 1. The three rules of the Coriolis force in the southern hemisphere are: (a) Deflection to the left, slower velocity means greater deflection, greatest deflection at the south pole (b) Deflection to the left, higher velocity means greater deflection, greatest deflection at the equator (c) Deflection to the left, higher velocity means greater deflection, greatest deflection at the south pole (d) Deflection to the right, higher velocity means greater deflection, greatest deflection at the South Pole 2. What is the primary cause of the formation of the Hadley cell? (a) Warm, moist air (b) Instability (c) The neighboring Ferrel cell (d) High intensity solar radiation over the equatorial region 3. A Chinook weather pattern is in place in southern Alberta, with the wind blowing from west to east across the Rocky Mountains. Clouds over the mountains can be seen from a small town, which is to the east of the mountains. The cloud base is at an altitude of 4,000 m and at a temperature of -10 o C. What will be the relative humidity in the small town if it is at an altitude of 2,000 m, once that air descends and reaches the town? (a) 23% (b) 100% (c) 40% (d) 44% 4. If the air at 1,000 m is 28 o C dry bulb temperature and at 4,000 m is saturated and at -5 o C wet bulb temperature, calculate the environmental lapse rate. (a) 11 o C per 1,000 m (b) 9.8 o C per 1,000 m (c) 6 o C per 1,000 m (d) 7.5 o C per 1,000 m

2 2 5. Which combination of forces is required for anticyclonic wind to flow around a centre of high pressure in the northern hemisphere at ground level? (a) Equal pressure gradient force, Coriolis force and frictional force (b) Greater Coriolis force than pressure gradient force plus frictional force (c) Frictional force plus Coriolis force less than the pressure gradient force (d) Greater pressure gradient force than Coriolis force only 6. In an unstable atmosphere, warm air rises up from a dry lake bed that is situated 1,500 m above sea level. If the dry bulb temperature at the lake bed level is 25 o C with 50% relative humidity, at what altitude will clouds form? (a) 800 m (b) 2,300 m (c) 3,333 m (d) 2,600 m 7. Which of the following is NOT a requirement for the development of a hurricane? (a) Sea water > 26.5 o C (b) The Coriolis effect (c) Light upper level winds (d) Winds at mid-level to introduce a turning motion into the storm 8. Calculate the specific gas constant for the atmosphere on a newly discovered planet that consists of 40% N 2 (molar mass of 28 gmol -1 ), 40% CO 2 (molar mass of 44 gmol -1 ), 10% O 2 (molar mass of 32 gmol -1 ) and 10% water vapour H 2 O (molar mass of 18 gmol -1 ). R, the universal gas constant = Jmol -1 K -1. (a) Jkg -1 K -1 (b) 246 Jkg -1 K -1 c) 33.8 Jkg -1 K -1 (d) 3,380 Jkg -1 K At all equal levels below the sea s surface: (a) The salinity is the same (b) The temperature is the same (c) The temperature AND salinity are the same (d) The density is the same 10. If water was collected into a 1 litre (0.001 m 3 ) volume container from the bottom of the ocean at a depth of 9,000 m then brought to the surface, what will the resulting volume of the water be at the surface? The bulk modulus of sea water = 2.34x10 9 Pa. The density of sea water = 1,020 kgm -3. (a) 1 litre (b) litres (c) litres (d) 1.02 litres

3 3 11. In an air mass that is conditionally stable, which of the following statements is correct? (a) The air is unstable below the dew point (b) The air will always hit the dew point (c) The air s stability is dependent on whether it is saturated or not (d) The environmental lapse rate is always greater than the dry adiabatic lapse rate 12. The vapour pressure in an air mass is 45 mb. The air mass has a relative humidity of 65%. Calculate the saturated vapour pressure for the air mass. (b) 69.2 mb (b) mb c) 100 mb (d) Cannot be calculated without knowing the air s dry bulb temperature 13. Water boils at 100 o C because: (a) Its latent heat of vapourisation is 2.26x10 6 Jkg -1 (b) At that temperature the vapour pressure above the water = atmospheric pressure at sea level (c) Water can be considered incompressible (d) Air is dissolved inside it 14. A downdraft wind is a phenomenon related to a thunderstorm. The downdraft is caused by: (a) High pressure air forming high up in the cloud resulting in a pressure gradient force (b) Heavy rain entraining a flow of air (c) Air compressing and warming as it falls (d) Centrifugal forces

