April KHALED MOUSA BACHA. Physiology #2. Dr. Nayef AL-Gharaibeh. Pulmonary volumes & capacities

Size: px
Start display at page:

Download "April KHALED MOUSA BACHA. Physiology #2. Dr. Nayef AL-Gharaibeh. Pulmonary volumes & capacities"

Transcription

1 25 th April Physiology #2 Pulmonary volumes & capacities Dr. Nayef AL-Gharaibeh KHALED MOUSA BACHA

2 We will start this lecture by explaining an important concept from the previous one: Intrapleural pressure is equal to -5 cmh 2 O at resting state, while during inspiration phase it will be around -8 cmh 2 O; so why there is an increase in this pressure negativity? There are two forces that affect the pleural space which are: 1- The chest expansion and diaphragm contraction which will pull the parietal layer "out and down" creating more negativity in the pleura (the red thick arrow). 2-Air filling force in the lungs that would push the visceral layer in the same direction which will decrease pleural suction (the blue thin arrow). If both forces have the same rate, there won't be a change in the pleural resting pressure, but the rate of chest expansion is more than air filling rate in the lungs which will validate the creation of more negativity in this cavity (e.g. the net pressure is equal to the negative pressure -suction forcecreated by air filling in the that is created by chest expansion minus the positive pressure that is lungs), Like if we close the glottis and try to expand the chest by doing forceful inspiration, the parietal layer will move while there is no air filling in the lungs which means that the visceral layer won't move, and that will create much more negativity in the pleura (-15 or -16 cmh 2 O). Now let's join this biophysical concept with another one: As this curve illustrates, intra-alveolar pressure starts from zero, then decreases to reach -1 cmh 2 O, after that it starts to increase in the middle of inspiratory phase to reach zero again, while intrapleural pressure keeps decreasing through the whole phase. Why? At the beginning of inspiratory phase -which is a suction force-, a negative pressure will be created due to inspiratory muscles contraction, and this negative pressure will appear at the curve (from zero to -1) but in the middle of inspiration there is another force which comes from the air filling of the alveoli which is positive pressure, now the airflow filling the alveoli force is more than the suction P a g e 1

3 force of the chest muscles, so the pressure will go up instead of keep decreasing, this is similar somehow to intrapleural pressure changes, but the pleural cavity is enclosed compartment which means that there is no air filling inside the pleura whereas the pushing force comes from the lungs!!! Now let's explain an another concept from this curve, the "Transpulmonary Pressure" Obviously it s the difference between the intra-alveolar pressure and the intraplural pressure. At the resting state the glottis is opened and before the inspiration - = 0 (-5) = 5 cmh 2 O At the middle of inspiration phase = (-1) (-6.5) = 5.5 cmh 2 O At the end of inspiration = 0 (-8) = 8 cmh 2 O When the transpulmonary pressure is equal to 5 cmh 2 O, the lungs are holding "x" volume of air, and as the transpulmonary pressure increases (from 5 to 5.5 then to 8 cmh 2 O), this indicates an increment in the air volume in the lungs "more than x" Because "transpulmonary pressure" definition: is the pressure which holds a certain volume of air in the lungs. The opposite scenario will happen during expiratory phase (from 8 to 5.5 then to 5 cmh 2 O), so the volume inside the lungs will decrease. And whenever the air volume in the lungs got fixed, the transpulmonary pressure won't change by its definition-. Pulmonary volumes and capacities This is another field of respiratory physiology and it is important for the evaluation of the respiratory functions. As the tests like ECG - which is done to evaluate cardiovascular functions-, blood pressure, temperature and chemicals concentration in the plasma. There is a "pulmonary function test; PFT" which we can explore the function of respiratory system through it. P a g e 2

