Respiratory System Lab

Size: px
Start display at page:

Download "Respiratory System Lab"

Transcription

1 Respiratory System Lab Note: Review the safety materials and wear goggles when working with chemicals. Read the entire exercise before you begin. Take time to organize the materials you will need and set aside a safe work space in which to complete the exercise. Objectives: To define what lung capacity, tidal volume and vital capacity are and how they are related. To measure and estimate lung capacity Relate the effects of exercise on respiration Materials: Metric ruler Metric stick Bathroom scale Spoon Round 9 inch balloons ph test strips Bromothymol blue solution Graduated cylinder (50 ml) Marker pencil Household ammonia Straws Small plastic cups Introduction: Pulmonary ventilation or breathing consists of two phases: inspiration as air is being drawn into the lungs and expiration s air is being blown out of the lungs. Oxygen and carbon dioxide are exchanged in the alveoli of the lungs through diffusion into (oxygen) and out of (carbon dioxide) the blood filled capillaries that surround each alveolus. The depth and speed at which you breathe is determined by the amount of CO2 in your blood. CO2 turns into carbonic acid in blood plasma and can cause the ph of the blood to drop resulting in acidosis. This acidosis can cause cellular damage if it is not regulated and so we adjust our breathing to maintain normal levels of CO2 within our bodies. The respiratory center is the medulla oblongata of the brain stem which contains sensors that detect the amount of CO2 that you have in your bloodstream. The sensors then communicate through nerves with your lungs and heart to increase or decrease respirations and adjust the levels of CO2 in the system. In this activity you will explore the physiology of how this system behaves on your own body. 1. Go to Bio10bcc.weebly.com website, find and watch intro to respiratory system and mechanism of breathing podcast. Answer questions in Lab Report. Activity 1: Measuring Lung Capacity and Volume To accurately measure the full capacity of your lungs, you need to conduct a series of sophisticated breathing tests on equally sophisticated equipment. In this activity you will simulate a lung capacity experiment using less sophisticated equipment to gain a fundamental understanding of your respiratory system. The ability of your lungs to hold a certain volume of air is dependent on several variables. One of the biggest variables is your overall size or body mass. Another variable is your overall fitness. Your fitness will greatly impact your lung capacity, so the results of these tests have a wide range of normal values. #7 Biology 10 Lab Bcc Page 1 of 9

2 Key Definitions and formulas: 1. Go to bio10bcc.weebly.com website and watch podcast lung capacity measurements under 5 minutes to go along with information given below. There is also a podcast lung capacity mnemonic that may help you remember the terms below. The amount of air we inhale and exhale with each breath is called tidal volume (TV). Our tidal volume provides enough oxygen for our bodies to function at rest. If you inhale and take the deepest breath you can take and then exhale with force pushing as much air out as possible, you will estimate your vital capacity (VC). The vital capacity is the total volume of air your lungs can hold. The inspiratory reserve volume (IRV) is the amount of air that can be forcibly inspired above normal inhalation. The expiratory reserve volume (ERV) is the amount of air that can be forcefully exhaled after normal exhalation. Vital capacity = IRV + TV + ERV = VC Residual volume (RV) is the amount of air left over and cannot be forcefully exhaled from the lungs. Total lung capacity (TLC) =VC + RV Inspiratory capacity (IC) = TV + IRV is the total amount of air that can be inspired after a tidal exhalation Functional residual capacity (FRC) = RV + ERV is the amount of air remaining in the lungs after a tidal exhalation. Remember these are estimations of your lung capacity and vital capacity. If you want actual results you will need to get a test from your physician. #7 Biology 10 Lab Bcc Page 2 of 9

3 Procedures: 1. Go to bio10bcc.weebly.com website, find and watch how to measure vital capacity with a balloon podcast. 2. Take out a round balloon and stretch it out lengthwise ten times to loosen the latex. 3. Take out a metric ruler 4. Inhale normally and exhale normally into the balloon. NOTE: Do not force your exhale. The balloon will only inflate a small amount. 5. Immediately pinch the end of the balloon off and using the ruler measure the diameter of the balloon at its widest point across. Record the length in centimeters in Data Table 1 in the Lab Report under Tidal Volume. 6. Deflate the balloon and repeat this procedure two more times. Fill in the information in Data Table 1. Calculate your average tidal volume from your three trials and record this into the data table. 7. Take a deep of a breath as you can and forcefully exhale into the balloon as much air as you can. Pinch the end of the balloon off and use the metric ruler to measure the diameter of the balloon at its widest point Record the length in centimeters in Data Table 1 of the Lab Report under Vital Capacity. 8. Deflate the balloon and repeat this procedure two more times. Record the information in Data Table 1. Calculate your average volume for vital capacity from your three trials and record this into the data table. 9. Use the graph in figure 1 in the Lab Report to convert the balloon diameter in Data Table 1 into lung volumes. On the x axis go across and locate the balloon diameter and follow the number up until it meets the curved line on the graph. Then move left in a straight line to the y axis and approximate the lung volume in cubic centimeters. Record the measurements for each trial in Data Table 2 in the Lab Report. 10. Be sure to convert and record BOTH tidal volume and vital capacity from Data Table into Data Table Calculate your average tidal volume and vital capacity based on the conversions in Data Table Next you will estimate your vital capacity based on the surface area of your body. To calculate surface area, you will need to know your height in centimeters and your weight in kilograms. 13. Have your partner measure your height in centimeters using the meter stick. Alternatively, if you know your height in inches, you can convert this to centimeters by multiplying your height by 2.54 (there are 2.54 centimeters in an inch). Record your height in centimeters in Data Table 3 in the Lab Report. 14. If you do not have a good estimate of your weight, weigh yourself on the bathroom scale and make note of the measurement in pounds. To convert your weight in pounds into kilograms, divide your weight by 2.22 (there are approximately 2.22 pounds in a kilogram). Record your weight in kilograms in Data Table 3. #7 Biology 10 Lab Bcc Page 3 of 9