4 4 PART B 1. (a) An athlete can choose one of two days to train outdoors. It is after sunset, so the sun s energy is no longer a factor. (4 marks total) The first day has a temperature of 30 o C and a relative humidity of 30%. The other day has a temperature of 22 o C and a relative humidity of 80%. Which day is the best to train on? Explain you answer (2 marks) y the psych. Chart, the wet bulb temperature on the 30C day is lower than the 22C day/enthalpy content of the air is lower. This is a measure of the energy content in the air / how easy it is to sweat in order to stay cool, hence the hotter day being better to train on. (b) The athlete lives in a big city. Due to a smog problem caused by a temperature inversion, the athlete cannot train outside for the following five days. Why does the smog form? Use a diagram to illustrate your answer showing the temperature variation with altitude. (2 marks) ANS Smog forms when warm pollutants generated at ground level cannot rise up and escape into the upper atmosphere. This is because within the inversion the atmospheric temperature increases with altitude. Any air that warms and rises at the surface gets trapped below the inversion layer. Note to Class: the only line you need to be concerned with is the red one. 2. A sealed room at atmospheric pressure (101 kpa) has dimensions of 20 m x 30 m x 3 m and contains air with a relative humidity of 50% and a temperature of 21 o C. Someone then spills 10 litres of water onto the floor (which is waterproof). The water begins to evaporate. R SP for air = 286 Jkg -1 K -1. For this question, assume no energy is transferred either to or from the walls, floor or

5 5 ceiling. (6 marks total) (a) Find the initial moisture content of the air in kg of water per kg of dry air (1 mark) ANS From the psychrometric chart, m = kg per kg of dry air(+/ is OK). (b) Calculate the mass of air inside the room. (2 marks) ANS Mass = volume x density. Density = P/RspT = 101,000 / 286 x 294 = 1.20 kgm -3 mass = (20x30x3)x1.2 = 2,162 kg (c) What is the total mass of water in the air before the water is spilled? Recall the units of Moisture Content from the psychrometric chart). (2 marks) From part a), total air mass = 2,162 kg = m water + m dry air 2,162 = x + x, where x = the mass of dry air x = 2,145.8 kg m water = 2,162 2,145.8 = 16.2 kg (d) What is the final temperature of the room after evaporation takes place? (1 mark) From the chart, 14.5 o C 3. (a) Why does a very high speed linear jet stream wind form high up in the atmosphere at a latitude of around 60 N? Feel free to use a diagram to help with your answer. (2 marks) (b) Why does the air flow approximately clockwise (from west to east)? (1 mark) t that specific (high altitude) location, air masses of very different pressures are brought into close contact by the Ferrel and polar cells The resulting very high pressure gradient force generates very high wind speed speeds. The wind flows straight as at altitude the PGF equals the Coriolis force. Air flow west to east as the highest pressure is to the south. Air moves south to north but the Coriolis force deflects it to the right and results in geostrophic flow (clockwise).

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW.

ATMOSPHERIC CIRCULATION. WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. ATMOSPHERIC CIRCULATION WIND = The horizontal movement of air. Results from the differences in air pressure. Always moves from HIGH to LOW. Pressure differences result from variations in temperature. AIR

More information

Meteorology I Pre test for the Second Examination

Meteorology I Pre test for the Second Examination Meteorology I Pre test for the Second Examination MULTIPLE CHOICE 1. A primary reason why land areas warm up more rapidly than water areas is that a) on land, all solar energy is absorbed in a shallow

More information

SIO20 - Midterm Examination 2 v1 Winter Section A. Circle the letter corresponding to the best answer. (1 point each)

SIO20 - Midterm Examination 2 v1 Winter Section A. Circle the letter corresponding to the best answer. (1 point each) NAME: Section A. Circle the letter corresponding to the best answer. (1 point each) 1. Rainbows result from: a. refraction and reflection of sunlight by water droplets b. reflection of sunlight by oceans

More information

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10

Envs, Geol, Phys 112: Global Climate. Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Exam 1 Review Energy-Atmosphere System Review Aguado & Bert, Ch. 1, 2, 3, 4, 5, 6, 9, 10 Location on Earth (L04) Latitude & Longitude great circles, prime meridian, time zones, cardinal points, azimuth

More information

Chapter 13 Lecture Outline. The Atmosphere in Motion

Chapter 13 Lecture Outline. The Atmosphere in Motion Chapter 13 Lecture Outline The Atmosphere in Motion Understanding Air Pressure Air pressure is the force exerted by weight of air above Weight of the air at sea level 14.7 psi or 1 kg/cm 2 Decreases with

More information

Adiabatic Lapse Rates and Atmospheric Stability

Adiabatic Lapse Rates and Atmospheric Stability 8 Adiabatic Lapse Rates and Atmospheric Stability Learning Goals After studying this chapter, students should be able to: 1. describe adiabatic processes as they apply to the atmosphere (p. 174); 2. apply

