Vertical Alignment. Concepts of design & guidelines Computing elevations along vertical curves Designing vertical curves

Size: px
Start display at page:

Download "Vertical Alignment. Concepts of design & guidelines Computing elevations along vertical curves Designing vertical curves"

Transcription

1 Vertical Alignment Concepts of design & guidelines Computing elevations along vertical curves Designing vertical curves

2 Flat terrain You can select smooth horizontal alignment and smooth vertical alignment

3 Rolling terrain It is relatively easy to find a good alignment in rolling terrain

4 Mountainous terrain Relatively difficult to find good alignment Loose material on cut side slope

5 Mountainous terrain Extremely difficult to find good alignment in hilly areas

6 Mountainous terrain Extremely difficult to find good alignment in hilly areas

7 Sand dune areas It is difficult to design an alignment in sand dune areas

8 Main topics Main concepts in selecting a vertical alignment or road profile Determining design elevations along the road profile Designing vertical curves along the vertical alignment General controls for vertical alignments

9 General definitions The grade line is a reference line by which the elevation of the pavement and other features of the highway are established All portions of the grade line must meet sight distance requirements for the design speed classification of the road. The grade line is controlled mainly by the topography, type of highway, horizontal alignment, performance of heavy vehicles, right of way costs, safety, sight distance, construction costs, cultural development, drainage, and pleasing appearance.

10 Road profile Grade line or design profile Fill Cut Original ground level (OGL)

11 Working in cut section in soft rock (normal cut)

12 Working in cut section in solid rock (blasting)

13 Finished cut side slope

14 Factors governing the road grade line 1. Earthwork quantities (cut & fill) 2. Control points (existing road, canal, water level, bridge, etc.) 3. Max & min grade 4. Critical length of the grade 5. Design speed & sight distance 6. General control of grade line 7. Coordination with horizontal alignment

15 Maximum grade Table 4.8 gives the max grade Upgrade: It limits the ability of vehicles to climb the upgrade (performance depends on the weight/horsepower ratio) Downgrade: It adds a driving force and speeding up, Downgrade: It adds a driving force and speeding up, pushes the vehicle outside the road, and/or causes a loss of control on the steering wheel.

16 Max grade

17 Example of steep gradient and sharp horizontal curves in mountainous terrain

18 Min grade is governed by the drainage conditions or requirements, especially in cut sections. Side ditch is required with cut section to drain water The minimum grade is used to facilitate draining the surface water in the longitudinal direction Minimum grade High qualify pavement: 0.35% Other types of pavements: 0.5% Avoid having sag curve with the lowest point in cut section

19 Critical length of grade It the maximum length of a given upgrade on which a loaded truck can operate without significant reduction in speed. Figure 4.15 gives the between the upgrade grade, length of grade, and the reduction of speed for 250 g/w truck. Figure 4.16 gives the relationship between the grade (up or down), length of grade, and the speed for 250 g/w truck.

20 Truck performance on upgrades Example: Truck starts moving on 4% with 60 km/h will reach, what is the critical length on this grade if maximum reduction in speed is 20 km/h?

21 Truck performance on downgrades

22 Climbing lanes When the reduction in speed is significant and road profile cannot be improved, a climbing lane should be used. It is not required in case of low traffic road. Function: to be used by slow trucks to facilitate the passing of light vehicles. Benefits: reduce accidents, reduce delay, improve section capacity and level of service. Length: should be determined based on the initial and final speed of truck. Transition length should be added at both ends of the climbing lane

23 Example of climbing lane 1. Truck starts to climb 5% grade at speed 60 km/h. This grade continues for about 400 m, and then followed by 1% grade for about 200 m and then by -1% for another 200 m. Determine the length of the climbing lane. 2. At the end of the 400 distance, the truck speed becomes about 25 km/h. After traveling 200 m on the 1% grade, truck speed reaches about 35 km/h. After traveling the 200 m on -1% grade, the truck speed reaches about 50 km/h 3. The climbing lane starts where the reduction in speed reaches 15 km/h (i.e., truck speed is 45 km/h) 4. This point is reached after the track travels ( ) or after traveling 160 m on the grade. 5. Use transition before this point 6. The climbing lane should end at a point where the truck re-gain at least its speed minus 15 km/h (i.e., truck speed reaches 45 km/h). 7. This sped is located on the -1% grade, after about 120 m on the grade. 8. Use a transition after this point 9. The length of the climbing lane is about = 560 m

24 g 2 g Types of vertical curves Crest (A=+ve) A= g 1 g 2 g 1 g Sag (A=- ve)

25 Difference in levels on grade 2 1 g g * X X E 2 = E 1 + g * X

26 Elements of vertical curves PC PI y + g x - g 2 1 L PT A= g 1 g 2 A is % or number K = e = Y L A A L A X = 200 L E x = E PC + g 1 * X - Y (Vertical curve parameter) A is number (External distance) A is number Vertical ordinate at distance (x) A is number Elevation on curve at distance (x) from PC Location of critical point on curve, measured from PC: Slope on curve at distance (X) from PC: Distance from PC where slope on curve equal (g ): Rate of change of gradient on vertical curve (r): X c 1 g x X = g ' g L = A = g g 1 1 m g A A X L r = 1/K = A/L ' L

27 Example 4% n -2% Given: L = 150 m, St PC = , Elev of PC = 20.5 m, St of n = , Req: a) Elev of n, b) Elev & Station of Highest point, c) station at g = 2%, d) slope at point n a) A= 6%, Y n = 6 * 30 2 /(200 * 150) = 0.18 m, Elev at n = *4/ = m b) X h = 4 * 150/ 6 = 100 m, Y h = 6* (100)2/ (200 * 150) = 2 m, Elev h = * 4/100 2 = = 22.5 (Also Elev h = = 22.5) c) X 2% = (4-2)/6 * 150 = 50 m, Y 2% = 6* (50) 2 / (200 * 150) = 0.5 m, Elev 2%= * 4/ = 22.5 m d) g = 4-6 * 30/150 = 2.8%