4 The machine used in such test is called a spirometer, the classical one looks like the one in this picture, but we are going to use a high-tech, electrical and computerized one in the lab! How does this machine work? Spirometer consists of a chamber that is filled partially -at the edges- by water, and there is another chamber (floating drum) that is floating on the water on the top of the first chamber creating a cavity of air, at the base of it, there are two openings for tubes that the air will move through them (in & out), if the air increased in this cavity (by expiration) the floating drum will go up, while if it decreased (by inspiration) the drum will go down, and there is a connection to this drum with a pen that will move against a paper that is wrapped around rotating cylinder, this pen is going to draw lines on the paper according to the movement of the drum. Patient should close his nose and breathe from his mouth via the spirometer tube, during expiration, the volume of the air in the cavity will increase leading to raise the drum and drawing a line up, and the opposite thing will happen during inspiration, this lines will be proportional to the air volume inside the cavity, and because the cylinder is rotating, the lines will be drawn as waves making a "Spirograph" (while they would appear as overlapped lines if the cylinder was a static one) First of all, the lungs are floating in the chest with a certain volume of air that s always present in the lungs -the first breathe outside the uterus after the delivery is the hardest one in our entire life (excluding pathological situations) because it inflates the lungs, after that a fixed amount of air will remain in the lungs making the breathing process much easier!- Under a resting condition, we breathe normally and quietly because we do not need too much oxygen, while upon an exposure to any activity or stressful conditions we will start to breathe forcefully. Actually, we are able to breathe forcefully in a voluntary way, without a stress condition or doing exercises! And by that we can measure the different volumes inside the lung. TV = Tidal volume (500ml) IRV = Inspiratory reserve volume (3,000 ml) IC = Inspiratory capacity (3,500 ml) ERV = Expiratory reserve volume (1,000 ml) RV = Residual volume (1,200 ml) FRC = Functional residual capacity (2,200 ml) VC = Vital capacity (4,500 ml) TLC = Total lung capacity (5,700 ml) P a g e 3

5 Now let's talk about these different pulmonary volumes: Tidal Volume The volume of air that we inspire or expire during a resting state with a normal quiet breathing is called the Tidal Volume, we can approach it by asking the patient to breathe normally in the spirometer and that will be reflected as a small wave on Spirograph, the height of this wave represents the TV. The average value of TV is 0.5 L, and for females it's less than that! Inspiratory reserve volume Now, can we take a forceful inspiration after a normal one? Yes, because you are trying to do it now and it really works! actually that s done by sending signals by an action potential from the brain to all the muscles of inspiration (external intercostal muscles, diaphragm and accessory muscles) to contract, at first we inspire the half liter which is the TV, after that by increasing the contraction, chest expansion and the suction around the lungs, we will inspire much more than the TV, this inspired volume which entered after the TV is called the Inspiratory reserve volume. Its value is 3 L, which is a gift from god to take the amount of the oxygen that we need by increasing the volume of air in our lungs up to 3 liters on the top of TV upon demand! So physiologically, the human body is able to accommodate oxygen demand 6 times more than that required amount at resting state, which is a safety factor. Expiratory reserve volume We can approach it by doing a forceful expiration after we expel the TV by quiet expiration, and that is done by the contraction of internal intercostal muscles and abdominal recti. This extra amount of volume that's been expelled after the TV is called the Expiratory reserve volume and it reaches up to 1000 ml (1 L) it equals to 1100 milliliters according to Guyton which is our reference- Residual volume Which is the volume that remains in the lungs after the maximum ability for expiratory muscles contraction and reaching the point that we cannot expel more air; it equals to 1.2 L Humans lose this volume after a death or in the pathological situations like penetration of the lung layer or the chest layer which is called in medicine a "pneumothorax" (air inside the chest); like when a sharp object penetrates the chest cavity (pleural cavity) turning intrapleural pressure into zero, which means that there is no air inside the lung. P a g e 4

6 Now let's explain these volumes in physiological terms: Figure A represents the lungs after a forceful expiration (Minimal lung volume -residual volume- at maximum deflation). A The continuous line in Figure B represents the volume of air inside the lungs after a normal expiration (which is RV+ERV; ml) it's called the resting condition volume, and during normal breathing the volume will start to go up and down between the continuous line and the dashed one (± TV) B Figure C illustrates the volume inside the lungs after a forceful inspiration, which is the maximum inflation of the lungs (RV; 1200 ml + ERV; 1000 ml + TV; 500 ml + IRV; 3000 ml = 5700 ml) Why is that important? Because sometimes we need more oxygen and we are able to take it from IRV, other times we need to expel more CO 2 from the lungs and we are able to get rid of more CO 2 through expelling the ERV from lungs; and by that we get rid of the "contaminated" air and get a fresh air as an ERV, TV and IRV leading to renewal of the air in our lungs. C Also having this amount of air in the lungs which is the "Functional residual capacity" (RV+ERV) gives us beauty to our chests; the chest won't be a good looking if it's fully collapsed after the expiration and fully inflated after the inspiration! And that meets the function also, since the blood is continuously flowing through the lungs, there should be an amount of air inside them to maintain the gas exchange function, so the blood can take up oxygen gas even during the expiratory phase -from ERV and RV-. To sum up: Residual volume: the minimum amount of air remaining in our lungs after the maximum forceful expiration. Expiratory reserve volume: the maximum amount of air a person can expire by forceful expiration after a normal expiration. Tidal volume: the amount of air a person inspires or expires under a resting condition. Inspiratory reserve volume: the maximum amount of air a person can inspire from the atmosphere by forceful inspiration after a normal inspiration. P a g e 5

