SAND BOTTOM EROSION AND CHANGES OF AN ACTIVE LAYER THICKNESS IN THE SURF ZONE OF THE NORDERNEY ISLAND

Size: px
Start display at page:

Download "SAND BOTTOM EROSION AND CHANGES OF AN ACTIVE LAYER THICKNESS IN THE SURF ZONE OF THE NORDERNEY ISLAND"

Transcription

1 SAND BOTTOM EROSION AND CHANGES OF AN ACTIVE LAYER THICKNESS IN THE SURF ZONE OF THE NORDERNEY ISLAND Kos'yan R. 1, Kunz H. 2, Podymov l. 3 1 Prof.Dr.,The Southern Branch of the P.P.Shirshov Institute of Oceanology, Russian Academy of Sciences Gelendzhik-7, Russia. Fax kosyan@sdios.sea.ru 2 Prof.Dr., Coastal Research Station of the Lower Saxonian Central Stat Board for Ecology. An der Muehle 5, D Norderney. Germany. Fax kunz.crs@t-online.de 3 Dr., The Southern Branch of the P.P.Shirshov Institute of Oceanology, Russian Academy of Sciences Gelendzhik-7, Russia. Fax ipodymov@inbox.ru Abstract On the basis of a field experiment "Norderney-94" there are examined peculiarities of bottom deformations in the wave breaking zone, when there is a modulation of wind waves under the influence of tidal processes. Introduction Sediment transport in tideless seas depends mainly on wind waves and wave-induced currents in the surf zone. In tidal conditions water level and currents effect considerably on the sediment transport too. Direction and intensity of cross-shore and longshore sediment transport depends on the current velocity, which usually is presented as a vector sum of time-mean current velocity depending on wind waves and periodic component of a tidal current. Near the shore in the surf zone velocity of tidal currents is usually few centimeters per a second. The net sediment transport depends basically on longshore currents and timemean currents in the cross-shore direction. On the other hand the tidal water level oscillations result in displacing of the surf zone in the course of storm, changing of both kinds of velocity and draining of a part of the profile with the tidal periodicity. These factors determines the final bottom deformations along the submerged slope profile. In this paper on the basis of field data there are examined peculiarities of the bottom relief deformations during the storm under changing water level and wind wave modulation with the frequency of tidal oscillations in the nearshore zone in the northwestern part of the Norderney Island. Instrumentation and measurements Investigations of bottom deformations were fulfilled in October, 1994 on the beach section situated on the north-western coast of the Norderney Island in the North Sea (Figure 1a, 1b). A beach profile relative to a mean annual water level (MAWL), disposition of measuring points on it and measuring instrument are given in Figure 2. Special steel pins with mobile plates placed in 15 points of submerged slope were used for the determination of bottom deformations and thickness of an active sedimentary layer averaged for 24 hours (2 tidal cycles) (Figure 2). Sand level gauges were used to research high-frequency fluctuations of the bottom level (Podymov, Kos'yan, 1997; Kos'yan, Kunz, Podymov, 1995).They were installed in three points within a drained part of profile (Figure 2). A general view of the sand level gauge is presented in Figure 3. Kos'yan R., Kunz H., Podymov I. 189

2 Figure 1a. Site of the field experiment. m1c Groin Е1 m1b g1 O1 m1a O2 2.0 Groin D1 W1 W2 W3 m1 m2 m3 O3 EMBANKMENT Figure 1b. Bottom topography at the area of measuring in the beginning of the experiment. Kos'yan R., Kunz H., Podymov I. 190

3 Synchronously with the measuring of the bottom level fluctuations in the same points there were recorded longshore and cross-shore velocities, free surface elevations and suspended sediment concentration. There were used, successively, electromagnetic current meters, pressure gauges and optical turbidimeters (Kos'yan et al., 1994). 34 series of recording were done during the experiment. The duration of every recording was 90 minutes with sampling rate being 2 Hz Distance from the MAWL, m bottom profile steel pins with mobile plates pressure gauges sand level gauges electromagnetic current meters optical turbidimeters Cross-shore distance, m Figure 2. A scheme of positioning of measuring devices at the testing site. Figure 3. Sand level gauge. Kos'yan R., Kunz H., Podymov I. 191

4 Measurements were fulfilled on a sandy beach where a mean diameter of particles was 0.21 mm. Grain size distribution of sand in the measuring point, where the sand level gauge was used, is given in Figure 4. % Norderney beach sand Dmean=0.212mm ϕ d, mm Figure 4. Grain-size distribution for Norderney beach sands. Wave conditions Measuring was performed during two storms from September, 25 to October, 07. The main part of measurements was done during the second storm lasting from the 3rd to 7th of October, when wind waves with the period, being 7-12 sec., were approaching the shore at a small angle from the north-north-west. Figure 5d shows a change of the wave height averaged for 15 minute intervals in the point where the depth was 5 m relative to MAWL. Measurements were carried out during the second storm. Wave height modulation with the period close to tidal one is vividly traced on the diagram. The largest wave height (about 1.3 m) was observed during the high tide. During the ebb the wave height reduced roughly half and was m. So strongly pronounced influence of tidal oscillations upon the height of wind waves approaching the beach can be explained by the presence of a shoal at the distance of one kilometer from the shore. There the first wave breaking takes place. Then, when going to the shore, the wave height undergoes an additional transformation. After the fall the wave height becomes roughly equal to the depth above the shoal. Therefore in the surf zone there were observed the changes of the wave height proportional to the change of the tidal water level, that determined the water depth above the shoal. Kos'yan R., Kunz H., Podymov I. 192

5 Active bottom layer thickness, m September - October Sep 1-Oct 2-Oct 3-Oct 4-Oct 5-Oct 6-Oct 7-Oct a Distance from the MSL, m b m1a Tide level, m Mean wave height, m d Sep 1-Oct 2-Oct 3-Oct 4-Oct 5-Oct 6-Oct 7-Oct Figure 5. Fluctuations of an active layer thickness ( a ), bottom level ( b ), tidal level ( c ) and a mean wave height ( d ) in the course of storm. c Results Fluctuations of an active layer thickness, bottom level, tidal level and a mean wave height in the course of storm, measured in the point m1a are presented in Figure 5. Blue lines in the upper part of the diagram show the fluctuations of the thickness of an active layer, which have been measured with the help of mobile plates. Red dashed line demonstrates bottom level changes measured on pins, and brown line presents a process of Kos'yan R., Kunz H., Podymov I. 193