28 Sight distance on crest curve

29 Design of Crest curves for SSD h 2 h 1 S L General equations SSD Simplified equation S<L H1=1.05 m H2=0.15 m S>L

30 Design of Crest curves for PSD h 2 h 1 S L General equations PSD Simplified equation S<L H1=1.05 m H2=1.30 m S>L

31 Design of sag curves for SSD S H β L General equations SSD Simplified equation S<L H=0.6 m B =1 o m S>L

32 K Parameter of Vertical Curves

33 Example Given: 3%, -1% grades, Vd = 80 km/h A= 3% (-1%) = 4% S = 0.278*80* /(255*0.31)=136.6 m SSD = (calculated), 140 m (rounded) - (Table 4.1) PSD = 561 (calculated), 560 m (rounded) - (Table 4.4) Assume S<L L = A*S 2 /400 = 4*134 2 /400=179.6 m (L>S ok) For PSD: L = 4*560 2 /940 = m Note: for SSD, K=55, L= 4*55 = 220 m for PSD, K=235, L= 4*335 = 1340 m

34 Factors governing the vertical alignment Earthwork quantities (cut & fill) Control points (existing road, canal, water level, bridge, etc.) Max & min grade Critical length of the grade Design speed & sight distance

35 Additional factors controlling the vertical alignment a) A smooth grade line is better than a line with numerous breaks b) The roller-coaster or hidden dip should be avoided c) Broken back grade (two vertical curves in the same direction separated with short tangent) should be avoided not pleasing d) On long grade, it is preferred to put steepest grade at the bottom and least grade near top or to break grade by short interval of less grade e) At intersections, reduce gradient f) Climbing lane should be considered when critical length is exceeded and DHV exceeds capacity

36 a) Smooth grade line

37 b) Roller coaster

38 Local dip eliminated Local dip on long grade

39 d) Broken back grade Crest Sag

40 e) Steepest grade at bottom

41 Short hump and dip preceding horizontal curve

42 Out-of-phase vertical and horizontal alignments

43 Improper design of vertical alignment Where does the road go?

LIST OF FIGURES Figure Title

LIST OF FIGURES Figure Title TABLE OF CONTENTS Table of Contents... 1 List of Figures... 2 44-1A Critical Length of Grade for Trucks... 3 44-1B Critical Length of Grade for Recreational Vehicles... 3 44-1C Measurement for Length of

More information

CHAPTER 6 VERTICAL ALIGNMENT

CHAPTER 6 VERTICAL ALIGNMENT CHAPTER 6 VERTICAL ALIGNMENT Introduction 6-3 Vertical Alignment Controls 6-3 Figure 6-1 Contrast of Poor Grade Line Design (Left) with Preferred Grade Line Design (Right) Figure 6-2 Example of a Hidden

More information

Basic Road Design. If you don't know where you are going, any road will get you there. Lewis Carroll

Basic Road Design. If you don't know where you are going, any road will get you there. Lewis Carroll Basic Road Design If you don't know where you are going, any road will get you there. Lewis Carroll Road Design Horizontal alignment of a road defines its location and orientation in plan view. Vertical

More information

200 Horizontal and Vertical Design. Table of Contents

200 Horizontal and Vertical Design. Table of Contents 200 Horizontal and Vertical Design Table of Contents 201 Sight Distance... 2-1 201.1 General... 2-1 201.2 Stopping Sight Distance... 2-1 201.2.1 Horizontal Sight Distance... 2-2 201.2.2 Vertical Stopping

More information

Section 4 Basic Geometric Design Elements

Section 4 Basic Geometric Design Elements 4.1 General Section 4 Basic Geometric Design Elements BDC07MR-01 Geometric highway design pertains to the visible features of the highway. It may be considered as the tailoring of the highway to the terrain,

More information

Geometric designs for Safe Highways. Dr. Manoj M. Asst. Professor Department of Civil Engineering IIT Delhi

Geometric designs for Safe Highways. Dr. Manoj M. Asst. Professor Department of Civil Engineering IIT Delhi Geometric designs for Safe Highways Dr. Manoj M. Asst. Professor Department of Civil Engineering IIT Delhi WORKSHOP-CUM-TRAINING PROGRAMME ON ROAD SAFETY 17th 21st September 2018 Outline Introduction Cross

More information

3-13 UFC - GENERAL PROVISIONS AND GEOMETRIC DESIGN FOR ROADS, STREETS, WALKS, AND OPEN

3-13 UFC - GENERAL PROVISIONS AND GEOMETRIC DESIGN FOR ROADS, STREETS, WALKS, AND OPEN maintenance, and erosion. Stability is required to maintain the integrity of the pavement structure, and a slope stability analysis should be conducted for cuts and fills greater than 15 feet. For lower

More information

Alberta Infrastructure HIGHWAY GEOMETRIC DESIGN GUIDE AUGUST 1999

Alberta Infrastructure HIGHWAY GEOMETRIC DESIGN GUIDE AUGUST 1999 Alberta Infrastructure HIGHWAY GEOMETRIC DESIGN GUIDE AUGUST 1999,1'(; A ACCELERATION Data on acceleration from stop D-29 Effects of grade D-35 Intersections D-97, D-99 Lanes D-97, F-5, F-7, F-15, F-21,

More information

SECTION 1A NEW JERSEY TURNPIKE GEOMETRIC DESIGN

SECTION 1A NEW JERSEY TURNPIKE GEOMETRIC DESIGN SECTION 1A NEW JERSEY TURNPIKE GEOMETRIC DESIGN Table of Contents Page No 1A.1 GENERAL...1 1A.1.1 DESIGN CONTROLS...1 1A.2 MAINLINE ROADWAYS...4 1A.2.1 ROADWAY DESIGNATION...4 1A.2.2 DESIGN SPEED...4 1A.2.3

More information

Chapter Twenty-eight SIGHT DISTANCE BUREAU OF LOCAL ROADS AND STREETS MANUAL

Chapter Twenty-eight SIGHT DISTANCE BUREAU OF LOCAL ROADS AND STREETS MANUAL Chapter Twenty-eight SIGHT DISTANCE BUREAU OF LOCAL ROADS AND STREETS MANUAL Jan 2006 SIGHT DISTANCE 28(i) Chapter Twenty-eight SIGHT DISTANCE Table of Contents Section Page 28-1 STOPPING SIGHT DISTANCE

More information

Figure 1: Graphical definitions of superelevation in terms for a two lane roadway.