4 15. Use the following formula to calculate your body surface area (BSA) in m 2. If you need help on doing the math, please go to bio10bcc.weebly.com website and find podcast link How to do math for BSA. If you can do the math, you don t need to watch the podcast. 16. Record your BSA/m 2 in Data Table To calculate you estimated vital capacity, multiply your BSA by 2000 ml if you are female and 2500 ml if you are male. Record this number under vital capacity in Data Table Go to this bio10bcc.weebly.com website week 7 lab and find and watch spirometry for lung function podcast. Activity 2: Effects of Exercise on Respiration As our level of physical activity increases, our cells begin demanding higher levels of oxygen. Exercise also increases our metabolism and one of the by-products of metabolism is carbon dioxide. Carbon dioxide needs to be removed from our system to prevent cellular damage. Carbon dioxide can damage cells because when it comes in contact with water it turns into an acid. Carbonic acid will cause cellular ph to drop and can start to denature proteins which are vital to our survival. To compensate for the increased levels of CO2 and the resulting carbonic acid it produces, our respiratory system needs to remove the CO2 as quickly as possible. To accomplish this we increase our respiratory rate thus increasing our oxygen intake and removing CO2 more quickly. In this activity, you will test CO2 removal system on yourself to check its efficiency and functionality. Please note: If you have respiratory ailments or other conditions which will prevent you from safely performing the exercises in this activity, you need to notify your instructor immediately. DO NOT PERFORM THIS ACTIVITY IF YOU ARE PREGNANT, HAVE A KNOWN HEART CONDITION OR CHRONIC RESPIRATORY ILLNESS. Procedure: 1. From the supply area, get out a 50-ml graduated cylinder, bromothymol blue solution, ph test strips and a plastic pipet. 2. Get a bottle of household ammonia, 2 or 3 small plastic cups, two drinking straws and a plastic spoon. 3. Label a small plastic cup Ammonia Solution with a marker. 4. Using the graduated cylinder, measure out 100 ml of tap water and pour into the plastic cup. 5. Measure out 4 ml of household ammonia and pour it into the 100 ml of water in the cup. Stir the solution with a spoon. Place the plastic pipet in the cup of ammonia solution. 6. Label a second plastic cup test. Using the graduated cylinder, measure out 100 ml of bromothymol blue solution and pour it into the test cup. 7. Sit in a chair and relax for 5 minutes. 8. After 5 minutes, breathe normally and count the number of breaths you take in one minute (NOTE: if you count for 15 seconds and multiply by 4, you can speed up this step). Record your breaths under the column labeled At Rest in Data Table 4 in the Lab Report. #7 Biology 10 Lab Bcc Page 4 of 9

5 9. Repeat the above step two more times. Record your breaths in Data Table 4 and then calculate your average number of breaths at rest in the table. 10. Run in place for 1 minute. 11. Return to your chair and count your respirations for 1 minute. Record your information under the column After Exercise in Data Table Repeat Step 10 two more times and record your respirations in Data Table Calculate your average number of respirations after exercise and record this number in Data Table Rest for five minutes or until your breathing returns to normal. 15. Place the drinking straw in the test cup and breathe in through your nose and out through the straw into the bromothymol blue solution for exactly one minute. The solution should turn yellow. Bromothymol blue is an aid indicator. When you blow into the solution you are putting CO2 into the liquid making carbonic acid. AS the ph of the solution drops, the solution will turn green and then yellow. 16. After the minute is up, take a ph test strip and dip it into the test cup. Pull out the paper and compare it to the color scale. Record the ph of the solution in the appropriate place in the Lab Report. 17. Squeeze and fill the dropper pipet from the cup with ammonia solution and start adding drops of the solution to your test cup. Stir the solution with your straw in between drops. Count the number of drops as you go and add enough ammonia solution into the test cup to turn the solution back to blue. Be sure to sir with the straw between drops. When the test solution turns blue AND stays blue after stirring, you can stop adding drops. Record the number of drops of ammonia you added in the At Rest column in Data Table 5 in the Lab Report. 18. Repeat Steps 15 to 17 two more times and record the results in Data Table Calculate the average number of ammonia drops and record this under the At Rest column in Data Table Pour out the bromothymol blue solution from the test cup into the sink. Rinse and dry the cup and refill it with 100 ml of new bromothymol blue solution. 21. Replace the old drinking straw with a new one. 22. Run in place for one minute. 23. After one minute of exercise, breathe in through your nose and out through the straw into the test cup for exactly one minute. The solution should turn yellow. 24. Squeeze and fill the dropper pipet from the cup with ammonia solution and start adding drops of the solution to your test cup. Stir the solution with your straw in between drops. Count the number of drops as you go and add enough ammonia solution into the test cup to turn the solution back to blue. Be sure to stir with the straw between drops. When the test solution turns blue AND stays blue after stirring, you can stop adding drops. Record the number of drops of ammonia you added in the After Exercise column in Data Table 5 in the Lab Report. 25. Repeat Steps 22 through 24 two more times and record the results in Data Table Calculate the average number of drops of ammonia and record this under the After Exercise column in Data Table Answer the questions in the Lab Report. #7 Biology 10 Lab Bcc Page 5 of 9