6 continuous bottom level fluctuations during the storm according to the data obtained with the help of sand level gauge. Middle and low diagrams show the changes of water tidal level and wave height, successively, measured in the point where the depth was 5 m relative to MAWL. There are vividly seen bottom level fluctuations with amplitude being 5-8 cm and with frequency of tidal oscillations. A local erosion of the bottom is timed to the phase of a high water and the accumulation - to the phase of low water. The analysis of these data has shown that local maxima of the washout takes place minutes later the maximum level of tide. This interval increases to minutes during the storm attenuation. Local erosion of the bottom during a high tide is caused by an intensive suspension and offshore sediment transport. The data on suspended sediment discharge during these periods in the measuring points indicate this (Kos'yan et al., 1996). In Figure 5 there are also seen separate fluctuations of the bottom level with the amplitude of 1 cm. They are not of periodic character and most likely are connected with local short changes of the wind wave regime in the periods of high and low water. Cross-shore distance, m Time, hours Figure 6a. Isolines of the bottom deformation along the submerged slope on the central line during the experiment. Kos'yan R., Kunz H., Podymov I. 194

7 Figure 6a shows isolines of bottom deformations along the drained part of submerged slope in the course of the experiment obtained according to measuring data of benchmark pins during the ebb. Here the distance from the shore is given on the Y-axis, and the time of the measuring start - on the abscissa axis. Negative values mean the bottom erosion, and positive ones - its accretion. Figure 6b demonstrates three-dimensional drawing of the bottom deformations along drained part of submerged slope during the whole experiment, but the bottom view is given from the sea side Figure 6b. Three-dimensional drawing of the bottom deformations along drained part of submerged slope during the whole experiment (bottom view is given from the sea side). The same deformations as the thickness of an active layer are presented in Figures 7a,b. Maximum 24 hour deformations of the bottom within 100 m far from the coastline, being cm were recorded on September, (during the first storm) and on October, 4-5 (during the second storm), when the height of approaching waves was the largest one. The bottom erosion prevailed during the whole period of observations. A short period of sediment accumulation took place only during the phase of the storm damping. A maximum thickness of an active layer during the first storm was 33 cm at the distance of m from the shore (Figure 7a). During the second storm high values of an active Kos'yan R., Kunz H., Podymov I. 195

8 layer thickness (up to 35 cm) prevailed along the whole length of the profile. As a rule, an active layer thickness exceeded absolute values of bottom deformations. Cross-shore distance, m Time, hours Figure 7a. Isolines of the active layer thickness along the submerged slope on the central line during the experiment. Kos'yan R., Kunz H., Podymov I. 196

9 Figure 7b. Three-dimensional drawing of the active layer thickness along the submerged slope on the central line during the whole experiment (bottom view is given from the sea side). A comparison of the beach profiles measured before the experiment and after the second storm is shown in Figure 8. Figure 9 shows diagrams of the bottom profile before the second storm (October, 3-7) and after it. A resultant bottom erosion near the coastline was cm and it reduced gradually to 1-3 cm in the offshore part of the profile. At the average, during two storms the bottom level along the profile reduced for cm. Sediments are transported from the erodible zone offshore, outside the boundary of the wave breaking, and there their accumulation is observed. In tideless seas with fine sandy bottom and a small inclination of relief there are secondary bars behind the boundary of the wave breaking. They appear when the wave height is 1 m. On the observed profiles of the Norderney test-ground submerged bar was absent. Most likely, this is connected with the migration of the surf zone boundary owing to water level fluctuations and height modulation of waves approaching the shore with the periodicity of 12 hours. Kos'yan R., Kunz H., Podymov I. 197

10 Depth from the MAWL, m MAWL Cross-shore distance, m Figure 8. Profiles of the submerged slope relative to a mean national level at the beginning and at the end of the experiment. Depth from the MAWL, m beginning beach profile beach profile after the storm MAWL Cross-shore distance, m Figure 9. The diagrams of the bottom profile before the second storm (October, 3-7) and after it. Conclusion Obtained data show that in conditions of modulation of the height of waves approaching the shore with frequency of tidal change of level, the bottom erosion during the storm prevails on the drained part of the beach profile. Most likely, the prevalence of bottom erosion depends on migration of the boundary of wave breaking zone owing to modulation of height of waves approaching the shore with tidal cycles. In its turn, such boundary migration promotes intensive outflow of water with suspended sediments offshore. The process of an intensive erosion and suspended sediment drift is typical for the wave breaking zone. Maximum bottom deformations are timed to the periods of Kos'yan R., Kunz H., Podymov I. 198

11 influence of the highest waves during the storm. During the period of tidal cycles they were not larger than cm. The largest thickness of an active sedimentary layer, being 35 cm, was observed during the same time intervals. Measurements with the help of sand level gauges have shown in some points of the beach profile the bottom level fluctuations with a tidal frequency and amplitude being 5-8 cm, and high-frequency fluctuations with amplitude of 1 cm with non-pronounced periodicity. References Kos'yan R., Kunz H., Podymov I. (1995). Employment of electronic sand level gauges for measurements of beach slope deformation on Norderney island. Proc. of the Second International Conference "Coastal Dynamics'95". ASCE, New York. P Kos'yan R., Kuznetsov S., Podymov I., Pushkarev O., Pykhov N., Grishin N., Harizomenov D. (1994). Nearshore suspended sediment concentration measuring during storm. Proc. of the Second International Symposium "LITTORAL'94", v.1. Lisbon, Portugal. P Kos'yan R., Kunz H., Kuznetsov S., Pykhov N. (1996). Suspended sediment transport in the surf zone of the Norderney island. Proc. of the Second International Conference on Hydrodynamics. Hong Kong. P Kunz H., Kos'yan R. (1997). German-Russian nearshore dynamics experiment on Norderney island. Proc. of MEDCOAST'97. Podymov I., Kos'yan R. (1997). Sand level gauge. Patent on Invention of the Russian Federation # (in Russian). Kos'yan R., Kunz H., Podymov I. 199