Figure 1: Graphical definitions of superelevation in terms for a two lane roadway. Iowa Department of Transportation Office of Design Superelevation 2A-2 Design Manual Chapter 2 Alignments Originally Issued: 12-31-97 Revised: 12-10-10 Superelevation is the banking of the roadway along

More information

GDOT Elements of Design. Course ID: GDOT PDH Credits

GDOT Elements of Design. Course ID: GDOT PDH Credits GDOT Elements of Design Course ID: GDOT-06 3 PDH Credits Civil Engineer Educators LLC 1026 Timberwolf Lane Juneau, AK 99801 Email: support@civilpdh.com Chapter 4 Contents 4. ELEMENTS OF DESIGN 1 4.1. Sight

More information

By: CHE ROS ISMAIL PROF DR MOHD ROSLI HAININ DR HARYATI YAACOB DR SITTI ASMAH HASSAN JGP-FKA, UTM

By: CHE ROS ISMAIL PROF DR MOHD ROSLI HAININ DR HARYATI YAACOB DR SITTI ASMAH HASSAN JGP-FKA, UTM By: CHE ROS ISMAIL PROF DR MOHD ROSLI HAININ DR HARYATI YAACOB DR SITTI ASMAH HASSAN JGP-FKA, UTM CONTENT 1. INTRODUCTION 2. STAGES OF HIGHWAY DEVELOPMENT 3. ROAD CATEGORY/CLASSIFICATION 4. DESIGN STANDARDS

More information

Highway geometric design QUESTION PAPER

Highway geometric design QUESTION PAPER QUESTION PAPER UNIT 1 1. Explain the design control and criteria which governs the design and highway. ( Dec 2011, june july 2011, June 2010, Dec 2010, Dec 2012) 2.Explain PCU value and factors affecting

More information

ENGINEER S PRELIMINARY REPORT. for the #######-###### COLLISION

ENGINEER S PRELIMINARY REPORT. for the #######-###### COLLISION ENGINEER S PRELIMINARY REPORT for the #######-###### COLLISION By: Lance E. Robson, P.E. October 3, 2005 1 INVESTIGATION OF THE #######-###### COLLISION ENGINEER S PRELIMINARY REPORT October 3, 2005 ---------------------------------------------------------------------------------------------------------------

More information

October 2004 REVISIONS (2) SUPERELEVATION DEVELOPMENT 11.3(2)

October 2004 REVISIONS (2) SUPERELEVATION DEVELOPMENT 11.3(2) October 2004 REVISIONS (2) Chapter 11 HORIZONTAL ALIGNMENT SUPERELEVATION DEVELOPMENT 11.3(2) Chapter 12 VERTICAL ALIGNMENT VERTICAL CURVES PASSING SIGHT DISTANCE 12.5(2) VERTICAL CURVES STOPPING SIGHT

More information

TABLE OF CONTENTS LIST OF FIGURES. Figure Title

TABLE OF CONTENTS LIST OF FIGURES. Figure Title TABLE OF CONTENTS Table of Contents... 1 List of Figures... 1 Chapter Forty-two... 2 42-1.0 STOPPING SIGHT DISTANCE... 2 42-1.01 Theoretical Discussion...2 42-1.02 Passenger Car Stopping Sight Distance...

More information

Dr. Naveed Anwar Executive Director, AIT Consulting Affiliated Faculty, Structural Engineering Director, ACECOMS

Dr. Naveed Anwar Executive Director, AIT Consulting Affiliated Faculty, Structural Engineering Director, ACECOMS Dr. Naveed Anwar Executive Director, AIT Consulting Affiliated Faculty, Structural Engineering Director, ACECOMS Overview Highway Functions and Classifications Highway Design Components Design Control

More information

Progress Report on the Design and Planning of an Infrastructure Improvement Project for the Sunnyside TIF District (Phase II)

Progress Report on the Design and Planning of an Infrastructure Improvement Project for the Sunnyside TIF District (Phase II) Presentation to the CNRC Board of Directors Regular Meeting March 11, 2015 1 Agenda Preferred Alternate Refinement for University Avenue, 3rd Street, and Beverly Avenue Intersection Improvements validate

More information

This Chapter sets forth the minimum design, technical criteria and specifications to be used in the preparation of all roadway plans.

This Chapter sets forth the minimum design, technical criteria and specifications to be used in the preparation of all roadway plans. 4.1 GENERAL This Chapter sets forth the minimum design, technical criteria and specifications to be used in the preparation of all roadway plans. These Roadway Standards are for new construction and modification

More information

DESIGN BULLETIN #66/2010

DESIGN BULLETIN #66/2010 DESIGN BULLETIN #66/2010 Highway Geometric Design Guide Chapter B, Climbing Lane Warrants for Two Lane Undivided and Four Lane Divided Highways - Revised Summary This Design Bulletin is being issued as

More information

1.3.4 CHARACTERISTICS OF CLASSIFICATIONS

1.3.4 CHARACTERISTICS OF CLASSIFICATIONS Geometric Design Guide for Canadian Roads 1.3.4 CHARACTERISTICS OF CLASSIFICATIONS The principal characteristics of each of the six groups of road classifications are described by the following figure

More information

Roadway Vertical Alignments

Roadway Vertical Alignments Roadway Vertical Alignments by Gregory J. Taylor, P.E. INTRODUCTION This course summarizes and highlights the design of vertical alignments for modern roads and highways. The contents of this document

More information

Geometric design is the process whereby the layout of the road in the terrain is designed to meet the needs of the road users.