6 Lab Report: Respiratory System Purpose: Please explain the purpose of this lab. Include in your explanation the major concepts you learned and any safety concerns associated with the lab. #7 Biology 10 Lab Bcc Page 6 of 9

7 Activity 1 Measuring Lung Capacity Observations Data Table 1: Balloon Diameter (cm) Trial Tidal Volume Vital Capacity Average Data Table 2: Lung Volume (cm 3 ) Trial Tidal Volume Vital Capacity Average Data Table 3: Estimated Vital Capacity Body Data Component Height in cm Figure 1: Lung Volumes Weight lbs kg Surface Area Vital Capacity m 2 m 3 #7 Biology 10 Lab Bcc Page 7 of 9

8 Questions: 1. Why is it important to calculate averages for measurements in this exercise? 2. How does your estimated vital capacity compare with the measured vital capacity? 3. Why is it important to know a person s vital capacity or tidal volume? 4. Do some research: How does smoking effect vital capacity? 5. Calculate the total lung capacity (TLC) of a person who has an RV of 1205 m, an ERV of 1180, a TV of 505, and an IRV of Is this person male or female? 6. Calculate the functional residual capacity (FRC) of a person with an expiratory reserve volume (ERV) of 800 ml and a residual volume (RV) of 1095 ml. Is this person a male or female? 7. What is the inspiratory capacity (IC) of a person with a tidal volume of 505 ml and an inspiratory reserve volume (IRV) of 1950 ml)? Is this person male or female? #7 Biology 10 Lab Bcc Page 8 of 9

9 Activity 2: Effects of exercise on Respiration Observations. Data Table 4: Breathing Rate Trial At Rest After Exercise Average Data Table 5: Number of Ammonia Drops Trial At Rest After Exercise Average Questions: 1. What effect does exercise have on the amount of carbon dioxide released by the blood? 2. Why do your respirations go up as you exercise? 3. What did the ammonia drops represent in the body? 4. Do some research: Why do athletes prefer to train in high altitude locations? What effect does this training have on respiration? 5. Do some research: What kinds of information would a physician gain by running a lung capacity test on someone? In other words, why would a physician run such a test? #7 Biology 10 Lab Bcc Page 9 of 9

Measuring Lung Capacity

Measuring Lung Capacity Name Class Date Chapter 37 Circulatory and Respiratory Systems Measuring Lung Capacity Introduction The amount of air that you move in and out of your lungs depends on how quickly you are breathing. The

More information

A Liter a Lung Measuring Lung Capacity

A Liter a Lung Measuring Lung Capacity A Liter a Lung Measuring Lung Capacity OBJECTIVE In this investigation, students will compare the actual and expected vital capacities of their classmates. LEVEL Middle Grades Life Science CONNECTIONS

More information

Measuring Lung Capacity

Measuring Lung Capacity Measuring Lung Capacity 1 Name Measuring Lung Capacity Background Information: We need a constant supply of oxygen in order to stay alive. We use oxygen to break down food to release energy and produce

More information

Honors Physiology The Respiratory System

Honors Physiology The Respiratory System Honors Physiology Name: The Respiratory System Objective: To create a model of our respiratory system, understanding the relationship between structure and function. Warm Up Questions: 1. What is the function

More information

Name Date of Data Collection. Class Period Lab Days/Period Teacher. Measuring Lung Capacity

Name Date of Data Collection. Class Period Lab Days/Period Teacher. Measuring Lung Capacity Measuring Lung Capacity Background: The amount of air that you move in and out of your lungs while breathing normally is referred to as TIDAL VOLUME. While it is possible to inhale and exhale more forcefully

More information

Lab: The Effect of Exercise on Cellular Respiration

Lab: The Effect of Exercise on Cellular Respiration Lab: The Effect of Exercise on Cellular Respiration Purpose: To analyze the effect the exercise has on breathing rate, heart rate, and carbon dioxide production Background Information: Cellular respiration

More information

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC 66 LAB 7 HUMAN RESPIRATORY LAB Assignments: Due before lab: Quiz: Three Respiratory Interactive Physiology Animations pages 69 73. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

More information

Mechanisms of Breathing. Vital Capacity

Mechanisms of Breathing. Vital Capacity Mechanisms of Breathing Mechanics of Breathing Two muscles are involved in the mechanics of breathing: Diaphragm = large sheet of muscle located beneath the lungs that is the primary muscle in breathing