LAB: WHERE S THE BEACH

LAB: WHERE S THE BEACH Name: LAB: WHERE S THE BEACH Introduction When you build a sandcastle on the beach, you don't expect it to last forever. You spread out your towel to sunbathe, but you know you can't stay in the same spot

More information

Nearshore Placed Mound Physical Model Experiment

Nearshore Placed Mound Physical Model Experiment Nearshore Placed Mound Physical Model Experiment PURPOSE: This technical note describes the migration and dispersion of a nearshore mound subjected to waves in a physical model. The summary includes recommendations

More information

Concepts & Phenomena

Concepts & Phenomena Concepts & Phenomena in coastal and port sedimentation R. Kamalian Ports and Maritime Organization of Iran and PIANC-Iran 7 9 December 2015 What is the problem? Many harbours have sedimentation problems

More information

OECS Regional Engineering Workshop September 29 October 3, 2014

OECS Regional Engineering Workshop September 29 October 3, 2014 B E A C H E S. M A R I N A S. D E S I G N. C O N S T R U C T I O N. OECS Regional Engineering Workshop September 29 October 3, 2014 Coastal Erosion and Sea Defense: Introduction to Coastal Dynamics David

More information

Evaluation of the function of Vertical drains.

Evaluation of the function of Vertical drains. International Coastal Symposium ICS2007 Gold Coast Australia. C. Brøgger and P. Jakobsen SIC Skagen Innovation Center Skagen 9990 Denmark sic@shore.dk SIC Skagen Innovation Center Skagen 9990 Denmark sic@shore.dk

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Nearshore Circulation Undertow and Rip Cells Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay

More information

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS Tsanis, I.K., Saied, U.M., Valavanis V. Department of Environmental Engineering, Technical University of Crete, Chania,

More information

Undertow - Zonation of Flow in Broken Wave Bores

Undertow - Zonation of Flow in Broken Wave Bores Lecture 22 Nearshore Circulation Undertow - Zonation of Flow in Broken Wave Bores In the wave breaking process, the landward transfer of water, associated with bore and surface roller decay within the

More information

Artificial Beach Nourishment: Lessons learned from Field Experiments Hans Kunz

Artificial Beach Nourishment: Lessons learned from Field Experiments Hans Kunz Artificial Beach Nourishment: Lessons learned from Field Experiments Hans Kunz International Conference Development of Artificial Lands on Shores, Near-Shore and Off-Shore Zones Novosibirsk, Russia, July

More information

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS

PARAMETRIZATION OF WAVE TRANSFORMATION ABOVE SUBMERGED BAR BASED ON PHYSICAL AND NUMERICAL TESTS Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College The Shoreline A Dynamic Interface The shoreline is a dynamic interface (common boundary) among air, land, and the ocean. The shoreline

More information

Variation in Beach Profile and Sediment Characteristics at Popham Beach, Phippsburg, ME

Variation in Beach Profile and Sediment Characteristics at Popham Beach, Phippsburg, ME Colby College Digital Commons @ Colby Undergraduate Research Symposium Student Research 2006 Variation in Beach Profile and Sediment Characteristics at Popham Beach, Phippsburg, ME Kathryn Lidington Colby

More information

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET

PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET PROPAGATION OF LONG-PERIOD WAVES INTO AN ESTUARY THROUGH A NARROW INLET Takumi Okabe, Shin-ichi Aoki and Shigeru Kato Department of Civil Engineering Toyohashi University of Technology Toyohashi, Aichi,

More information

CROSS-SHORE SEDIMENT PROCESSES

CROSS-SHORE SEDIMENT PROCESSES The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL DEFENSE SYSTEMS I CHAPTER

More information

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches Ocean Waves Capillary Wind generated Gravity Tides Tsunamis Seiches Capillary waves are driven by the surface tension produced by electrically polarized water molecule San Pedro Lighthouse Waves are alternate

More information

Reading Material. Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall

Reading Material. Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall Reading Material Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall BEACH PROCESSES AND COASTAL ENVIRONMENTS COASTAL FEATURES Cross section Map view Terminology for Coastal

More information

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 15 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Chapter 10 Lecture Outline. The Restless Oceans

Chapter 10 Lecture Outline. The Restless Oceans Chapter 10 Lecture Outline The Restless Oceans Focus Question 10.1 How does the Coriolis effect influence ocean currents? The Ocean s Surface Circulation Ocean currents Masses of water that flow from one

More information

The construction of Deepwater Navigation Channel (DNC) in the Bystry arm of the Danube Delta has started in The whole project provides the

The construction of Deepwater Navigation Channel (DNC) in the Bystry arm of the Danube Delta has started in The whole project provides the Annex 45 Numerical Studies of Waves, Currents and Sediment Transport at the Marine Part of Deepwater Navigation Channel through the Bystry Arm of the Danube Delta and Model Verification based on Laboratory

More information

LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709

LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709 F-4 Fourth International Conference on Scour and Erosion 2008 LOCALLY CONCENTRATED SEVERE BEACH EROSION ON SEISHO COAST CAUSED BY TYPHOON T0709 Yoshimitsu TAJIMA 1 and Shinji SATO 2 1 Member of JSCE, Associate

More information

EROSION MECHANICS OF A CARBONATE- TOMBOLO BEACH IN MIYAKOJIMA ISLAND, OKINAWA PREFECTURE, JAPAN.