More information

W3 Global Circulation Systems

W3 Global Circulation Systems W3 Global Circulation Systems Which regions of Earth receive the most energy from the Sun? If not for global circulation systems There would only be two narrow regions that would support life What

More information

Atmospheric Circulation

Atmospheric Circulation Atmospheric Circulation Why do we say Earth's temperature is moderate? It may not look like it, but various processes work to moderate Earth's temperature across the latitudes. Atmospheric circulation

More information

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65)

Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Wednesday, September 15, 2010 Coriolis force, 3 dimensions (p 65) Weather fronts (p 63) General circulation on a rotating Earth (p 65) Geostrophy force balance (p 66) Local effects (no coriolis force)

More information

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa

Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa Foundations of Earth Science, 6e Lutgens, Tarbuck, & Tasa The Atmosphere in Motion Foundations, 6e - Chapter 13 Stan Hatfield Southwestern Illinois College Atmospheric pressure Force exerted by the weight

More information

AT350 EXAM #2 November 18, 2003

AT350 EXAM #2 November 18, 2003 AT350 EXAM #2 November 18, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the 50 questions by using a No. 2 pencil to completely fill

More information

The atmospheric circulation system

The atmospheric circulation system The atmospheric circulation system Key questions Why does the air move? Are the movements of the winds random across the surface of the Earth, or do they follow regular patterns? What implications do these

More information

Enviro Sci 1A03 Quiz 3

Enviro Sci 1A03 Quiz 3 Enviro Sci 1A03 Quiz 3 Question 1 (1 point) Which of the following measure wind direction and speed? Question 1 options: a) aerovane b) anemometer c) wind vane d) all of the above Question 2 (1 point)

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 3 Meteorology Name: Circle the letter that corresponds to the correct answer 1) Natural convection and turbulence are most likely to occur when: a) temperature decreases rapidly with

More information

The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate.

The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate. The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate. In this lesson you will: 2.3.1 Define the term prevailing winds. (k) 2.3.3 State the impact

More information

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle

Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle Chapter 4: Moisture and Atmospheric Stability The hydrologic cycle from: USGS http://water.usgs.gov/edu/watercycle.html Evaporation: enough water to cover the entire surface of Earth to 1 meter cycles

More information

PHSC 3033: Meteorology Stability

PHSC 3033: Meteorology Stability PHSC 3033: Meteorology Stability Equilibrium and Stability Equilibrium s 2 States: Stable Unstable Perturbed from its initial state, an object can either tend to return to equilibrium (A. stable) or deviate

More information

MET Lecture 8 Atmospheric Stability

MET Lecture 8 Atmospheric Stability MET 4300 Lecture 8 Atmospheric Stability Stability Concept Stable: Ball returns to original position Neutral: Ball stays wherever it is placed Unstable: Displacement grows with time. Atmospheric Stability

More information

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately.

>>>>>>>>WHEN YOU FINISH <<<<<<<< Hand in the answer sheet separately. Instructor: Prof. Seiberling PHYSICS DEPARTMENT MET 1010 2nd Midterm Exam October 28, 2002 Name (print, last rst): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

Atmosphere Circulation

Atmosphere Circulation Atmosphere Circulation Winds What Causes Winds? Difference in air pressure due to unequal heating of the atmosphere. Temperatures vary according to the amount of sun it gets. Uneven heating of the Earth

More information

Nevis Hulme Gairloch High School John Smith Invergordon Academy. Gairloch High School / Invergordon Academy

Nevis Hulme Gairloch High School John Smith Invergordon Academy. Gairloch High School / Invergordon Academy Nevis Hulme Gairloch High School John Smith Invergordon Academy 1 Gairloch High School / Invergordon Academy ATMOSPHERIC CIRCULATION The Three Cell Model Global Winds The ITCZ The purpose of this presentation

More information

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation

Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Discovering Physical Geography Third Edition by Alan Arbogast Chapter 6: Atmospheric Pressure, Wind, and Global Circulation Factors That Influence Air Pressure Air Pressure is the measured weight of air

More information

TOPICS YOU NEED TO KNOW

TOPICS YOU NEED TO KNOW ATMO 101 Introduction to Meteorology Midterm Study Sheet Chapters 6, 7, 8 and 10 Exam Thursday 3/23/2017 Vocabulary Words for True and False, and Multiple Choice You are responsible for the following words:

More information

Small- and large-scale circulation

Small- and large-scale circulation The Earth System - Atmosphere II Small- and large-scale circulation Atmospheric Circulation 1. Global atmospheric circulation can be thought of as a series of deep rivers that encircle the planet. 2. Imbedded