Geometric design is the process whereby the layout of the road in the terrain is designed to meet the needs of the road users. CHAPTER 3: GEOMETRIC DESIGN OF HIGHWAYS Geometric design is the process whereby the layout of the road in the terrain is designed to meet the needs of the road users. 3.1 Appropriate Geometric Standards

More information

Geometric design deals with the dimensioning of the elements of highways, such

Geometric design deals with the dimensioning of the elements of highways, such CHAPTER 15 Geometric Design of Highway Facilities Geometric design deals with the dimensioning of the elements of highways, such as vertical and horizontal curves, cross sections, truck climbing lanes,

More information

Road Design Guidelines for Low Impact to Hydrology *

Road Design Guidelines for Low Impact to Hydrology * Five Counties Salmonid Conservation Program P.O. Box 2819 Weaverville, CA 96093 (530) 623-1351 Ext. 5 FAX (530) 623-1353 email: mlancaster@trinitycounty.org Road Design Guidelines for Low Impact to Hydrology

More information

SIGHT DISTANCE GUIDELINES

SIGHT DISTANCE GUIDELINES SIGHT DISTANCE GUIDELINES According to the 2011 AASHTO, 2011 MMUTCD, and Michigan Department of Transportation Guidelines PREPARED BY GEOMETRICS AND OPERATIONS UNIT TRAFFIC AND SAFETY April 22, 2015 Providing

More information

Roadway Horizontal Alignment

Roadway Horizontal Alignment Roadway Horizontal Alignment Course No: C04-034 Credit: 4 PDH Gregory J. Taylor, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877)

More information

201 Sight Distance... 1

201 Sight Distance... 1 2 Horizontal and Vertical Design Table of Contents July 213 2.1 ntroduction...1 21 Sight Distance... 1 21.1 General...1 21.2 Stopping Sight Distance...1 21.2.1 Horizontal Sight Distance... 2 21.2.2 Vertical

More information

Chapter V TRAFFIC CONTROLS. Tewodros N.

Chapter V TRAFFIC CONTROLS. Tewodros N. Chapter V TRAFFIC CONTROLS www.tnigatu.wordpress.com tedynihe@gmail.com Lecture Overview Traffic markings Longitudinal markings Transverse markings Object markers and delineator Traffic signs Regulatory

More information

City of Roseville Section 13 Design Standards. _Bikeways January 2016 SECTION 13 BIKEWAYS

City of Roseville Section 13 Design Standards. _Bikeways January 2016 SECTION 13 BIKEWAYS SECTION 13 BIKEWAYS 13-1 GENERAL The City of Roseville bikeway standards are designed to insure that transportation and recreational bikeways are constructed in a manner that would provide a safe and comfortable

More information

Off-Road Facilities Part 1: Shared Use Path Design

Off-Road Facilities Part 1: Shared Use Path Design Off-Road Facilities Part 1: Shared Use Path Design Presentation by: Eric Mongelli, P.E. Tom Huber October 9, 2012 FOLLOW THE CONVERSATION ON TWITTER Toole Design Group is live tweeting this webinar @tooledesign

More information

Road Safety Audit training course. Motorways - safety issues of the motorway design

Road Safety Audit training course. Motorways - safety issues of the motorway design Road Safety Audit training course Motorways - safety issues of the motorway design Jesper Mertner, Road safety auditor, COWI A/S 1 ROAD SAFETY AUDITING COURSE Content 1. Safety 2. Cross sections 3. Horizontal

More information

Introduction to Roadway Design

Introduction to Roadway Design Chapter Introduction to Roadway Design 1 This chapter lays the foundation for the Roadway Design course. You examine the roadway design workflow and the completed drawing files and review the project scope,

More information

Roadway Vertical Alignments

Roadway Vertical Alignments Course No: C04-031 Credit: 4 PDH Gregory J. Taylor, P.E. Continuing Education and Development, Inc. 9 Greyridge Farm Court Stony Point, NY 10980 P: (877) 322-5800 F: (877) 322-4774 info@cedengineering.com

More information

Roadway Horizontal Alignment Design

Roadway Horizontal Alignment Design Roadway Horizontal Alignment Design by Gregory J. Taylor, P.E. INTRODUCTION This course summarizes and highlights the design of horizontal alignments for modern roads and highways. The contents of this

More information

ENGINEERING STANDARD FOR GEOMETRIC DESIGN OF ROADS AND STREETS ORIGINAL EDITION MAR. 1996

ENGINEERING STANDARD FOR GEOMETRIC DESIGN OF ROADS AND STREETS ORIGINAL EDITION MAR. 1996 ENGINEERING STANDARD FOR GEOMETRIC DESIGN OF ROADS AND STREETS ORIGINAL EDITION MAR. 1996 This standard specification is reviewed and updated by the relevant technical committee on Dec. 2000(1) and July.

More information

Figure 3B-1. Examples of Two-Lane, Two-Way Marking Applications

Figure 3B-1. Examples of Two-Lane, Two-Way Marking Applications Figure 3B-1. Examples of Two-Lane, Two-Way Marking Applications A - Typical two-lane, two-way marking with passing permitted in both directions B - Typical two-lane, two-way marking with no-passing zones

More information

FREEWAY WORK ZONE SPEED MODEL DOCUMENTATION

FREEWAY WORK ZONE SPEED MODEL DOCUMENTATION APPENDIX B FREEWAY WORK ZONE SPEED MODEL DOCUMENTATION B-1 APPENDIX B FREEWAY WORK ZONE SPEED MODEL DOCUMENTATION B.1 INTRODUCTION This software can be used for predicting the speed of vehicles traveling

More information

Design Criteria. Design Criteria

Design Criteria. Design Criteria F Design Criteria Design Criteria Ministry of Transportation Ministère des Transports DESIGN CRITERIA Page: 1 of 13 WORK PROJECT NO. N/A GO Bloomington Station TYPE OF PROJECT LOCATION Bloomington Road

More information

Tonight we will be discussing accidents

Tonight we will be discussing accidents Good evening PRAG members WELCOME BACK SAFETY ON HANA HIGHWAY NEAR PAIA Tonight we will be discussing accidents Safety is a Top Priority One of the top priority Goals and objectives of this project is