7 Pulmonary Capacities A capacity is a value that results from the summation of two or more volumes; like: Inspiratory capacity Mathematically is TV + IRV (3.5 L) Physiologically, it is the maximum amount of air a person can inspire by forceful inspiration after a normal expiration. Functional residual capacity Equals to ERV + RV (2.2 L) And it is the maximum amount of air remaining inside the lungs after a normal expiration. Vital capacity Equals to IRV + TV +ERV (4.5 L) It is the maximum amount of air a person can expire forcefully after a forceful inspiration, or the maximum amount of air a person can inspire forcefully after a forceful expiration. And it's called a "vital" because it is vital for our life, since it is responsible for the renewal of the air in the lungs by increasing the oxygen and decreasing carbon dioxide contents. Total lung capacity The total value of all respiratory volumes; IRV + TV + ERV + RV (5.7 L) All these capacities are measurable by spirometry except the FRC and TLC since both of them contain the residual volume, which is unmeasurable by spirometer because it stays in the lungs and could not be expelled out or inspired! But there is a simple method called "Helium dilution method" to calculate FRC, RV and TLC. Helium dilution method Helium is a nontoxic gas to be inspired, so we can use it. A spirometer of known volume is filled with atmospheric air mixed with helium at a known concentration (this is called the initial concentration of helium; Ci He ). Before breathing from the spirometer, the person expires normally. At the end of this expiration, the remaining volume in the lungs is equal to the functional residual capacity. At this point, the subject immediately begins to breathe from the spirometer (with a closed nose), and the gases of the spirometer mix with the gases of the lungs. P a g e 6

8 As a result, the helium becomes diluted by the functional residual capacity gases and evenly distributed between FRC and the spirometer, and the volume of the functional residual capacity can be calculated from the degree of dilution of the helium, using the following formula: where FRC is functional residual capacity, Ci He is initial concentration of helium in the spirometer, Cf He is final concentration of helium in the spirometer, and Vi Spir is initial volume of the spirometer. FRC = ( CiHe CfHe 1) ViSpir Once FRC is determined, we can calculate the residual volume by this equation: RV = FRC ERV Also the total lung capacity could be calculated through this one: TLC = FRC + IC *Actually, we can predict the FRC without these calculations, like if we try this method on a child female, and an adult male, the final concentration of the helium in spirometer would be much less for the adult male because the FRC is much larger, and the opposite thing for the child female. Finally, the dead space It s a volume on top of all the previously discussed ones, that is cannot be measured by simple spirometry (it needs a special method to be measured by spirometer). It is defined as the amount of air located in the air conducting channels; trachea, bronchi and bronchioles, where no gas exchange can happen (so called "dead space"), because gas exchange can occur only in the respiratory spaces; respiratory bronchioles, ducts and alveoli. there are two types of the dead space: the anatomical dead space: is the volume of air located in the bronchial tree (150 ml) it can be measured by a simple method as following: as we know, atmospheric air contains an oxygen, nitrogen, and a small amount of carbon dioxode, and the lungs contains the same gases! P a g e 7

9 at first the object has to expire forceflly then take a deep breath from a pure oxygen, allowing this oxygen to fill the lungs and bronchial tree (pulmonary spaces as well as the dead space), after that he have to expel the air in the spirometer that is connected with a device to measure the nitrogrn concentration, the first portion will be a pure oxygen (which was in the bronchial tree dead space- since there is no gas exchange there), after that the next portion of air will contains carbon dioxide and nitrogen due to gas exchage in the pulmonary spaces and mixing of the pure oxygen with pre-existing gases in the lungs. and the nitrogen concentration in this portion will be detected by the device that records and plotts nitrogin concentration to make a curve, and by that we can calculate the dead space volume (the first portion which consists of pure oxygen). The physiological dead space: some area in the respiratory spaces which has a ventilation but doesn t have a blood flow, it's considerd as a dead space because it doesn't exhibit any gas exchange, this space doesn't exist in healthy people, it might exist in tall people or those who have low blood pressure at the upper parts of their lungs (just ml), but it becomes a significant volume in abnormal pathological situations. THE END! Edited by: Cyrine katanani. Done by: Khaled Mousa Bacha. P a g e 8

Chapter 37: Pulmonary Ventilation. Chad & Angela

Chapter 37: Pulmonary Ventilation. Chad & Angela Chapter 37: Pulmonary Ventilation Chad & Angela Respiratory Structures Basic Structures of Respiration Nasal/Oral Cavities Larynx Trachea Bronchi Secondary Bronchi Bronchioles Alveoli Mechanics of Ventilation