More information

Horizontal movement of air between cooler and warmer regions. - horizontal movement of air Convection over areas where is

Horizontal movement of air between cooler and warmer regions. - horizontal movement of air Convection over areas where is Winds and Water Chapter 9 continued... Uneven Heating The various materials of the earth absorb and emit energy at different rates Convection Heated air expands; density reduced; air rises Upward movement

More information

ENVIRONMENTAL PHYSICS

ENVIRONMENTAL PHYSICS ENVIRONMENTAL PHYSICS Atmospheric Stability An understanding of why and how air moves in the atmosphere is fundamental to the prediction of weather and climate. What happens to air as it moves up and down

More information

WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67

WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67 WINDS Understand the cause of wind and how it affects climate Chapter 4 Pages 59-67 What is Wind? A wind is a horizontal movement of air across a surface. Vertical movements are currents or updrafts and

More information

ATMO 551b Spring Flow of moist air over a mountain

ATMO 551b Spring Flow of moist air over a mountain Flow of moist air over a mountain To understand many of the implications of the moist and dry adiabats and the control of moisture in the atmosphere and specifically why there are deserts, it is useful

More information

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute

CEE 452/652. Week 3, Lecture 1 Mass emission rate, Atmospheric Stability. Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute CEE 452/652 Week 3, Lecture 1 Mass emission rate, Atmospheric Stability Dr. Dave DuBois Division of Atmospheric Sciences, Desert Research Institute Today s topics Review homework Review quiz Mass emission

More information

Higher Atmosphere. Earth s Heat Budget. Global Insolation. Global Transfer Of Energy. Global Temperatures. Inter Tropical Convergence Zone

Higher Atmosphere. Earth s Heat Budget. Global Insolation. Global Transfer Of Energy. Global Temperatures. Inter Tropical Convergence Zone Higher Atmosphere Earth s Heat Budget Global Insolation Global Transfer Of Energy Global Temperatures Inter Tropical Convergence Zone Climate Graph Earth s Heat Budget Task 1 Use the Power Point to help

More information

CHAPTER 6 Air-Sea Interaction

CHAPTER 6 Air-Sea Interaction CHAPTER 6 Air-Sea Interaction What causes Earth s seasons? Tilt (23.5 ) responsible for seasons 2011 Pearson Education, Inc. Distribution of Solar Energy Distribution of Solar Energy Atmosphere absorbs

More information

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4

Wednesday, September 20, 2017 Reminders. Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4 Wednesday, September 20, 2017 Reminders Week 3 Review is now available on D2L (through Friday) Exam 1, Monday, September 25, Chapters 1-4 PLEASE don t memorize equations, but know how to recognize them

More information

Prevailing Winds. The Coriolis Effect

Prevailing Winds. The Coriolis Effect Prevailing Winds 1. Wind: a movement of air in the atmosphere. Bill Nye wind (2 minutes) 2. Local or regional wind: occur in fairly small areas. 3. Prevailing winds: Major wind pattern that affect large

More information

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere

Global Wind and Pressure Belts as a Response to the Unequal Heating of the Atmosphere GRADE 11 GEOGRAPHY SESSION 3: GLOBAL AIR CIRCULATION Key Concepts In this lesson we will focus on summarising what you need to know about: The mechanics present to create global wind and pressure belts

More information

Lesson: Atmospheric Dynamics

Lesson: Atmospheric Dynamics Lesson: Atmospheric Dynamics By Keith Meldahl Corresponding to Chapter 8: Atmospheric Circulation Our atmosphere moves (circulates) because of uneven solar heating of the earth s surface, combined with

More information

Earth and Planetary Sciences 5 Midterm Exam March 10, 2010

Earth and Planetary Sciences 5 Midterm Exam March 10, 2010 Earth and Planetary Sciences 5 Midterm Exam March 10, 2010 Name: Teaching Fellow: INSTRUCTIONS PUT YOUR NAME ON EACH PAGE. The exam will last 80 minutes. Complete the problems directly on the exam. Extra

More information

Earth s Atmosphere. Earth s atmosphere is a key factor in allowing life to survive here.