EROSION MECHANICS OF A CARBONATE- TOMBOLO BEACH IN MIYAKOJIMA ISLAND, OKINAWA PREFECTURE, JAPAN. EROSION MECHANICS OF A CARBONATE- TOMBOLO BEACH IN MIYAKOJIMA ISLAND, OKINAWA PREFECTURE, JAPAN. Ryuichiro NISHI 1, Takaaki UDA 2, Akio KIKUCHI 3 and Kou FURUIKE 4 1) Associate Prof. Dept. of Ocean Civil

More information

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide.

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide. The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg and Roger Flood School of Marine and Atmospheric Sciences, Stony Brook University Since the last report was issued on January 31

More information

Physical Modeling of Nearshore Placed Dredged Material Rusty Permenter, Ernie Smith, Michael C. Mohr, Shanon Chader

Physical Modeling of Nearshore Placed Dredged Material Rusty Permenter, Ernie Smith, Michael C. Mohr, Shanon Chader Physical Modeling of Nearshore Placed Dredged Material Rusty Permenter, Ernie Smith, Michael C. Mohr, Shanon Chader Research Hydraulic Engineer ERDC-Coastal Hydraulics Laboratory October 25,2012 Study

More information

Wave Breaking and Wave Setup of Artificial Reef with Inclined Crown Keisuke Murakami 1 and Daisuke Maki 2

Wave Breaking and Wave Setup of Artificial Reef with Inclined Crown Keisuke Murakami 1 and Daisuke Maki 2 Wave Breaking and Wave Setup of Artificial Reef with Inclined Crown Keisuke Murakami 1 and Daisuke Maki 2 Beach protection facilities are sometimes required to harmonize with coastal environments and utilizations.

More information

OCEAN WAVES NAME. I. Introduction

OCEAN WAVES NAME. I. Introduction NAME OCEAN WAVES I. Introduction The physical definition of a wave is a disturbance that transmits energy from one place to another. In the open ocean waves are formed when wis blowing across the water

More information

Imagine that you can see a side view of a wave as it approaches a beach. Describe how the wave changes as the wave approaches the beach.

Imagine that you can see a side view of a wave as it approaches a beach. Describe how the wave changes as the wave approaches the beach. Geology 101 Name Reading Guide for Ch. 19: Shores and Coastal Processes (p. 612) Waves, Currents, and Tides (p. 614) Waves and Currents (p. 614) Imagine that you can see a side view of a wave as it approaches

More information

Oceans and Coasts. Chapter 18

Oceans and Coasts. Chapter 18 Oceans and Coasts Chapter 18 Exploring the oceans The ocean floor Sediments thicken and the age of the seafloor increases from ridge to shore The continental shelf off the northeast United States Constituent

More information

MESSOLOGI LAGOON AREA (GREECE)

MESSOLOGI LAGOON AREA (GREECE) MESSOLOGI LAGOON AREA (GREECE) 20 Contact: Kyriakos SPYROPOULOS TRITON Consulting Engineers 90 Pratinou Str. 11634 Athens (GREECE) Tel: +32 10 729 57 61 Fax: +32 10 724 33 58 e-mail: kspyropoulos@tritonsa.gr

More information

PREDICTION OF BEACH CHANGES AROUND ARTIFICIAL REEF USING BG MODEL

PREDICTION OF BEACH CHANGES AROUND ARTIFICIAL REEF USING BG MODEL PREDICTION OF BEACH CHANGES AROUND ARTIFICIAL REEF USING BG MODEL Hiroaki Fujiwara 1, Takaaki Uda 2, Toshiaki Onishi 1, Shiho Miyahara 3 and Masumi Serizawa 3 On the Kaike coast, one of the twelve detached

More information

COASTAL ENVIRONMENTS. 454 lecture 12

COASTAL ENVIRONMENTS. 454 lecture 12 COASTAL ENVIRONMENTS Repeated movement of sediment & water constructs a beach profile reflecting the balance between average daily or seasonal wave forces and resistance of landmass to wave action Coasts

More information

page - Laboratory Exercise #5 Shoreline Processes

page - Laboratory Exercise #5 Shoreline Processes page - Laboratory Exercise #5 Shoreline Processes Section A Shoreline Processes: Overview of Waves The ocean s surface is influenced by three types of motion (waves, tides and surface currents). Shorelines

More information

Julebæk Strand. Effect full beach nourishment

Julebæk Strand. Effect full beach nourishment Julebæk Strand Effect full beach nourishment Aim of Study This study is a part of the COADAPT funding and the aim of the study is to analyze the effect of beach nourishment. In order to investigate the

More information

CHAPTER 134 INTRODUCTION

CHAPTER 134 INTRODUCTION CHAPTER 134 NEW JETTIES FOR TUNG-KANG FISHING HARBOR, TAIWAN Chi-Fu Su Manager Engineering Department Taiwan Fisheries Consultants, Inc. Taipei, Taiwan INTRODUCTION Tung-Kang Fishing Harbor, which is about

More information

Volume and Shoreline Changes along Pinellas County Beaches during Tropical Storm Debby

Volume and Shoreline Changes along Pinellas County Beaches during Tropical Storm Debby Volume and Shoreline Changes along Pinellas County Beaches during Tropical Storm Debby Ping Wang and Tiffany M. Roberts Coastal Research Laboratory University of South Florida July 24, 2012 Introduction

More information

Low-crested offshore breakwaters: a functional tool for beach management

Low-crested offshore breakwaters: a functional tool for beach management Environmental Problems in Coastal Regions VI 237 Low-crested offshore breakwaters: a functional tool for beach management K. Spyropoulos & E. Andrianis TRITON Consulting Engineers, Greece Abstract Beach

More information

Legal, scientific and engineering aspects of Integrated Coastal Zone Management (ICZM) in Poland

Legal, scientific and engineering aspects of Integrated Coastal Zone Management (ICZM) in Poland Gdańsk, March 21 st 2013 Legal, scientific and engineering aspects of Integrated Coastal Zone Management (ICZM) in Poland Rafał Ostrowski Institute of Hydro-Engineering of the Polish Academy of Sciences

More information

Chapter - Oceans and Coasts

Chapter - Oceans and Coasts Chapter - Oceans and Coasts Discussion: What do oceans contribute to the environment of Earth? How do Earth s major systems relate to the oceans? Oceans and Coasts Oceans are important - Thermal regulation