More information

Roadway Design Manual

Roadway Design Manual Roadway Design Manual Manual Notice Archive by Texas Department of Transportation (512) 302-2453 all rights reserved Manual Notice 2009-1 From: Manual: Mark A. Marek, P.E Roadway Design Manual Effective

More information

INDEX. Geometric Design Guide for Canadian Roads INDEX

INDEX. Geometric Design Guide for Canadian Roads INDEX Acceleration lane, see Lanes, Acceleration Access, 8.1 Access Management and Functional Classification 8.2 Access Management by Design Classification 8.3 Access Configuration 8.4 Building Set-Back Guidelines

More information

Geometric Design Tables

Geometric Design Tables Design Manual Chapter 5 - Roadway Design 5C - Geometric Design Criteria 5C-1 Geometric Design Tables A. General The following sections present two sets of design criteria tables - Preferred Roadway Elements

More information

MICHIGAN DESIGN MANUAL

MICHIGAN DESIGN MANUAL CHAPTER 3 INDEX ALIGNMENT AND GEOMETRICS 3.01 REFERENCES 3.02 DEFINITION OF TERMS 3.03 ALIGNMENT - GENERAL A. Horizontal Alignment B. Vertical Alignment C. Combined 3.03.01 Horizontal Alignment - Design

More information

IH 20 RANGER HILL PUBLIC MEETING

IH 20 RANGER HILL PUBLIC MEETING IH 20 RANGER HILL PUBLIC MEETING AUGUST 25, 2015 IH 20, Eastland County, TX CSJ 0007-06-084 IH 20 from 3.5 mi. East of LP 254 to SH 16 (Ranger Hill) August 25, 2015 Agenda Introductions Purpose of the

More information

Designing and Benchmarking Mine Roads for Safe and Efficient Haulage. Roger Thompson Alex Visser

Designing and Benchmarking Mine Roads for Safe and Efficient Haulage. Roger Thompson Alex Visser Designing and Benchmarking Mine Roads for Safe and Efficient Haulage Roger Thompson Alex Visser Departments of Mining and Civil & Bio-systems Engineering University of Pretoria, South Africa Aim of Presentation

More information

Friday, May 20, :46 PM Cambria N Armstrong Fw: Wolf Creek REV.pdf

Friday, May 20, :46 PM Cambria N Armstrong Fw: Wolf Creek REV.pdf David Johnson From: Sent: To: Cc: Subject: Attachments: Thomas Malecek Friday, May 20, 2011 12:46 PM david@westerneco.com Cambria N Armstrong Fw: Wolf Creek 05-16-11 REV.pdf David,

More information

Chapter III Geometric design of Highways. Tewodros N.

Chapter III Geometric design of Highways. Tewodros N. Chapter III Geometric design of Highways Tewodros N. www.tnigatu.wordpress.com tedynihe@gmail.com Introduction Appropriate Geometric Standards Design Controls and Criteria Design Class Sight Distance Design

More information

Off-road Trails. Guidance

Off-road Trails. Guidance Off-road Trails Off-road trails are shared use paths located on an independent alignment that provide two-way travel for people walking, bicycling, and other non-motorized users. Trails specifically along

More information

This update addresses several minor corrections and omissions in the English Road Design Manual (in dual units).

This update addresses several minor corrections and omissions in the English Road Design Manual (in dual units). DISTRIBUTION: 91 MINNESOTA DEPARTMENT OF TRANSPORTATION DEVELOPED BY: Design Standards ISSUED BY: Office of Technical Support Design Services Section TRANSMITTAL LETTER NO. (11-01) MANUAL: Road Design

More information

DESIGN MEMORANDUM WITH DESIGN EXCEPTIONS SP SP

DESIGN MEMORANDUM WITH DESIGN EXCEPTIONS SP SP DRAFT NOT FINAL (Note: document was not finalized due to an eastbound stopping site distance design issue that requires more detailed bridge and roadway design considerations. This discussion starts on

More information

Field Guide for Unpaved Rural Roads

Field Guide for Unpaved Rural Roads Field Guide for Unpaved Rural Roads Funded by the Federal Highway Administration Local Technical Assistance Program (LTAP) Developed by the Wyoming Technology Transfer (T2) Center, March 1997 Updated by

More information

The City of Sault Ste. Marie Cycling Master Plan

The City of Sault Ste. Marie Cycling Master Plan 4.0 DESIGN GUIDELINES - Development This section provides direction to those who will be constructing trails in the future. The contents are technical, providing facility types and locations, construction

More information

Sight Distance. The availability of sufficient sight distance for the driver to see ahead is critical to the design of a safe highway.

Sight Distance. The availability of sufficient sight distance for the driver to see ahead is critical to the design of a safe highway. Sigt Distance Te availability of sufficient sigt distance for te driver to see aead is critical to te design of a safe igway. Wat is sigt distance? Sigt distance is te lengt of igway visible to a driver.

More information

Alberta Highway 881. Corridor Management Plan. Session Forum 1 - Highways. Tri-Party Transportation Conference Moving Alberta Into the Future

Alberta Highway 881. Corridor Management Plan. Session Forum 1 - Highways. Tri-Party Transportation Conference Moving Alberta Into the Future Tri-Party Transportation Conference Moving Alberta Into the Future Alberta Highway 881 Corridor Management Plan Lac La Biche to Anzac Session Forum 1 - Highways March 2017 INTRODUCTION + 241 km long, 2

More information

T R A N S P O R T A T I O N M E M O R A N D U M

T R A N S P O R T A T I O N M E M O R A N D U M WILKINSON LLC t raffic engineering and t ransportation p lanning 3405 Harbor Way Fort Collins, CO 80524 phone: 970-988-0143 fax: 970-472-0223 martinawilkinson@msn.com T R A N S P O R T A T I O N M E M

More information

An International Experience on the Safety Performance of 2+1 cross-section. Basil Psarianos Nat l Techn. Univ. Athens, Greece