Earth s Atmosphere. Earth s atmosphere is a key factor in allowing life to survive here. Chapter 10.2 Earth s Atmosphere Earth s atmosphere is a key factor in allowing life to survive here. This narrow band of air has the right ingredients and maintains the correct temperature, to allow life

More information

Lornshill Academy. Geography Department Higher Revision Physical Environments - Atmosphere

Lornshill Academy. Geography Department Higher Revision Physical Environments - Atmosphere Lornshill Academy Geography Department Higher Revision Physical Environments - Atmosphere Physical Environments Atmosphere Global heat budget The earth s energy comes from solar radiation, this incoming

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 4 Worksheet 2 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the air temperature remains constant, evaporating water into the air will the dew point and the relative

More information

ATMS 310 Tropical Dynamics

ATMS 310 Tropical Dynamics ATMS 310 Tropical Dynamics Introduction Throughout the semester we have focused on mid-latitude dynamics. This is not to say that the dynamics of other parts of the world, such as the tropics, are any

More information

8 th Grade Science Meteorology Review

8 th Grade Science Meteorology Review 8 th Grade Science Meteorology Review #1 Where does Earth get the energy that produces global weather patterns? A: The sun B: Humidity C: Air masses D: Cyclones A. The Sun #2 Do all of the areas on Earth

More information

Air Pressure and Wind

Air Pressure and Wind Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways. The

More information

Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds

Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds Understanding Air Pressure: -pressure exerted by the weight

More information

Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds

Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds Chapter 6: Air Pressure Measuring air pressure Variations due to temperature and water vapor Development of pressure systems Generation of winds Understanding Air Pressure: -pressure exerted by the weight

More information

Full Name: Class: Period: Date:

Full Name: Class: Period: Date: Topic/Objective: Essential Question: Full Name: Class: Period: Date: Tutor Use Only: Air Pressure and Wind (Chapter 19) Air Pressure the weight of the atmosphere pushing down on the Earth exerting a force

More information

10.2 Energy Transfer in the Atmosphere

10.2 Energy Transfer in the Atmosphere 10.2 Energy Transfer in the Atmosphere Learning Outcomes Understand the different layers of the atmosphere Understand how energy moves in, out, and around our atmosphere er Composi

More information

Wind and Air Pressure

Wind and Air Pressure Wind and Air Pressure When air moves above the surface of the Earth, it is called wind. Wind is caused by differences in air pressure. When a difference in pressure exists, the air will move from areas

More information

Chapter. Air Pressure and Wind

Chapter. Air Pressure and Wind Chapter Air Pressure and Wind 19.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. 19.1 Understanding Air Pressure Air Pressure Defined Air pressure

More information

Local Winds. Please read Ahrens Chapter 10

Local Winds. Please read Ahrens Chapter 10 Local Winds Please read Ahrens Chapter 10 Scales of Motion Microscale: meters Turbulent eddies Formed by mechanical disturbance or convection Lifetimes of minutes Mesoscale: km s to 100 s of km s Local

More information

Length of day for a full year. Ocean Gyres. Wet. Adiabatic. lapse rate, starts at. dewpoint Dry Adiabatic lapse rate

Length of day for a full year. Ocean Gyres. Wet. Adiabatic. lapse rate, starts at. dewpoint Dry Adiabatic lapse rate Vernal Equinox March 20, 11:57 AM, CDT Sun will rise exactly in the east and set exactly in the west. All latitudes get 12 hours of day and 12 hours of dark. Length of day for a full year Wet Adiabatic

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas ATMOSPHERIC PRESSURE AND WIND Atmospheric Pressure and Wind Atmospheric Processes The Nature of Wind General Circulation of the Atmosphere Modifications of General Circulation

More information

Circulation Patterns

Circulation Patterns Nov. 1, 2017 Today Finish Vertical Atmospheric Structure, Origin, Escape Start Atmospheric Circulation (may finish in 2nd lecture, on Friday) A few words of introduction on Pluto Friday 11AM: Student presentations

More information

REMINDERS: Problem Set 2: Due Monday (Feb 3)

REMINDERS: Problem Set 2: Due Monday (Feb 3) REMINDERS: Problem Set 2: Due Monday (Feb 3) Midterm 1: Next Wednesday, Feb 5 - Lecture material covering chapters 1-5 - Multiple Choice, Short Answers, Definitions - Practice midterm will be on course

More information

ATOMOSPERIC PRESSURE, WIND & CIRCULATION

ATOMOSPERIC PRESSURE, WIND & CIRCULATION ATOMOSPERIC PRESSURE, WIND & CIRCULATION A. INTRODUCTION Important because: pressure patterns drive wind patterns which in turn drive oceanic circulation patterns o atmospheric & oceanic circulation: major

More information

Atmospheric Motions & Climate

Atmospheric Motions & Climate Atmospheric Motions & Climate 20-1 Vertical Atmospheric Motion Hydrostatic Balance Non-hydrostatic Balance Science Concepts Newtonʼs Laws of Motion Vertical Forces Pressure Gradient Force Gravitational

More information

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology

EVE 402/502 Air Pollution Generation and Control. Introduction. Intro, cont d 9/18/2015. Chapter #3 Meteorology EVE 402/502 Air Pollution Generation and Control Chapter #3 Meteorology Introduction Meteorology is the study and forecasting of weather changes resulting from large-scale atmospheric circulation Characteristics