More information

LABORATORY EXPERIMENTS ON EROSION CONTROL PERFORMANCE OF AN L- SHAPED PERMEABLE STRUCTURE. Abstract

LABORATORY EXPERIMENTS ON EROSION CONTROL PERFORMANCE OF AN L- SHAPED PERMEABLE STRUCTURE. Abstract LABORATORY EXPERIMENTS ON EROSION CONTROL PERFORMANCE OF AN L- SHAPED PERMEABLE STRUCTURE Yuuji Maeda 1, Masayuki Unno 2, Masafumi Sato 2, Takao Kurita 2, Takaaki Uda 3 and Shinji Sato 4 Abstract A new

More information

Cross-shore sediment transports on a cut profile for large scale land reclamations

Cross-shore sediment transports on a cut profile for large scale land reclamations Cross-shore sediment transports on a cut profile for large scale land reclamations Martijn Onderwater 1 Dano Roelvink Jan van de Graaff 3 Abstract When building a large scale land reclamation, the safest

More information

SORTING AND SELECTIVE MOVEMENT OF SEDIMENT ON COAST WITH STEEP SLOPE- MASUREMENTS AND PREDICTION

SORTING AND SELECTIVE MOVEMENT OF SEDIMENT ON COAST WITH STEEP SLOPE- MASUREMENTS AND PREDICTION SORTING AND SELECTIVE MOVEMENT OF SEDIMENT ON COAST WITH STEEP SLOPE- MASUREMENTS AND PREDICTION Toshiro San-nami 1, Takaaki Uda 2, Masumi Serizawa 1 and Toshinori Ishikawa 2 Conveyer belts carrying gravel

More information

Overview. Beach Features. Coastal Regions. Other Beach Profile Features. CHAPTER 10 The Coast: Beaches and Shoreline Processes.

Overview. Beach Features. Coastal Regions. Other Beach Profile Features. CHAPTER 10 The Coast: Beaches and Shoreline Processes. Overview CHAPTER 10 The Coast: Beaches and Shoreline Processes Coastal regions constantly change. The beach is a dominant coastal feature. Wave activity continually modifies the beach and coastal areas.

More information

INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT

INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT Advanced Series on Ocean Engineering Volume 16 INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT J. William Kamphuis Queen's University, Canada World Scientific Singapore New Jersey London Hong Kong Contents

More information

TRANSPORT OF NEARSHORE DREDGE MATERIAL BERMS

TRANSPORT OF NEARSHORE DREDGE MATERIAL BERMS Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

Currents measurements in the coast of Montevideo, Uruguay

Currents measurements in the coast of Montevideo, Uruguay Currents measurements in the coast of Montevideo, Uruguay M. Fossati, D. Bellón, E. Lorenzo & I. Piedra-Cueva Fluid Mechanics and Environmental Engineering Institute (IMFIA), School of Engineering, Research

More information

Nearshore Morphodynamics. Bars and Nearshore Bathymetry. Sediment packages parallel to shore, that store beach sediment

Nearshore Morphodynamics. Bars and Nearshore Bathymetry. Sediment packages parallel to shore, that store beach sediment Nearshore Morphodynamics http://coastal.er.usgs.gov/bier/images/chandeleur-xbeach-lg.jpg Bars and Nearshore Bathymetry Sediment packages parallel to shore, that store beach sediment Can be up to 50 km

More information

Anatomy of Coastal Regions

Anatomy of Coastal Regions The Coast I. BEACH ANATOMY Anatomy of Coastal Regions Terms for different parts of beaches and coastal regions Are all about ENERGY- ie, where the ocean s energy Mostly through tides and waves, and shape

More information

Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff

Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff Tides & Beaches Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff Oceans Ocean Topography Physical Structure of the

More information

LIFE TIME OF FREAK WAVES: EXPERIMENTAL INVESTIGATIONS

LIFE TIME OF FREAK WAVES: EXPERIMENTAL INVESTIGATIONS Proceedings of the 6 th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright : Creative Commons

More information

WAVE PROPAGATION DIRECTIONS UNDER REAL SEA STATE CONDITIONS. Joachim Griine 1

WAVE PROPAGATION DIRECTIONS UNDER REAL SEA STATE CONDITIONS. Joachim Griine 1 WAVE PROPAGATION DIRECTIONS UNDER REAL SEA STATE CONDITIONS Abstract Joachim Griine 1 This paper deals with the analysis of wave propagation directions from wave climate measurements in field. A simple

More information

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences. Moscow, RUSSIA.

P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences. Moscow, RUSSIA. P.P. Shirshov Institute of Oceanology, Russian Academy of Sciences. Moscow, RUSSIA. E-mail: akivis@ocean.ru Introduction The nearshore zone, though occupying only a small part of seas and oceans, plays

More information

RESEARCH ON ENTRANCE TRAINING AND RECLAMATION PROJECT OF DONGSHUIGANG, CHENGMAI COUNTY, HAINAN

RESEARCH ON ENTRANCE TRAINING AND RECLAMATION PROJECT OF DONGSHUIGANG, CHENGMAI COUNTY, HAINAN Proceedings of the 7 th International Conference on Asian and Pacific Coasts (APAC 2013) Bali, Indonesia, September 24-26, 2013 RESEARCH ON ENTRANCE TRAINING AND RECLAMATION PROJECT OF DONGSHUIGANG, CHENGMAI

More information

LAKKOPETRA (GREECE) EUROSION Case Study. Contact: Kyriakos SPYROPOULOS. TRITON Consulting Engineers. 90 Pratinou Str Athens (GREECE)

LAKKOPETRA (GREECE) EUROSION Case Study. Contact: Kyriakos SPYROPOULOS. TRITON Consulting Engineers. 90 Pratinou Str Athens (GREECE) LAKKOPETRA (GREECE) Contact: Kyriakos SPYROPOULOS TRITON Consulting Engineers 90 Pratinou Str. 11634 Athens (GREECE) Tel: +32 10 729 57 61 Fax: +32 10 724 33 58 e-mail: kspyropoulos@tritonsa.gr 19 1 1.