An International Experience on the Safety Performance of 2+1 cross-section. Basil Psarianos Nat l Techn. Univ. Athens, Greece An International Experience on the Safety Performance of 2+1 cross-section Basil Psarianos Nat l Techn. Univ. Athens, Greece bpsarian@mail.ntua.gr What is a 2+1 cross-section? It s a 3 lane rural road

More information

WYDOT DESIGN GUIDES. Guide for. Non-NHS State Highways

WYDOT DESIGN GUIDES. Guide for. Non-NHS State Highways WYDOT DESIGN GUIDES Guide for Non-NHS State Highways 2014 GUIDE FOR Non-NATIONAL HIGHWAY SYSTEM (Non-NHS) STATE HIGHWAYS PRESERVATION REHABILITATION RECONSTRUCTION INTRODUCTION This Guide is directed to

More information

Access Management Standards

Access Management Standards Access Management Standards Section 1: Application of Access Standards This chapter describes the Department's access management standards for access connections on the county roadway system. The standards

More information

Transportation Knowledge

Transportation Knowledge FE REVIEW COURSE SPRING 2017 Transportation Engineering 4/26/2017 Transportation Knowledge 8-12 problems Traffic safety Traffic capacity Traffic flow theory Traffic control devices Transportation planning

More information

Policy Statement. Objective. Context. References and Supporting Documentation

Policy Statement. Objective. Context. References and Supporting Documentation Policy Statement Subject Placement of Distribution Poles Along Roads With Speed Limits Not Exceeding 70km/h Approved by Robert Rogerson Signature & Date Distribution Standards and Policy Manager Authorised

More information

Truck Climbing Lane Traffic Justification Report

Truck Climbing Lane Traffic Justification Report ROUTE 7 (HARRY BYRD HIGHWAY) WESTBOUND FROM WEST MARKET STREET TO ROUTE 9 (CHARLES TOWN PIKE) Truck Climbing Lane Traffic Justification Report Project No. 6007-053-133, P 101 Ι UPC No. 58599 Prepared by:

More information

STATE HIGHWAY GEOMETRIC DESIGN MANUAL APPENDIX A: DESIGN CHECKLIST

STATE HIGHWAY GEOMETRIC DESIGN MANUAL APPENDIX A: DESIGN CHECKLIST STATE HIGHWAY GEOMETRIC DESIGN MANUAL A - 1 Appendix A: Design Checklist for the Development of Geometric Plans (For use in the Planning and Design of State Highway Improvement Projects) NOTES: 1. Design

More information

SECTION 12 ROAD MARKINGS AND DELINEATION

SECTION 12 ROAD MARKINGS AND DELINEATION SECTION 12 ROAD MARKINGS AND DELINEATION (Blank Page) MANUAL OF TRAFFIC SIGNS AND MARKINGS - Part III: Motorways and Expressways 12-1 12.1 GENERAL 12.1.1 INTRODUCTION The markings and delineation details

More information

Paul Huston, P.E., Design-Build Coordinator Chuck Gonderinger, HDR Engineering. Minnesota Department of Transportation (the Department)

Paul Huston, P.E., Design-Build Coordinator Chuck Gonderinger, HDR Engineering. Minnesota Department of Transportation (the Department) To: From: Paul Huston, P.E., Design-Build Coordinator Chuck Gonderinger, HDR Engineering Date: March 20, 2001 Subject: Roadway Geometric Design Criteria Project: TH 14/218 Design-Build Project, SP 7408-29,

More information

How Might Connected Vehicles and Autonomous Vehicles Influence Geometric Design? October 10, 2017

How Might Connected Vehicles and Autonomous Vehicles Influence Geometric Design? October 10, 2017 How Might Connected Vehicles and Autonomous Vehicles Influence Geometric Design? October 10, 2017 Overview Design Vehicle Design Driver Potential Geometric Impacts of Autonomous Vehicles Connected Vehicles

More information

(HIGHWAY GEOMETRIC DESIGN -1)

(HIGHWAY GEOMETRIC DESIGN -1) LECTURE HOUR-19 TE-1(10CV56) UNIT-3 (HIGHWAY GEOMETRIC DESIGN -1) Width of carriage way: Width of the carriage way or the width of the pavement depends on the width of the traffic lane and number of lanes.

More information

Review of Guidelines for Cycleway Safety Fencing

Review of Guidelines for Cycleway Safety Fencing Review of Guidelines for Cycleway 1.0 PURPOSE 1.1 This document is meant to provide a review of available reference documents for determining appropriate fencing requirements for cycleway paths and shared

More information

To position power poles a safe distance from the road to minimise the likelihood of being accidentally hit by vehicles.

To position power poles a safe distance from the road to minimise the likelihood of being accidentally hit by vehicles. Policy Statement Subject Placement of Rigid Distribution Poles Along Roads With Speed Limits Exceeding 70KM/H Approved by Robert Rogerson Signature & Date Distribution Standards and Policy Manager Authorised

More information

DISTRIBUTION: Electronic Recipients List TRANSMITTAL LETTER NO. (17-01) MINNESOTA DEPARTMENT OF TRANSPORTATION. MANUAL: Road Design English Manual

DISTRIBUTION: Electronic Recipients List TRANSMITTAL LETTER NO. (17-01) MINNESOTA DEPARTMENT OF TRANSPORTATION. MANUAL: Road Design English Manual DISTRIBUTION: Electronic Recipients List MINNESOTA DEPARTMENT OF TRANSPORTATION DEVELOPED BY: Design Standards Unit ISSUED BY: Office of Project Management and Technical Support TRANSMITTAL LETTER NO.

More information

INTERSECTIONS AT GRADE INTERSECTIONS

INTERSECTIONS AT GRADE INTERSECTIONS INTERSECTIONS 1 AT GRADE INTERSECTIONS INTERSECTIONS INTERSECTIONS = INTERRUPTED FACILITIES Definitions and key elements An intersection is defined as an area where two or more roadways join or cross.