More information

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System Introduction Respiration Chapter 10 The Respiratory System Provides a means of gas exchange between the environment and the body Plays a role in the regulation of acidbase balance during exercise Objectives

More information

25/4/2016. Physiology #01 Respiratory system Nayef Garaibeh Rawan Alwaten

25/4/2016. Physiology #01 Respiratory system Nayef Garaibeh Rawan Alwaten 25/4/2016 Physiology #01 Respiratory system Nayef Garaibeh Rawan Alwaten Respiratory System Introduction: - We breath while we are sleeping, talking, working and resting. - Respiratory diseases are abundant

More information

The Respiratory System

The Respiratory System Essentials of Human Anatomy & Physiology Elaine N. Marieb Seventh Edition Chapter 13 The Respiratory System Slides 13.1 13.30 Lecture Slides in PowerPoint by Jerry L. Cook Organs of the Respiratory system

More information

TV = Tidal volume (500ml) IRV = Inspiratory reserve volume (3,000 ml)

TV = Tidal volume (500ml) IRV = Inspiratory reserve volume (3,000 ml) By: Amin alajlouni Lec: 2nd record Date: 29/10/2017 First of all, this is my first sheet so excuse any mistakes I might make and let's start: As we said before in our last lecture about lung capacities

More information

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives

The physiological functions of respiration and circulation. Mechanics. exercise 7. Respiratory Volumes. Objectives exercise 7 Respiratory System Mechanics Objectives 1. To explain how the respiratory and circulatory systems work together to enable gas exchange among the lungs, blood, and body tissues 2. To define respiration,

More information

Physiology of the Respiratory System

Physiology of the Respiratory System Biology 212: Anatomy and Physiology II Physiology of the Respiratory System References: Saladin, KS: Anatomy and Physiology, The Unity of Form and Function 8 th (2018). Required reading before beginning

More information

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC 66 LAB 7 HUMAN RESPIRATORY LAB Assignments: Due before lab: Quiz: Three Respiratory Interactive Physiology Animations pages 69 73. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

More information

Lab 3. The Respiratory System (designed by Heather E. M. Liwanag with T.M. Williams)

Lab 3. The Respiratory System (designed by Heather E. M. Liwanag with T.M. Williams) Name Lab Partners Lab 3. The Respiratory System (designed by Heather E. M. Liwanag with T.M. Williams) Part 1. Lung Volumes and Capacities Objectives 1. Obtain graphical representation of lung capacities

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The tissues exchange O 2 directly with the air in

More information

Physiology of Respiration

Physiology of Respiration Physiology of Respiration External Respiration = pulmonary ventilation breathing involves 2 processes: inspiration expiration Inspiration an active process involves contraction of diaphragm innervated

More information

Respiratory system & exercise. Dr. Rehab F Gwada

Respiratory system & exercise. Dr. Rehab F Gwada Respiratory system & exercise Dr. Rehab F Gwada Objectives of lecture Outline the major anatomical components & important functions of the respiratory system. Describe the mechanics of ventilation. List

More information

Respiratory Physiology Gaseous Exchange

Respiratory Physiology Gaseous Exchange Respiratory Physiology Gaseous Exchange Session Objectives. What you will cover Basic anatomy of the lung including airways Breathing movements Lung volumes and capacities Compliance and Resistance in

More information

Airway: the tubes through which air flows between atmosphere and alveoli. Upper airway. Lower airway

Airway: the tubes through which air flows between atmosphere and alveoli. Upper airway. Lower airway Respiration Yu Yanqin ( 虞燕琴 ), PhD Dept. of fph Physiology Zhejiang University, School of Medicine Respiration Definition: the bodily processes involved in exchange of oxygen (O 2 ) and carbon dioxide

More information

Breathing. Physics of Breathing 11/14/2011. Function of Respiratory Tract. Structure of Respiratory Tract. Parts of the Respiratory Tract

Breathing. Physics of Breathing 11/14/2011. Function of Respiratory Tract. Structure of Respiratory Tract. Parts of the Respiratory Tract Breathing Function of Respiratory Tract The respiratory tract is a series of spaces and semirigid tubes designed to convey air into and out of the respiratory organs (lungs). Parts of the Respiratory Tract

More information

4/18/12 MECHANISM OF RESPIRATION. Every Breath You Take. Fun Facts

4/18/12 MECHANISM OF RESPIRATION. Every Breath You Take. Fun Facts Objectives MECHANISM OF RESPIRATION Dr Badri Paudel Explain how the intrapulmonary and intrapleural pressures vary during ventilation and relate these pressure changes to Boyle s law. Define the terms

More information

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The cell exchange O 2 directly with the air in the

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

Fashionable, don t you think?