More information

Earth Science Chapter 16 Section 3 Review

Earth Science Chapter 16 Section 3 Review Name: Class: Date: Earth Science Chapter 16 Section 3 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The movement of water that parallels the shore

More information

4/20/17. #30 - Coastlines - General Principles Coastlines - Overview

4/20/17. #30 - Coastlines - General Principles Coastlines - Overview Writing Assignment Due one week from today by 11:59 pm See main class web pages for detailed instructions Essays will be submitted in Illinois Compass (instructions later) Pick one: Earthquakes, tsunamis,

More information

Beach Profiles. Topics. Module 9b Beach Profiles and Crossshore Sediment Transport 3/23/2016. CE A676 Coastal Engineering

Beach Profiles. Topics. Module 9b Beach Profiles and Crossshore Sediment Transport 3/23/2016. CE A676 Coastal Engineering Beach Profiles AND CROSS-SHORE TRANSPORT Orson P. Smith, PE, Ph.D., Professor Emeritus Topics Features of beach and nearshore profiles Equilibrium profiles Cross-shore transport References Text (Sorensen)

More information

Chapter 10 Field Survey and Sediment Analysis for the Candidate Site

Chapter 10 Field Survey and Sediment Analysis for the Candidate Site Chapter 1 Field Survey and Sediment Analysis for the Candidate Site 1.1 Overview Several kinds of field surveys have been carried out to obtain the necessary information for sediment analysis, planning,

More information

EVALUATION OF BEACH EROSION UP-DRIFT OF TIDAL INLETS IN SOUTHWEST AND CENTRAL FLORIDA, USA. Mohamed A. Dabees 1 and Brett D.

EVALUATION OF BEACH EROSION UP-DRIFT OF TIDAL INLETS IN SOUTHWEST AND CENTRAL FLORIDA, USA. Mohamed A. Dabees 1 and Brett D. EVALUATION OF BEACH EROSION UP-DRIFT OF TIDAL INLETS IN SOUTHWEST AND CENTRAL FLORIDA, USA Mohamed A. Dabees 1 and Brett D. Moore 1 The paper discusses the analysis of up-drift beach erosion near selected

More information

Request Number IR1-12: Flow Passage. Information Request

Request Number IR1-12: Flow Passage. Information Request Request Number IR1-12: Flow Passage Information Request Provide additional information about the 100 metre flow passage channel scenario between the Westshore Terminals and the proposed Project terminal

More information

Appendix E Cat Island Borrow Area Analysis

Appendix E Cat Island Borrow Area Analysis Appendix E Cat Island Borrow Area Analysis ERDC/CHL Letter Report 1 Cat Island Borrow Area Analysis Multiple borrow area configurations were considered for Cat Island restoration. Borrow area CI1 is located

More information

COASTAL MORPHODYNAMICS

COASTAL MORPHODYNAMICS COASTAL MORPHODYNAMICS PATRICIA CHARDÓN-MALDONADO, PHD, EIT Miguel Canals, Jack A. Puleo, Alec Torres-Freyermuth & Jens Figlus March 9, 2017 OUTLINE INTRODUCTION Meteorological Phenomena Forcing Conditions

More information

MIAMI BEACH 32ND STREET HOT SPOT: NUMERICAL MODELING AND DESIGN OPTIMIZATION. Adam Shah - Coastal Engineer Harvey Sasso P.E.

MIAMI BEACH 32ND STREET HOT SPOT: NUMERICAL MODELING AND DESIGN OPTIMIZATION. Adam Shah - Coastal Engineer Harvey Sasso P.E. ABSTRACT MIAMI BEACH 32ND STREET HOT SPOT: NUMERICAL MODELING AND DESIGN OPTIMIZATION Adam Shah - Coastal Engineer Harvey Sasso P.E. - Principal Coastal Systems International, Inc. 464 South Dixie Highway

More information

The Composition of Seawater

The Composition of Seawater The Composition of Seawater Salinity Salinity is the total amount of solid material dissolved in water. Most of the salt in seawater is sodium chloride, common table salt. Element Percent Element Percent

More information

METHODS OF DATA COLLECTION AND ANALYSIS

METHODS OF DATA COLLECTION AND ANALYSIS CHAPTER 3 METHODS OF DATA COLLECTION AND ANALYSIS Field observations are carried out using the facilities available in the coastal laboratory of the Centre for Earth Science Studies at Valiathura. Nearshore

More information

Mode - 2 internal waves: observations in the non-tidal sea. Elizaveta Khimchenko 1, Andrey Serebryany 1,2.

Mode - 2 internal waves: observations in the non-tidal sea. Elizaveta Khimchenko 1, Andrey Serebryany 1,2. Mode - 2 internal waves: observations in the non-tidal sea Elizaveta Khimchenko 1, Andrey Serebryany 1,2 1 P. P. Shirshov Institute of Oceanology RAS, Moscow, Russia 2 Space Research Institute RAS, Moscow,

More information

MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY. Hiroaki Kashima 1 and Katsuya Hirayama 1

MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY. Hiroaki Kashima 1 and Katsuya Hirayama 1 MECHANISM AND COUNTERMEASURES OF WAVE OVERTOPPING FOR LONG-PERIOD SWELL IN COMPLEX BATHYMETRY Hiroaki Kashima 1 and Katsuya Hirayama 1 Recently, coastal disasters due to long-period swells induced by heavy

More information

Compiled by Uwe Dornbusch. Edited by Cherith Moses

Compiled by Uwe Dornbusch. Edited by Cherith Moses REPORT ON WAVE AND TIDE MEASUREMENTS Compiled by Uwe Dornbusch. Edited by Cherith Moses 1 Aims...1 2 Summary...1 3 Introduction...1 4 Site selection...1 5 Wave recorder settings...2 6 Results...2 6.1 Water

More information

PROPERTIES OF NEARSHORE CURRENTS

PROPERTIES OF NEARSHORE CURRENTS Terry Hendricks PROPERTIES OF NEARSHORE CURRENTS During this past year, we have initiated a program to obtain a better understanding of the properties of the currents flowing over the nearshore shelf area

More information

MAR 110 LECTURE #15 Wave Hazards

MAR 110 LECTURE #15 Wave Hazards 1 MAR 110 LECTURE #15 Wave Hazards Rogue Wave Hazard Rogue waves are very large open ocean waves of sometimes can range in height from 60 ft (20m) to120 feet (40m) and thus a significant hazard to large

More information

Q1. What are the primary causes/contributors to coastal erosion at Westshore and the concept of longshore / littoral drift.