More information

Module 5: Navigating Roadways

Module 5: Navigating Roadways Module 5: Navigating Roadways Topic 1: Intersections 1. One out of FATAL crashes occur at intersections. 2. Label the intersection warning signs: 3. When possible, begin searching seconds ahead of the

More information

September 2008 REVISIONS (1) SYMMETRICAL VERTICAL CURVE EQUATIONS 12.5(12) VERTICAL CURVE COMPUTATIONS 12.5(14) TURNING LANE LENGTHS 15.

September 2008 REVISIONS (1) SYMMETRICAL VERTICAL CURVE EQUATIONS 12.5(12) VERTICAL CURVE COMPUTATIONS 12.5(14) TURNING LANE LENGTHS 15. September 2008 REVISIONS (1) CHAPTER 12 VERTICAL ALIGNMENTS SYMMETRICAL VERTICAL CURVE EQUATIONS 12.5(12) VERTICAL CURVE COMPUTATIONS 12.5(14) CHAPTER 15 INTERSECTIONS TURNING LANE LENGTHS 15.5(10) CHAPTER

More information

ADA Training Standard Plans

ADA Training Standard Plans ADA Training Standard Plans SCREEN READABLE VERSION IS IN THE MAKING AND WILL BE MADE AVAILABLE SOON 2018 MnDOT 2 Standard Plans 2017 Overview Overview PROWAG and Curb Ramp Basics Curb Ramp Types ADA Curb

More information

WYDOT DESIGN GUIDES. Guide for. NHS Arterial (Non-Interstate)

WYDOT DESIGN GUIDES. Guide for. NHS Arterial (Non-Interstate) WYDOT DESIGN GUIDES Guide for NHS Arterial (Non-Interstate) 2014 GUIDE FOR NATIONAL HIGHWAY SYSTEM (NHS) HIGHWAYS (NHS ARTERIALS, Non-Interstate) PRESERVATION REHABILITATION RECONSTRUCTION INTRODUCTION

More information

Non-Motorized Overpass at SR 5/US1

Non-Motorized Overpass at SR 5/US1 Non-Motorized Overpass at SR 5/US1 And SR 97/SW th Street (Bird Road) Executive Summary March 9, 17 Prepared By: MARLIN Engineering Inc 17 NW th Avenue, Ste. 1 Plantation, FL 33313 P: 35.77.7575 www.marlinengineering.com

More information

THE FUTURE OF THE TxDOT ROADWAY DESIGN MANUAL

THE FUTURE OF THE TxDOT ROADWAY DESIGN MANUAL THE FUTURE OF THE TXDOT ROADWAY DESIGN MANUAL Kenneth Mora, P.E. (Design Division) 10/10/2017 Table of contents 1 2 Reduction in FHWA design controlling criteria Innovative Intersection Guidance 3-7 8-42

More information

Driveway Design Criteria

Driveway Design Criteria Design Manual Chapter 5 - Roadway Design 5L - Access Management 5L-4 Driveway Design Criteria A. General For efficient and safe operations, access drives and minor public street intersections can be improved

More information

Parks Highway: MP Lucus Road to Big Lake Road

Parks Highway: MP Lucus Road to Big Lake Road 2 Purpose and Need 2.1 Corridor History The Parks Highway is a 324-mile long Rural Interstate Highway that extends from its intersection with the Glenn Highway north to Fairbanks, Alaska. The Parks Highway

More information

Bridge Design Preliminary Bridge Design Example 1 / 6 Spring 2012 updated 1/27/2012

Bridge Design Preliminary Bridge Design Example 1 / 6 Spring 2012 updated 1/27/2012 Bridge Design Preliminary Bridge Design Example 1 / 6 Perform a preliminary design for a bridge on a state highway over a large creek in rural Alabama. Produce a construction layout drawing showing profile

More information

RURAL HIGHWAY SHOULDERS THAT ACCOMMODATE BICYCLE AND PEDESTRIAN USE (TxDOT Project ) June 7, Presented by: Karen Dixon, Ph.D., P.E.

RURAL HIGHWAY SHOULDERS THAT ACCOMMODATE BICYCLE AND PEDESTRIAN USE (TxDOT Project ) June 7, Presented by: Karen Dixon, Ph.D., P.E. RURAL HIGHWAY SHOULDERS THAT ACCOMMODATE BICYCLE AND PEDESTRIAN USE (TxDOT Project 0-6840) June 7, 2016 Presented by: Karen Dixon, Ph.D., P.E., TTI Team: Kay Fitzpatrick, Raul Avelar, & Subasish Das Project

More information

FOR HISTORICAL REFERENCE ONLY

FOR HISTORICAL REFERENCE ONLY To: From: Subject: Electronic Distribution Recipients MINNESOTA DEPARTMENT OF TRANSPORTATION Engineering Services Division Technical Memorandum No. 12-14-B-03 December 18, 2012 Jon M. Chiglo, P.E. Division

More information

* BLACK TRIANGLES Correct Answer. * RED TRIANGLES Red / blue circles. * BLUE RECTANGLES Explanation

* BLACK TRIANGLES Correct Answer. * RED TRIANGLES Red / blue circles. * BLUE RECTANGLES Explanation 1 YOU MUST OBEY SIGNS GIVING ORDERS. THESE SIGNS ARE MOSTLY IN * BLACK TRIANGLES Correct Answer * RED TRIANGLES Red / blue circles. * BLUE RECTANGLES Explanation * RED / BLUE CIRCLES Traffic signs can

More information

Design of Turn Lane Guidelines

Design of Turn Lane Guidelines Design of Turn Lane Guidelines CTS Transportation Research Conference May 24, 2012 Howard Preston, PE Minnesota Department of Transportation Research Services Office of Policy Analysis, Research & Innovation

More information

ADJUSTING TO, FOLLOWING, AND MEETING URBAN TRAFFIC

ADJUSTING TO, FOLLOWING, AND MEETING URBAN TRAFFIC Lesson 4 Student Notes 1 ADJUSTING TO, FOLLOWING, AND MEETING URBAN TRAFFIC 1. What two main factors make city driving difficult? There are more cars, buses, trucks, and pedestrians per mile. City hazards