More information

Lung Capacity. Science and Engineering Practices: S.1A.1; S.1A.2; S.1A.4; S.1A.5; S.1A.7

Lung Capacity. Science and Engineering Practices: S.1A.1; S.1A.2; S.1A.4; S.1A.5; S.1A.7 SC Academic Standards: NGSS DCI: Science and Engineering Practices: S.1A.1; S.1A.2; S.1A.4; S.1A.5; S.1A.7 Crosscutting Concepts: Patterns; Cause and Effect: Mechanism and Explanation; Systems and Systems

More information

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives exercise 7 Respiratory System Mechanics Objectives 1. To explain how the respiratory and circulatory systems work together to enable gas exchange among the lungs, blood, and body tissues 2. To define respiration,

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

3/24/2009 LAB D.HAMMOUDI.MD. 1. Trachea 2. Thoracic wall 3. Lungs 4. Primary bronchi 5. Diaphragm

3/24/2009 LAB D.HAMMOUDI.MD. 1. Trachea 2. Thoracic wall 3. Lungs 4. Primary bronchi 5. Diaphragm RESPIRATORY PHYSIOLOGY LAB D.HAMMOUDI.MD 1. Trachea 2. Thoracic wall 3. Lungs 4. Primary bronchi 5. Diaphragm 1 KEY WORDS TO KNOW BOYLE S LAW INTERCOSTAL NERVES PHRENIC NERVE DIAPHRAGM EXTERNAL INTERCOSTAL

More information

Lab 3. The Respiratory System (designed by Heather E. M. Liwanag with T.M. Williams)

Lab 3. The Respiratory System (designed by Heather E. M. Liwanag with T.M. Williams) Name Lab Partners Lab 3. The Respiratory System (designed by Heather E. M. Liwanag with T.M. Williams) Part 1. Lung Volumes and Capacities Objectives 1. Obtain graphical representation of lung capacities

More information

Respiration Lab Instructions

Respiration Lab Instructions Respiration Lab Instructions This laboratory investigation can be performed in any order. Be sure to read all instructions for each section before performing the experiment. PART 1 STUDENT WET SPIROMETER

More information

Cornell Institute for. Biology Teachers. Respirometry Part I: Lung Volumes and Capacities. Lab issue/rev. date: 12/12/96. Title:

Cornell Institute for. Biology Teachers. Respirometry Part I: Lung Volumes and Capacities. Lab issue/rev. date: 12/12/96. Title: Cornell Institute for Biology Teachers Copyright Cornell Institute for Biology Teachers, 1999. This work may be copied by the original recipient from CIBT to provide copies for users working under the

More information

CHAPTER 3: The cardio-respiratory system

CHAPTER 3: The cardio-respiratory system : The cardio-respiratory system Exam style questions - text book pages 44-45 1) Describe the structures involved in gaseous exchange in the lungs and explain how gaseous exchange occurs within this tissue.

More information

You Are Really Full of Hot Air!

You Are Really Full of Hot Air! You Are Really Full of Hot Air! Student Information Page 5B Activity Introduction: You re just full of hot air! How many times has someone said this to you when they didn t quite believe what you were

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory 10 II. RESPIRATORY VOLUMES, CAPACITIES & PULMONARY FUNCTION TESTS Respiratory volume is the term used for various volumes of air moved by or associated with the lungs at a given point in the respiratory

More information

April KHALED MOUSA BACHA. Physiology #2. Dr. Nayef AL-Gharaibeh. Pulmonary volumes & capacities

April KHALED MOUSA BACHA. Physiology #2. Dr. Nayef AL-Gharaibeh. Pulmonary volumes & capacities 25 th April Physiology #2 Pulmonary volumes & capacities Dr. Nayef AL-Gharaibeh KHALED MOUSA BACHA We will start this lecture by explaining an important concept from the previous one: Intrapleural pressure

More information

Pulmonary Function I (modified by C. S. Tritt, April 10, 2006) Volumes and Capacities

Pulmonary Function I (modified by C. S. Tritt, April 10, 2006) Volumes and Capacities I. Introduction Pulmonary Function I (modified by C. S. Tritt, April 10, 2006) Volumes and Capacities The volume of air a person inhales (inspires) and exhales (expires) can be measured with a spirometer

More information

Respiratory System Review

Respiratory System Review KEY THIS TEST WILL BE COMPLETED IN ONE CLASS PERIOD MONDAY, MARCH 10. 2014 Respiratory System Review Name A. Directions: Fill in the blank with the appropriate vocabulary word or words (several examples

More information

Human Respiration Laboratory Experiment By

Human Respiration Laboratory Experiment By Human Respiration Laboratory Experiment By Alison L., Thurow, Brittany Baierlein, Rachel C. Holsinger and Robin L. Cooper Department of Biology, University of Kentucky, Lexington, KY 40506 0225, USA. Purpose:

More information

Physiology of the Respiratory System

Physiology of the Respiratory System Biology 212: Anatomy and Physiology II Physiology of the Respiratory System References: Saladin, KS: Anatomy and Physiology, The Unity of Form and Function 8 th (2018). Required reading before beginning