Q1. What are the primary causes/contributors to coastal erosion at Westshore and the concept of longshore / littoral drift. Q1. What are the primary causes/contributors to coastal erosion at Westshore and the concept of longshore / littoral drift. In order of (timing related) contribution to present problem 1. Beach is too

More information

Chapter. The Dynamic Ocean

Chapter. The Dynamic Ocean Chapter The Dynamic Ocean An ocean current is the mass of ocean water that flows from one place to another. 16.1 The Composition of Seawater Surface Circulation Surface Currents Surface currents are movements

More information

Chapter 12: Coasts (after a brief review of Tides)

Chapter 12: Coasts (after a brief review of Tides) Chapter 12: Coasts (after a brief review of Tides) 1 Questions from previous classes: What happens when a wave meets a current? wave = people walking current = bus If wave goes with the current, the wave

More information

Morphological modelling of Keta Lagoon case

Morphological modelling of Keta Lagoon case CHAPTER 232 Morphological modelling of Keta Lagoon case J.A. Roelvink 1 ' 2, D.J.R. Walstra 1 and Z. Chen 1 'DELFT HYDRAULICS p.o. box 152, 8300 AD Emmeloord, The Netherlands. Netherlands Centre for Coastal

More information

Wave Breaking, Infragravity Waves, And Sediment Transport In The Nearshore

Wave Breaking, Infragravity Waves, And Sediment Transport In The Nearshore Wave Breaking, Infragravity Waves, And Sediment Transport In The Nearshore Dr. Thomas C. Lippmann Center for Coastal Studies Scripps Institution of Oceanography University of California, San Diego La Jolla,

More information

The evolution of beachrock morphology and its influence on beach morphodynamics

The evolution of beachrock morphology and its influence on beach morphodynamics The evolution of beachrock morphology and its influence on beach morphodynamics Robert J. Turner Division of Natural Sciences, Southampton College, 239 Montauk Highway, Southampton, NY 11968, U.S.A. email:

More information

UPPER BEACH REPLENISHMENT PROJECT RELATED

UPPER BEACH REPLENISHMENT PROJECT RELATED ASSESSMENT OF SAND VOLUME LOSS at the TOWNSHIP of UPPER BEACH REPLENISHMENT PROJECT RELATED to the LANDFALL OF HURRICANE SANDY - PURSUANT TO NJ-DR 4086 This assessment is in response to Hurricane Sandy

More information

G. Meadows, H. Purcell and L. Meadows University of Michigan

G. Meadows, H. Purcell and L. Meadows University of Michigan www.coj.net/departments/fire+and+rescue/emergency+preparedness/rip+current.htm G. Meadows, H. Purcell and L. Meadows Over 80% of all surf related rescues are attributable to Rip Currents According to the

More information

Longshore sediment transport

Longshore sediment transport and Orson P. Smith, PE, Ph.D., Professor Emeritus Longshore transport Waves breaking at an angle to shore Sediment under breakers lifted by saltation Drops back to sea bed a little down drift Swash (runup)

More information

HYDRODYNAMICS AND MORPHODYNAMICS IN THE SURF ZONE OF A DISSIPATIVE BEACH

HYDRODYNAMICS AND MORPHODYNAMICS IN THE SURF ZONE OF A DISSIPATIVE BEACH HYDRODYNAMICS AND MORPHODYNAMICS IN THE SURF ZONE OF A DISSIPATIVE BEACH Leo C. van Rijn, Dirk Jan R. Walstra, Bart T. Grasmeijer and Kees Kleinhout Abstract: Two profile models have been compared with

More information

Follets Island Nearshore Beach Nourishment Project

Follets Island Nearshore Beach Nourishment Project Coast & Harbor Engineering A division of Hatch Mott MacDonald Follets Island Nearshore Beach Nourishment Project Arpit Agarwal, P.E. April 1, 2016 Project Site!"#$% &'(% &)*+% )#,'-+% Shoreline Erosion

More information

Artificial headlands for coastal restoration

Artificial headlands for coastal restoration Artificial headlands for coastal restoration J. S. Mani Professor, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 636, India Abstract Construction of a satellite harbour

More information

Note: Design of beach-dune system for coastal protection Date: 24 August 2018 DESIGN OF BEACH-DUNE SYSTEM FOR COASTAL PROTECTION.

Note: Design of beach-dune system for coastal protection Date: 24 August 2018 DESIGN OF BEACH-DUNE SYSTEM FOR COASTAL PROTECTION. DESIGN OF BEACH-DUNE SYSTEM FOR COASTAL PROTECTION Content 1. Introduction 2. Hydrodynamic conditions 3. Beach and dune characteristics 4. Design of cross-shore beach-dune profile 4.1 Definition of erosion

More information

Waves Part II. non-dispersive (C g =C)

Waves Part II. non-dispersive (C g =C) Waves Part II Previously we discussed Surface Gravity Waves Deep Water Waves Shallow Water Waves C g T 2 C g h dispersive (C g =C/2) Definitions: phase speed C= /T= /k non-dispersive (C g =C) group speed

More information

Shoreline Response to an Offshore Wave Screen, Blairgowrie Safe Boat Harbour, Victoria, Australia