More information

Rural design meeting Oslo, 2011

Rural design meeting Oslo, 2011 Rural design meeting Oslo, 2011 Randi Eggen Norwegian Public Road Administration (NPRA) Traffic Safety, Environment and Technology Department Section: Transport Planning Participants Germany: Netherlands:

More information

CHAPTER 1 STANDARD PRACTICES

CHAPTER 1 STANDARD PRACTICES CHAPTER 1 STANDARD PRACTICES OBJECTIVES 1) Functions and Limitations 2) Standardization of Application 3) Materials 4) Colors 5) Widths and Patterns of Longitudinal Pavement Marking Lines 6) General Principles

More information

GEOMETRIC DESIGN STANDARDS FOR NEW RESIDENTIAL SUBDIVISION STREETS TABLE 1A CG-6 CURB AND GUTTER SECTION

GEOMETRIC DESIGN STANDARDS FOR NEW RESIDENTIAL SUBDIVISION STREETS TABLE 1A CG-6 CURB AND GUTTER SECTION TABLE 1A CG-6 CURB AND GUTTER SECTION HORIZONTAL AND VERTICAL CONTROLS CURB AND GUTTER ROADWAYS MAXIMUM 3:1 CUT OR FILL SLOPE CURVE DATA MIN. SIGHT DISTANCE PROJECTED TRAFFIC VOLUME (ADT) MIN. DESIGN SPEED

More information

PERFORMANCE ACTIVITY 306 DRAINAGE PIPE WORK DESCRIPTION 4

PERFORMANCE ACTIVITY 306 DRAINAGE PIPE WORK DESCRIPTION 4 PERFORMANCE ACTIVITY 306 DRAINAGE PIPE WORK DESCRIPTION 1 WORK DESCRIPTION 2 WORK DESCRIPTION 3 WORK DESCRIPTION 4 Repair Install Remove Clean 306 DRAINAGE PIPE ACTIVITY DESCRIPTION Install, repair, clean,

More information

APPENDIX A SECTION A-1-GEOMETRIC DESIGN STANDARDS

APPENDIX A SECTION A-1-GEOMETRIC DESIGN STANDARDS APPENDIX A SECTION A-1-GEOMETRIC DESIGN STANDARDS Introduction... A-1 Flexibility In Design... A-1 Secondary Project Improvements... A-2 Roadway Width... A-3 Design Speed (V)... A-3 Operating Speed...

More information

AGENDA REPORT. Issue: Discussion of potential improvements on Barnwell Road at Niblick Drive

AGENDA REPORT. Issue: Discussion of potential improvements on Barnwell Road at Niblick Drive AGENDA REPORT To: From: By: Honorable Mayor and City Council Members Warren Hutmacher, City Manager Tom Black, Public Works Director Date: March 23, 2016 Agenda: March 28, 2016 WORK SESSION AGENDA: Barnwell

More information

Field guide for Accessible Public Rights-of-Way Edition

Field guide for Accessible Public Rights-of-Way Edition Field guide for Accessible Public Rights-of-Way 2017 Edition CONTENTS PEDESTRIAN FACILITIES IN THE PUBLIC RIGHT-OF-WAY Pedestrian access routes 3 Components 3 Continuous width 3 Median and pedestrian refuge

More information

DETECTABLE WARNING SURFACES SHALL BE PROVIDED AT THE FOLLOWING LOCATIONS ON PEDESTRIAN ACCESS ROUTES:

DETECTABLE WARNING SURFACES SHALL BE PROVIDED AT THE FOLLOWING LOCATIONS ON PEDESTRIAN ACCESS ROUTES: GENERAL NOTES: CURB NOTES: 5'-0" MIN 5'-0" 5'-0" MIN 1. 2. THESE SHEETS ARE IN ACCORDANCE WITH THE AMERICANS WITH DISABILITIES ACT (ADA), AND THE REQUIREMENTS OF THE 2011 PROPOSED ACCESSIBILITY GUIDELINES

More information

SECTION A-1-GEOMETRIC DESIGN STANDARDS

SECTION A-1-GEOMETRIC DESIGN STANDARDS APPENDIX A SECTION A-1-GEOMETRIC DESIGN STANDARDS Introduction... A-1 Flexibility In Design... A-1 Secondary Project Improvements... A-2 Roadway Width... A-3 Design Speed (V)... A-3 Operating Speed...

More information

SECTION A-1-GEOMETRIC DESIGN STANDARDS

SECTION A-1-GEOMETRIC DESIGN STANDARDS APPENDIX A SECTION A-1-GEOMETRIC DESIGN STANDARDS Introduction... A-1 Flexibility In Design... A-1 Secondary Project Improvements... A-2 Roadway Width... A-3 Design Speed (V)... A-3 Operating Speed...

More information

Signs. signs, signals and road markings. in this chapter

Signs. signs, signals and road markings. in this chapter 3 signs, signals and road markings in this chapter Signs regulatory signs school, playground and crosswalk signs lane use signs turn control signs parking signs reserved lane signs warning signs object

More information

Chapter 14 Challenging Driving Conditions

Chapter 14 Challenging Driving Conditions Chapter 14 Challenging Driving Conditions 14-1 REDUCED VISIBILITY A. Complete each of the following sentences by writing the correct word or phrase in the space provided. 1. percent of a driver s ability

More information

Road Safety Facilities Implemented in Japan

Road Safety Facilities Implemented in Japan Road Safety Facilities Implemented in Japan 1 Road Safety Facilities 1.Guard Fence 2.Road Lighting 3.Other Road Safety Facilities 2 Road Safety Facilities 1.Guard Fence 2.Road Lighting 3.Other Road Safety

More information

Roadway Design Manual

Roadway Design Manual Roadway Design Manual Revised December 2013 2013 by Texas Department of Transportation (512) 302-2453 all rights reserved Manual Notice 2013-1 From: Manual: Mark A. Marek, P.E Roadway Design Manual Effective

More information