More information

Physiology of Respiration

Physiology of Respiration Physiology of Respiration External Respiration = pulmonary ventilation breathing involves 2 processes: inspiration expiration Inspiration an active process involves contraction of diaphragm innervated

More information

Lung Volumes and Capacities

Lung Volumes and Capacities BIOL242 Lung Volumes and Capacities Measurement of lung volumes provides a tool for understanding normal function of the lungs as well as disease states. The breathing cycle is initiated by expansion of

More information

Experiment B-3 Respiration

Experiment B-3 Respiration 1 Experiment B-3 Respiration Objectives To study the diffusion process of oxygen and carbon dioxide between the alveoli and pulmonary capillaries. To determine the percentage of oxygen in exhaled air while

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The cell exchange O 2 directly with the air in the

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The tissues exchange O 2 directly with the air in

More information

Respiration. The resspiratory system

Respiration. The resspiratory system Respiration The resspiratory system The Alveoli The lungs have about 300 million alveoli, with a total crosssec onal area of 50 70 m2.. Each alveolar sac is surrounded by blood capillaries. The walls of

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

Name: Period: Date: PHOTOSYNTHESIS, CELLULAR RESPIRATION AND EXERCISE LAB / 38

Name: Period: Date: PHOTOSYNTHESIS, CELLULAR RESPIRATION AND EXERCISE LAB / 38 PHOTOSYNTHESIS, CELLULAR RESPIRATION AND EXERCISE LAB / 38 PURPOSE: The purpose of this lab activity is to analyze the affect of exercise on cellular respiration. LAB BACKGROUND: I. Purpose To observe

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System Introduction Respiration Chapter 10 The Respiratory System Provides a means of gas exchange between the environment and the body Plays a role in the regulation of acidbase balance during exercise Objectives

More information

Gas Exchange ACTIVITY OVERVIEW SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY. Teacher s Guide B-75 L A B O R ATO R Y

Gas Exchange ACTIVITY OVERVIEW SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY. Teacher s Guide B-75 L A B O R ATO R Y Gas Exchange 17 40- to 2 50-minute sessions ACTIVITY OVERVIEW L A B O R ATO R Y SUMMARY This activity explores the role of the respiratory system in the regulation of gases in the blood. Students investigate

More information

Measuring Carbon Dioxide in Breath

Measuring Carbon Dioxide in Breath Measuring Carbon Dioxide in Breath OBJECTIVES 1. Measure the partial pressure of carbon dioxide in your breath 2. Estimate the volume of air you exhale per day 3. Estimate the volume and mass of CO2 you

More information

TV = Tidal volume (500ml) IRV = Inspiratory reserve volume (3,000 ml)

TV = Tidal volume (500ml) IRV = Inspiratory reserve volume (3,000 ml) By: Amin alajlouni Lec: 2nd record Date: 29/10/2017 First of all, this is my first sheet so excuse any mistakes I might make and let's start: As we said before in our last lecture about lung capacities

More information

2.1.1 List the principal structures of the

2.1.1 List the principal structures of the physiology 2.1.1 List the principal structures of the The principle structures of the respiratory are: Nose/Mouth used for inhalation of oxygen-rich air and expelling carbon dioxide rich air Pharynx -

More information

Part 1: Inspiratory and expiratory pressures

Part 1: Inspiratory and expiratory pressures BIOEN 327 Autumn 2013 Experimental procedures Throughout these experiments, record in your notebook the purpose of the experiments, the methods you used, and the results. Where possible, make predictions

More information

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing Respiratory system Function Outline - Respiratory System I. II. III. IV. Respiratory System The function of the respiratory system is to bring in oxygen to the body and remove carbon dioxide. Function

More information

Respiratory system & exercise. Dr. Rehab F Gwada

Respiratory system & exercise. Dr. Rehab F Gwada Respiratory system & exercise Dr. Rehab F Gwada Objectives of lecture Outline the major anatomical components & important functions of the respiratory system. Describe the mechanics of ventilation. List

More information

The Respiratory System

The Respiratory System Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 13 The Respiratory System Slides 13.1 13.30 Lecture Slides in PowerPoint by Jerry L. Cook Organs of the Respiratory system

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Respiratory system. Premedical - Biology

Respiratory system. Premedical - Biology Respiratory system Premedical - Biology Composition of atmosphere Nitrogen (N 2 ) 840 ppmv (78.084%) Oxygen (O 2 ) 209,460 ppmv (20.946%) Carbon dioxide (CO 2 ) 387 ppmv (0.0387%) Argon (Ar), Neon (Ne),

More information

Cardiopulmonary Physical Therapy. Haneul Lee, DSc, PT

Cardiopulmonary Physical Therapy. Haneul Lee, DSc, PT Cardiopulmonary Physical Therapy Haneul Lee, DSc, PT OBJECTIVE 1. Explain the principle physiological function of the pulmonary system 2. Outline the major anatomical components of the respiratory system.

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

The Respiratory System. Medical Terminology

The Respiratory System. Medical Terminology The Respiratory System Medical Terminology The respiratory system is where gas exchange occurs via respiration; inhalation/exhalation. pick up oxygen from inhaled air expels carbon dioxide and water sinus

More information

Fashionable, don t you think?