Shoreline Response to an Offshore Wave Screen, Blairgowrie Safe Boat Harbour, Victoria, Australia Shoreline Response to an Offshore Wave Screen, Blairgowrie Safe Boat Harbour, Victoria, Australia T.R. Atkins and R. Mocke Maritime Group, Sinclair Knight Merz, P.O. Box H615, Perth 6001, Australia ABSTRACT

More information

Label the diagram below with long fetch and short fetch:

Label the diagram below with long fetch and short fetch: Coastal Processes Coasts are shaped by the sea and the action of waves. The processes that take place are erosion, transportation and deposition. The power of waves is one of the most significant forces

More information

Australian Coastal Councils Conference

Australian Coastal Councils Conference Australian Coastal Councils Conference Kiama March 2019 Where Has My Beach Gone? (and what can I do about it?) Dr Andrew McCowan Water Technology Where Has My Beach Gone? Where Has My Beach Gone? Where

More information

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN

MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR RE-DESIGN Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 2015 MODELING OF CLIMATE CHANGE IMPACTS ON COASTAL STRUCTURES - CONTRIBUTION TO THEIR

More information

MONITORING SEDIMENT TRANSPORT PROCESSES AT MANAVGAT RIVER MOUTH, ANTALYA TURKEY

MONITORING SEDIMENT TRANSPORT PROCESSES AT MANAVGAT RIVER MOUTH, ANTALYA TURKEY COPEDEC VI, 2003 in Colombo, Sri Lanka MONITORING SEDIMENT TRANSPORT PROCESSES AT MANAVGAT RIVER MOUTH, ANTALYA TURKEY Isikhan GULER 1, Aysen ERGIN 2, Ahmet Cevdet YALCINER 3 ABSTRACT Manavgat River, where

More information

Modeling Beach Erosion

Modeling Beach Erosion Ocean Lecture & Educator s Night May 16, 2012 Modeling Beach Erosion Below is an overview of the activity Modeling Beach Erosion (New Jersey Sea Grant Consortium, Education Program) to incorporate information

More information

A Preliminary Review of Beach Profile and Hardbottom Interactions

A Preliminary Review of Beach Profile and Hardbottom Interactions A Preliminary Review of Beach Profile and Hardbottom Interactions Douglas W. Mann, P.E., D.CE. CB&I A World of Solutions Presentation Goal Lead to a better understanding of the challenges regarding the

More information

Learn more at

Learn more at Full scale model tests of a steel catenary riser C. Bridge 1, H. Howells 1, N. Toy 2, G. Parke 2, R. Woods 2 1 2H Offshore Engineering Ltd, Woking, Surrey, UK 2 School of Engineering, University of Surrey,

More information

Activity #1: The Dynamic Beach

Activity #1: The Dynamic Beach Activity #1: The Dynamic Beach Beach Profiling By Betsy Sheffield, COASTeam Program, College of Charleston, Charleston, SC Subjects: Science, Math Skills: Analysis, description, listing, research, small

More information

Sandy Beach Morphodynamics. Relationship between sediment size and beach slope

Sandy Beach Morphodynamics. Relationship between sediment size and beach slope Sandy Beach Morphodynamics Relationship between sediment size and beach slope 1 Longshore Sorting - Willard Bascom Beach Slope, Grain Size, and Wave Energy Beach at Sandwich Bay, Kent, UK near the Straights

More information

Tidal modulation of wave-setup and wave-induced currents on the Aboré coral reef, New Caledonia

Tidal modulation of wave-setup and wave-induced currents on the Aboré coral reef, New Caledonia 18th April 2007 Tidal modulation of wave-setup and wave-induced currents on the Aboré coral reef, New Caledonia Philippe BONNETON, Jean-Pierre LEFEBVRE, Patrice BRETEL, Sylvain OUILLON, Pascal DOUILLET

More information

DETACHED BREAKWATERS by Leo C. van Rijn;

DETACHED BREAKWATERS by Leo C. van Rijn; DETACHED BREAKWATERS by Leo C. van Rijn; 1. General A detached breakwater (Figure 1) is defined as a hard shore-parallel structure protecting a section of the shoreline by forming a shield to the waves

More information

BEACH PROCESSES AND COASTAL ENVIRONMENTS

BEACH PROCESSES AND COASTAL ENVIRONMENTS BEACH PROCESSES AND COASTAL ENVIRONMENTS COASTAL FEATURES Cross section Map view TOPICS: Terminology Waves Beach Morphology Barriers Coastal Migration Tides Tidal Flats and Marshes Sediment Budgets Human

More information

Kelly Legault, Ph.D., P.E. USACE SAJ

Kelly Legault, Ph.D., P.E. USACE SAJ Kelly Legault, Ph.D., P.E. USACE SAJ Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including

More information

The role of the inter-bar depressions in hydrodynamic and sediment transport processes of sandy macrotidal beaches

The role of the inter-bar depressions in hydrodynamic and sediment transport processes of sandy macrotidal beaches The role of the inter-bar depressions in hydrodynamic and sediment transport processes of sandy macrotidal beaches Adrien CARTIER 1,2, Arnaud HÉQUETTE 1,2 and Philippe LARROUDE 3 1. Laboratoire d Océanologie

More information

Table 4. Volumetric Change Rates Pre-Project and Post-Project for the Town of Duck

Table 4. Volumetric Change Rates Pre-Project and Post-Project for the Town of Duck V. VOLUMETRIC CHANGES General Volumetric changes measured over the entire monitoring area for various time periods are provided in Table 4. The volume changes are given in terms of cubic yards/foot of

More information

Inventory of coastal sandy areas protection of infrastructure and planned retreat

Inventory of coastal sandy areas protection of infrastructure and planned retreat 2018-02-28 Inventory of coastal sandy areas protection of infrastructure and planned retreat Johanna Birgander, Thorbjörn Nilsson, Pär Persson Summary To estimate the natural protection around the coast

More information

Natural Bridges Field Trip Activity

Natural Bridges Field Trip Activity Natural Bridges Field Trip Activity This is due in class on MONDAY- March 1 - not in sections! Name TA: NOTE ON THE GRADING OF THIS ASSIGNMENT: Many of the questions below (especially in the tidepool part)

More information