More information

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams

Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams Summary of Lecture 10, 04 March 2008 Introduce the Hadley circulation and examine global weather patterns. Discuss jet stream dynamics jet streams arise because the Coriolis force prevents Hadley-type

More information

Isaac Newton ( )

Isaac Newton ( ) Introduction to Climatology GEOGRAPHY 300 Isaac Newton (1642-1727) Tom Giambelluca University of Hawai i at Mānoa Atmospheric Pressure, Wind, and The General Circulation Philosophiæ Naturalis Principia

More information

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009

NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 EXAM NUMBER NATS 101, Section 4, Spring 2009 Midterm Examination #2 March 13, 2009 Name: SID: S Instructions: Write your name and student ID on ALL pages of the exam. In the multiple-choice/fill in the

More information

Topic 4 Temperature, Atmospheric Circulation and Climate. Temperature Concepts and Measurement 10/2/2017. Thermometer and Instrument Shelter

Topic 4 Temperature, Atmospheric Circulation and Climate. Temperature Concepts and Measurement 10/2/2017. Thermometer and Instrument Shelter Topic 4 Temperature, Atmospheric Circulation and Climate Temperature Controls Global Temp. Patterns Atmospheric Circulation Primary High and Low Pressure Areas Global Circulation Model Local Winds Ocean

More information

Finish Characteristics of Climate

Finish Characteristics of Climate Bell Ringer Finish Characteristics of Climate Wind Coriolis Effect Newton s second law: a body in motion will continue in motion (unchanged) unless acted upon by an outside force. Liquid (water) and gas

More information

Winds and Ocean Circulations

Winds and Ocean Circulations Winds and Ocean Circulations AT 351 Lab 5 February 20, 2008 Sea Surface Temperatures 1 Temperature Structure of the Ocean Ocean Currents 2 What causes ocean circulation? The direction of most ocean currents

More information

PGF. Pressure Gradient. Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 2/14/2017

PGF. Pressure Gradient. Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 2/14/2017 Winds Wind is horizontal movement of the air or other word air in motion. Forces affecting winds 1. Pressure gradient force a. High pressure flows to low pressure b. Pressure gradient = difference in pressure

More information

McKnight's Physical Geography 11e

McKnight's Physical Geography 11e Chapter 2 Lecture McKnight's Physical Geography 11e Lectures Chapter 5 Atmospheric Pressure and Wind Michael Commons Ohio Northern University Atmospheric Pressure and Wind The Nature of Atmospheric Pressure

More information

Announcements. Why does the wind blow? What makes the ocean flow? Pressure gradients and Coriolis. First assignment (deep-sea sediments)

Announcements. Why does the wind blow? What makes the ocean flow? Pressure gradients and Coriolis. First assignment (deep-sea sediments) Announcements First assignment (deep-sea sediments) I expect to be finished grading exams in two weeks. Second problem set due November 7th New topic: Physics of atmospheric and oceanic circulation Atmospheric

More information

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation

Write answers on your own paper. A. the Sun B. the Moon C. Earth s gravity D. Earth s rotation The tmosphere Write answers on your own paper 1. What is the primary energy source that drives all weather events, including precipitation, hurricanes, and tornados?. the Sun. the Moon C. Earth s gravity

More information

APPI PPG LECTURE 5: FURTHER METEOROLOGY

APPI PPG LECTURE 5: FURTHER METEOROLOGY LECTURE 5: FURTHER METEOROLOGY Introduction: This lecture covers Further Meteorology and aims to give you more of an understanding of advanced weather conditions and patterns. However Meteorology is a

More information

Weather & Atmosphere Study Guide

Weather & Atmosphere Study Guide Weather & Atmosphere Study Guide 1. Draw a simple water cycle diagram using the following words: Precipitation, Evaporation, Condensation, Transpiration 2. In your own words, explain the difference between

More information

Section 3: Atmospheric Circulation

Section 3: Atmospheric Circulation Section 3: Atmospheric Circulation Preview Key Ideas The Coriolis Effect Global Winds Local Winds Maps in Action Key Ideas Explain the Coriolis effect. Describe the global patterns of air circulation,

More information

The Hydrological Cycle

The Hydrological Cycle Introduction to Climatology GEOGRAPHY 300 The Hydrological Cycle Tom Giambelluca University of Hawai i at Mānoa Atmospheric Moisture Changes of Phase of Water Changes of Phase of Water 1 Changes of Phase