Fashionable, don t you think? Fashionable, don t you think? 1. Passageway 2. Structure 3. Passageway 4. What is the name of the structure labeled with # 9 in the model at left? 5. What is the name of the structure labeled with # 11

More information

Activity 2: Examining the Effect of Changing Airway Resistance on Respiratory Volumes

Activity 2: Examining the Effect of Changing Airway Resistance on Respiratory Volumes 1 BGYC34 PhysioEx Lab 7 Respiratory Systems Mechanics Marking Scheme Part 1 Complete PhysioEx lab #7. Hand-in all of the pages associated with the lab. Note that there are 5 activities to be completed.

More information

Chapter 37: Pulmonary Ventilation. Chad & Angela

Chapter 37: Pulmonary Ventilation. Chad & Angela Chapter 37: Pulmonary Ventilation Chad & Angela Respiratory Structures Basic Structures of Respiration Nasal/Oral Cavities Larynx Trachea Bronchi Secondary Bronchi Bronchioles Alveoli Mechanics of Ventilation

More information

Human Biology Respiratory System

Human Biology Respiratory System Human Biology Respiratory System Respiratory System Responsible for process of breathing Works in cooperation with Circulatory system Three types: 1. Internal Respiration 2. External Respiration 3. Cellular

More information

Respiratory Response to Physiologic Challenges. Evaluation copy

Respiratory Response to Physiologic Challenges. Evaluation copy Respiratory Response to Physiologic Challenges Computer 20 The respiratory cycle of inspiration and expiration is controlled by complex mechanisms involving neurons in the cerebral cortex, brain stem,

More information

RESPIRATION III SEMESTER BOTANY MODULE II

RESPIRATION III SEMESTER BOTANY MODULE II III SEMESTER BOTANY MODULE II RESPIRATION Lung Capacities and Volumes Tidal volume (TV) air that moves into and out of the lungs with each breath (approximately 500 ml) Inspiratory reserve volume (IRV)

More information

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration.

Breathing: The normal rate is about 14 to 20 times a minute. Taking in of air is called Inspiration and the forcing out of air is called Expiration. Biology 12 Respiration Divisions of Respiration Breathing: entrance and exit of air into and out of the lungs External Respiration: exchange of gases(o2 and CO2) between air (in alveoli) and blood Internal

More information

Respiratory Physiology

Respiratory Physiology Respiratory Physiology Background Information: When inspiring, the pleura attached to the internal chest wall is pulled outward as the thoracic cavity expands. The pleural cavity [space between the outer

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Experiment 19 Measurement of lung volumes provides a tool for understanding normal function of the lungs as well as disease states. The breathing cycle is initiated by expansion

More information

Observations of the Properties of the Human Respiratory System. April Ramos Dela Fuente. Bill Keenen; Tommy Kham; Grace Park

Observations of the Properties of the Human Respiratory System. April Ramos Dela Fuente. Bill Keenen; Tommy Kham; Grace Park P a g e 1 Observations of the Properties of the Human Respiratory System April Ramos Dela Fuente Bill Keenen; Tommy Kham; Grace Park NPB 101L - Section 06 - Ailsa Dalgliesh 11/25/14 P a g e 2 INTRODUCTION

More information

Biology 347 General Physiology Lab Basic Pulmonary Functions: Respirometry and Factors that Effect Respiration

Biology 347 General Physiology Lab Basic Pulmonary Functions: Respirometry and Factors that Effect Respiration Biology 347 General Physiology Lab Basic Pulmonary Functions: Respirometry and Factors that Effect Respiration Objectives Students will measure breathing parameters in a resting subject. Students will

More information

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46 Human gas exchange Question Paper Level Subject Exam oard Topic Sub Topic ooklet O Level iology ambridge International Examinations Respiration Human gas exchange Question Paper Time llowed: 56 minutes

More information

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

Breathing oxygenates the blood to allow food to be respired

Breathing oxygenates the blood to allow food to be respired Chapter 6 Breathing oxygenates the blood to allow food to be respired This chapter covers: the structure of the human gas exchange system the mechanism of breathing gas exchange in the alveoli the concept

More information

Human Respiration and Regulation. Jean Liu. Group Bernard (Group 1): Megan Bailey, Katharine Chew, David Ma. Section 12, TA Justin Van Hoorebeke

Human Respiration and Regulation. Jean Liu. Group Bernard (Group 1): Megan Bailey, Katharine Chew, David Ma. Section 12, TA Justin Van Hoorebeke 1 Human Respiration and Regulation Jean Liu Group Bernard (Group 1): Megan Bailey, Katharine Chew, David Ma Section 12, TA Justin Van Hoorebeke November 28, 2014 2 Introduction The respiratory system is

More information

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e 2 Yanal Jumana Jihad Jamil Nazzal 0 P a g e note: this sheet was written and corrected according to the records from section 2 so you may find differences in the arrangement of topics from the records

More information

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial Gas Exchange in Animals Uptake of O2 from environment and discharge of CO2 Respiratory medium! water for aquatic animals, air for terrestial Respiratory surface! skin, gills, lungs Circulatory System O2/CO2

More information

Part II. Under Construction Station Instructions. Lab Station A - Blue Print: There is O 2 Here!

Part II. Under Construction Station Instructions. Lab Station A - Blue Print: There is O 2 Here! Lab Station A - Blue Print: There is O 2 Here! Description: In this lab, you will consider the problem: What happened to the oxygen in the air we breathed in? Air that enters the body upon inhalation contains

More information

LAB 3: RESPIRATORY MECHANICS

LAB 3: RESPIRATORY MECHANICS BIOEN 327 Autumn 2012 LAB 3: RESPIRATORY MECHANICS Pressures throughout the cardiovascular system are important for the health of the body and of the system itself. Today we explore pulmonary pressures

More information

PHOTOSYNTHESIS AND CELLULAR RESPIRATION LAB / 67

PHOTOSYNTHESIS AND CELLULAR RESPIRATION LAB / 67 PHOTOSYNTHESIS AND CELLULAR RESPIRATION LAB / 67 OBJECTIVE: (Copy or Summarize - 1pt) Students will directly observe the role of indicators in identifying the presence or lack of molecules or ions Students

More information

Exercise and Respiration Rate

Exercise and Respiration Rate Activity 17 PS-2820 Physiology: Breathing, respiration rate Exercise and Respiration Rate DataStudio GLX setup file: respiration.glx Qty Equipment and Materials Part Number 1 PASPORT Xplorer GLX PS-2002

More information

Structures of the Respiratory System include:

Structures of the Respiratory System include: Respiratory System Structures of the Respiratory System include: ü Oral Cavity ü Nasal Cavity ü Pharynx ü Epiglottis ü Larynx ü Trachea ü Diaphragm ü Lung ü Bronchus ü Bronchioles ü Alveolus ü Pulmonary

More information

Topic 13: Gas Exchange Ch. 42. Gas Exchange pp Gas Exchange. Gas Exchange in Fish pp Gas Exchange in Fish

Topic 13: Gas Exchange Ch. 42. Gas Exchange pp Gas Exchange. Gas Exchange in Fish pp Gas Exchange in Fish Topic 13: Gas Exchange Ch. 42 Fig. 42.24 Gas Exchange pp.979-989 Gas exchange involves the uptake of oxygen and the discharge of carbon dioxide (i.e. respiration or breathing). It is necessary for cellular

More information

Respiratory Physiology Gaseous Exchange

Respiratory Physiology Gaseous Exchange Respiratory Physiology Gaseous Exchange Session Objectives. What you will cover Basic anatomy of the lung including airways Breathing movements Lung volumes and capacities Compliance and Resistance in

More information

Regulation of Breathing

Regulation of Breathing Regulation of Breathing Introduction Breathing involves a complex interaction between many important respiratory organs and the blood. Air is brought into the lungs through the active process of inhalation,

More information

It is a product of proteins broken down in the mammal. It is exchanged for oxygen which is taken into the blood.

It is a product of proteins broken down in the mammal. It is exchanged for oxygen which is taken into the blood. 5 The table shows the approximate composition of air breathed out by a mammal. Where does the nitrogen in the air breathed out come from? It is a product of proteins broken down in the mammal. It is a

More information

GASEOUS EXCHANGE 17 JULY 2013

GASEOUS EXCHANGE 17 JULY 2013 GASEOUS EXCHANGE 17 JULY 2013 Lesson Description In this lesson we: Discuss what is gaseous exchange? Consider requirements of an efficient gaseous exchange surface. Look at diversity in gas exchange systems.

More information

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM A. CHAPTER REVIEW 1. Define the four components of respiration. 2. What happens to the air as it moves along the air passages? What

More information

ALVEOLAR - BLOOD GAS EXCHANGE 1

ALVEOLAR - BLOOD GAS EXCHANGE 1 ALVEOLAR - BLOOD GAS EXCHANGE 1 Summary: These notes examine the general means by which ventilation is regulated in terrestrial mammals. It then moves on to a discussion of what happens when someone over

More information

Respiratory System Homework

Respiratory System Homework Respiratory System Homework The R S is the body s breathing equipment. Similar to the D system, it takes S from outside the body (G, particularly O ), circulates them through the body to C and T, then

More information

GASEOUS EXCHANGE IN HUMANS 06 AUGUST 2014

GASEOUS EXCHANGE IN HUMANS 06 AUGUST 2014 GASEOUS EXCHANGE IN HUMANS 06 AUGUST 2014 In this lesson we: Lesson Description Look at gaseous exchange in humans in terms of o Ventilation o Inspiration o Expiration o Transport of gases o Homeostatic

More information

Department of Biology Work Sheet Respiratory system,9 class

Department of Biology Work Sheet Respiratory system,9 class I. Name the following : Department of Biology Work Sheet Respiratory system,9 class 1. A muscular sheet separating the thoracic and abdominal cavities. 2. A respiratory tube supported by cartilaginous

More information

Name period date assigned date due date returned

Name period date assigned date due date returned Name period date assigned date due date returned procedure 1. Take one balloon and stretch it out 2. Take one deep breath and blow into the balloon until you cannot breath out anymore. Do Not Take A Second

More information

CLASS COPY-DO NOT WRITE ON

CLASS COPY-DO NOT WRITE ON Save Our Shells - Central Question: How does carbon dioxide affect salt water? CLASS COPY-DO NOT WRITE ON Overview of experiment: Exhaling carbon dioxide into a beaker of salt water mimics the gas exchange