More information

Atmospheric & Ocean Circulation-

Atmospheric & Ocean Circulation- Atmospheric & Ocean Circulation- Overview: Atmosphere & Climate Atmospheric layers Heating at different latitudes Atmospheric convection cells (Hadley, Ferrel, Polar) Coriolis Force Generation of winds

More information

EARTH SCIENCE 5.9 (WIND) WEATHER

EARTH SCIENCE 5.9 (WIND) WEATHER EARTH SCIENCE 5.9 (WIND) WEATHER Video Notes Key Points: 1. According to the video, what two factors cause wind: a. b. 2. Fill in the blanks from this quote from the video: Energy from the Sun heats the,

More information

Chapter: Atmosphere Section 3: Air Movement

Chapter: Atmosphere Section 3: Air Movement Table of Contents Chapter: Atmosphere Section 3: Air Movement We will learn about Air Movement=Wind -Why different latitudes on Earth will receive different amounts of Solar Energy -The Coriolis Effect

More information

Scott Denning CSU CMMAP 1

Scott Denning CSU CMMAP 1 Thermodynamics, Buoyancy, and Vertical Motion Temperature, Pressure, and Density Buoyancy and Static Stability Adiabatic Lapse Rates Dry and Moist Convective Motions Present Atmospheric Composition What

More information

The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate.

The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate. The student will be expected to demonstrate an understanding of the cause of winds and how winds affect climate. In this lesson you will: 2.3.1 Define the term prevailing winds. (k) 2.3.3 State the impact

More information

OCN 201 Surface Circulation

OCN 201 Surface Circulation OCN 201 Surface Circulation Excess heat in equatorial regions requires redistribution toward the poles 1 In the Northern hemisphere, Coriolis force deflects movement to the right In the Southern hemisphere,

More information

Cool Science Convection.. Take away concepts and ideas. State Properties of Air

Cool Science Convection.. Take away concepts and ideas. State Properties of Air Thermal Structure of the Atmosphere: Lapse Rate, Convection, Clouds Cool Science 2007 Lamont Open House Saturday, October 4th 10am - 4pm Free Shuttle buses to / from Amsterdam & 118th: 9:30am, every 30

More information

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer

18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Measuring Air Pressure Air pressure barometer 18.1 Understanding Air Pressure 18.1 Understanding Air Pressure Air Pressure Defined Air pressure is the pressure exerted by the weight of air. Air pressure is exerted in all directions down, up, and sideways.

More information

Moisture and Stability in the Atmosphere

Moisture and Stability in the Atmosphere Moisture and Stability in the Atmosphere Humidity can be measured as: HUMIDITY Absolute humidity the mass of water vapour in a volume of air (g/m 3.) Relative Humidity the proportion of the actual mass

More information

Chapter 7: Circulation And The Atmosphere

Chapter 7: Circulation And The Atmosphere Chapter 7: Circulation And The Atmosphere Highly integrated wind system Main Circulation Currents: series of deep rivers of air encircling the planet Various perturbations or vortices (hurricanes, tornados,

More information

ATMOSPHERIC CIRCULATION

ATMOSPHERIC CIRCULATION Name ATMOSPHERIC CIRCULATION (adapted from Dr. S. Postawko, U. of Ok.) INTRODUCTION Why does the wind blow? Why do weather systems in the mid-latitudes typically move from west to east? Now that we've

More information

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions.

Santa Ana Winds. Surface weather map showing typical Santa Ana conditions. Santa Ana Winds Surface weather map showing typical Santa Ana conditions. High Desert Elevation ~1500-2000 ft Santa Ana Winds ~1500 meters 0 meters Santa Ana Winds ~875 mb ~1500 meters ~875 mb Horizontal

More information

Lecture Outlines PowerPoint. Chapter 18 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 18 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 18 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Copy and answer the following in your marble composition book. 1. Which direction is the wind deflected in the northern hemisphere?

Copy and answer the following in your marble composition book. 1. Which direction is the wind deflected in the northern hemisphere? Copy and answer the following in your marble composition book. 1. Which direction is the wind deflected in the northern hemisphere? 2. Which direction is the wind deflected in the southern hemisphere?

More information

Wind is caused by differences in air pressure created by changes in temperature and water vapor content.

Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Topic 8: Weather Notes, Continued Workbook Chapter 8 Wind is caused by differences in air pressure created by changes in temperature and water vapor content. Wind blows from high pressure areas to low

More information

Atmospheric Circulation. Density of Air. Density of Air: H 2 O and Pressure effects

Atmospheric Circulation. Density of Air. Density of Air: H 2 O and Pressure effects Today s topics: Atmospheric circulation: generation of wind patterns on a rotating Earth Seasonal patterns of climate: Monsoons and Sea Breezes Tropical Cyclones: Hurricanes and typhoons Atmospheric Circulation

More information

Review for the second quarter. Mechanisms for cloud formation

Review for the second quarter. Mechanisms for cloud formation Review for the second quarter Mechanisms for cloud formation 1 Rising air expands and cools; Sinking air compresses and warms. (18) (24) Dry adiabatic lapse rate (10 o C/km): the rate of temperature decrease

More information

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes

Section 1. Global Wind Patterns and Weather. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 5 Winds, Oceans, Weather, and Climate Section 1 Global Wind Patterns and Weather What Do You See? Learning Outcomes In this section, you will Determine the effects of Earth s rotation and the uneven

More information

Lecture The Oceans

Lecture The Oceans Lecture 22 -- The Oceans ATMOSPHERE CIRCULATION AND WINDS Coriolis effect Prevailing winds and vertical circulation Zones of pressure, evap. & ppt. Factors modifying global winds -- Differential heating

More information

Carolina TM Coriolis Effect and Atmospheric Circulation Kit STUDENT GUIDE

Carolina TM Coriolis Effect and Atmospheric Circulation Kit STUDENT GUIDE Name: Date: Mods: Carolina TM Coriolis Effect and Atmospheric Circulation Kit STUDENT GUIDE Background Global air circulation is a major influence on the world's climates. Air circulation is caused by

More information

Trade winds Prevailing westerlies east

Trade winds Prevailing westerlies east Warm-up Page: 528, 1. What is the major wind belt that is nearest the equator? Trade winds Page: 528, 2. What is the major wind belt that the most of the USA belongs to: Prevailing westerlies Page: 528,

More information

Local and Global Winds

Local and Global Winds PART 2 Wind Local and Global Winds Wind is the horizontal movement of air. All wind is caused by air pressure differences due to the uneven heating of Earth's surface, which sets convection currents in

More information

9/25/2014. Scales of Atmospheric Motion. Scales of Atmospheric Motion. Chapter 7: Circulation of the Atmosphere

9/25/2014. Scales of Atmospheric Motion. Scales of Atmospheric Motion. Chapter 7: Circulation of the Atmosphere Chapter 7: Circulation of the Atmosphere The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University Scales of Atmospheric Motion Small-

More information

MET 101 Introduction to Meteorology

MET 101 Introduction to Meteorology MET 101 Introduction to Meteorology MET 101 Griswold 1 MIDTERM EXAM Spring Semester 2015 Thursday, March 12, 2015 Name: Student ID #: Instructions: Closed Book. Time limit is 50 minutes. Total Points Attainable:

More information

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams

ATS 351 Lecture 6. Air Parcel. Air Parcel Movement: Why does rising air expand and cool? Stability & Skew-T Diagrams ATS 351 Lecture 6 Stability & Skew-T Diagrams To demonstrate stability, a parcel of air is used Expands and contracts freely Always has uniform properties throughout Air Parcel Air Parcel Movement: Why

More information

Circulation of the Atmosphere

Circulation of the Atmosphere Circulation of the Atmosphere World is made up of three regions: Atmosphere (air) Hydrosphere (water) Lithosphere (land) - Geosphere All regions interact to produce weather (day to day variations) and

More information

The change in temperature as air rises or descends d in the atmosphere. This change is measured by a lapse rate

The change in temperature as air rises or descends d in the atmosphere. This change is measured by a lapse rate Adiabatics The change in temperature as air rises or descends d in the atmosphere. This change is measured by a lapse rate oftenplotted on an adiabatic chart. Such processes are closely connected to precipitation

More information

Atmospheric Circulation. Recall Vertical Circulation

Atmospheric Circulation. Recall Vertical Circulation Today s topics: Atmospheric circulation: generation of wind patterns on a rotating Earth Seasonal patterns of climate: Monsoons and Sea Breezes Tropical Cyclones: Hurricanes and typhoons Atmospheric Circulation

More information

ATS 351, Spring 2010 Lab #6 Stability & Skew-T 48 points

ATS 351, Spring 2010 Lab #6 Stability & Skew-T 48 points ATS 351, Spring 2010 Lab #6 Stability & Skew-T 48 points 1. (5 points) What is an adiabatic process? Why are the moist and dry adiabatic rates of cooling different? An adiabatic process is a process that

More information

Ocean Currents that Redistribute Heat Globally

Ocean Currents that Redistribute Heat Globally Ocean Currents that Redistribute Heat Globally Ocean Circulation Ocean Currents Fig. CO7 OCEAN CURRENTS Surface ocean currents are similar to wind patterns: 1. Driven by Coriolis forces 2. Driven by winds

More information