More information

The Respiration System in Humans. Madeline Pitman. Group Members: Kathryn Hillegass Michelle Liu Noelle Owen. Section 62 Danielle Cooper

The Respiration System in Humans. Madeline Pitman. Group Members: Kathryn Hillegass Michelle Liu Noelle Owen. Section 62 Danielle Cooper 1 The Respiration System in Humans Madeline Pitman Group Members: Kathryn Hillegass Michelle Liu Noelle Owen Section 62 Danielle Cooper August 11, 2014 2 A. Introduction Experiment Goals The experiment

More information

Respiratory Lecture Test Questions Set 3

Respiratory Lecture Test Questions Set 3 Respiratory Lecture Test Questions Set 3 1. The pressure of a gas: a. is inversely proportional to its volume b. is unaffected by temperature changes c. is directly proportional to its volume d. does not

More information

Respiration. Exercise 1A: Breathing in Resting Volunteers Aim: To measure breathing parameters in a resting individual.

Respiration. Exercise 1A: Breathing in Resting Volunteers Aim: To measure breathing parameters in a resting individual. Respiration Background The amount of air that moves in or out of the lungs during any one breathing cycle is called the tidal volume. Above and beyond normal inspiration, it is possible to breathe in additional

More information

Exercise & Cellular Respiration

Exercise & Cellular Respiration Exercise & Cellular Respiration Name: Block: Background Information. Cellular respiration (see chemical reaction below) is a chemical reaction that occurs in your cells to create energy; when you are exercising

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

Respiratory/Pulmonary Laboratory Experimentation

Respiratory/Pulmonary Laboratory Experimentation Respiratory/Pulmonary Laboratory Experimentation Introduction Anatomy Review The respiratory system has the dubious honor of being the system that permits the transport of gases from the environment inside

More information

REVISION: GASEOUS EXCHANGE 24 SEPTEMBER 2014 Lesson Description

REVISION: GASEOUS EXCHANGE 24 SEPTEMBER 2014 Lesson Description REVISION: GASEOUS EXCHANGE 24 SEPTEMBER 2014 Lesson Description In this lesson, we revise: Gaseous Exchange in Plants & Animals Gaseous Exchange in Humans Excretion in Humans Focus on the Kidney Gaseous

More information

AP Biology 12 Cellular Respiration Lab

AP Biology 12 Cellular Respiration Lab AP Biology 12 Cellular Respiration Lab Background: Each individual cell is responsible for the energy exchanges necessary to sustain its ordered structure. Cells accomplish this task by breaking down nutrient

More information

Circulation and Respiration: Vital Signs Student Version

Circulation and Respiration: Vital Signs Student Version Circulation and Respiration: Vital Signs Student Version In this lab, you will learn about the circulatory and respiratory systems. You will test the capacity of your lungs, measure your blood pressure

More information

Recitation question # 05

Recitation question # 05 Recitation and Lab # 05 The goal of this recitations / labs is to review material related to the CV and respiratory lectures for the second test of this course. Info required to answer this recitation

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

Measurements. Metric System

Measurements. Metric System Measurements Measurements are basic to any scientific pursuit. A measurement has both a magnitude (numeric value) and a unit. Metric units are used in the sciences. Metric System In science, the metric

More information

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Link full download: http://testbankair.com/download/test-bank-for-pilbeams-mechanicalventilation-physiological-and-clinical-applications-6th-edition-by-cairo/

More information

Lesson 12 New Procedure PULMONARY FUNCTION I

Lesson 12 New Procedure PULMONARY FUNCTION I Physiology Lessons for use with the Biopac Student Lab Lesson 12 New Procedure PULMONARY FUNCTION I Volumes and Capacities For Windows 98SE, Me, 2000 Pro, XP or Mac OS X 10.3-10.4 Richard Pflanzer, Ph.D.

More information

SOTM LAB: B7 12/99. DEVELOPERS OF LAB H Johnson JD896, B Nostro JD531, R Norton JD829, V Dunham JD877, E Shirley JD535

SOTM LAB: B7 12/99. DEVELOPERS OF LAB H Johnson JD896, B Nostro JD531, R Norton JD829, V Dunham JD877, E Shirley JD535 SOTM LAB: B7 12/99 I. TEACHER NOTES & GUIDELINES TITLE OF LAB: Investigating Breathing Volumes DEVELOPERS OF LAB H Johnson JD896, B Nostro JD531, R Norton JD829, V Dunham JD877, E Shirley JD535 OVERVIEW

More information

Part A How Many Drops Are in 1 ml of Water?

Part A How Many Drops Are in 1 ml of Water? Investigation: Tools and Measurements Name(s): Introduction: This investigation requires you to use various scientific tools to measure volume, mass, and dimensions of objects. The goal is to become familiar

More information

Students measure the change in pressure by varying the volume of trapped air in a syringe while:

Students measure the change in pressure by varying the volume of trapped air in a syringe while: How Does a Trapped Gas Behave? Teacher Information Objective Students investigate the effect of changes in the volume of a confined gas on pressure at constant temperature. Using the pressure sensor, students

More information