Fashionable, don t you think? Fashionable, don t you think? 1. Passageway 2. Structure 3. Passageway 4. What is the name of the structure labeled with # 9 in the model at left? 5. What is the name of the structure labeled with # 11

More information

Respiratory Physiology

Respiratory Physiology Respiratory Physiology Background Information: When inspiring, the pleura attached to the internal chest wall is pulled outward as the thoracic cavity expands. The pleural cavity [space between the outer

More information

Respiratory System Lab

Respiratory System Lab Respiratory System Lab Note: Review the safety materials and wear goggles when working with chemicals. Read the entire exercise before you begin. Take time to organize the materials you will need and set

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

For more information about how to cite these materials visit

For more information about how to cite these materials visit Author(s): Louis D Alecy, 2009 License: Unless otherwise noted, this material is made available under the terms of the Creative Commons Attribution Non-commercial Share Alike 3.0 License: http://creativecommons.org/licenses/by-nc-sa/3.0/

More information

Respiratory System Review

Respiratory System Review KEY THIS TEST WILL BE COMPLETED IN ONE CLASS PERIOD MONDAY, MARCH 10. 2014 Respiratory System Review Name A. Directions: Fill in the blank with the appropriate vocabulary word or words (several examples

More information

3/24/2009 LAB D.HAMMOUDI.MD. 1. Trachea 2. Thoracic wall 3. Lungs 4. Primary bronchi 5. Diaphragm

3/24/2009 LAB D.HAMMOUDI.MD. 1. Trachea 2. Thoracic wall 3. Lungs 4. Primary bronchi 5. Diaphragm RESPIRATORY PHYSIOLOGY LAB D.HAMMOUDI.MD 1. Trachea 2. Thoracic wall 3. Lungs 4. Primary bronchi 5. Diaphragm 1 KEY WORDS TO KNOW BOYLE S LAW INTERCOSTAL NERVES PHRENIC NERVE DIAPHRAGM EXTERNAL INTERCOSTAL

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Physiology (3) Pulmonary Function Test:

Physiology (3) Pulmonary Function Test: Pulmonary Function Test: Today we will continue with the pulmonary function test, and the question is: why do we do pulmonary function tests for patients? Can pulmonary function tests tell us what type

More information

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM

BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM BIOLOGY 12: UNIT J - CHAPTER 15 - REVIEW WORKSHEET RESPIRATORY SYSTEM A. CHAPTER REVIEW 1. Define the four components of respiration. 2. What happens to the air as it moves along the air passages? What

More information

Respiratory Physiology 2

Respiratory Physiology 2 Respiratory Physiology 2 Session Objectives. What you will cover Gaseous Exchange Control of Breathing Rate Your objectives are State the function of support structures and epithelia of the bronchial tree

More information

Physiology - lecture 3

Physiology - lecture 3 Physiology - lecture 3 Residual Volume (RV):the amount of gas remaining in the lung at the end of a maximal exhalation Tidal Volume (TV):the volume of gas inhaled and exhaled during one respiratory cycle.

More information

Cardiopulmonary Physical Therapy. Haneul Lee, DSc, PT

Cardiopulmonary Physical Therapy. Haneul Lee, DSc, PT Cardiopulmonary Physical Therapy Haneul Lee, DSc, PT OBJECTIVE 1. Explain the principle physiological function of the pulmonary system 2. Outline the major anatomical components of the respiratory system.

More information

Respiratory system. Role. Ventilation consists of 4 (5) steps : oxygen delivery and carbon dioxide elimination ph balance sound and voice formation

Respiratory system. Role. Ventilation consists of 4 (5) steps : oxygen delivery and carbon dioxide elimination ph balance sound and voice formation Respiratory system Role oxygen delivery and carbon dioxide elimination ph balance sound and voice formation Ventilation consists of 4 (5) steps : 1. pulmonary ventilation gas exchange between lungs and

More information

Respiratory System. Part 2

Respiratory System. Part 2 Respiratory System Part 2 Respiration Exchange of gases between air and body cells Three steps 1. Ventilation 2. External respiration 3. Internal respiration Ventilation Pulmonary ventilation consists

More information

Respiration. The resspiratory system

Respiration. The resspiratory system Respiration The resspiratory system The Alveoli The lungs have about 300 million alveoli, with a total crosssec onal area of 50 70 m2.. Each alveolar sac is surrounded by blood capillaries. The walls of

More information

The Respiratory System Part I. Dr. Adelina Vlad

The Respiratory System Part I. Dr. Adelina Vlad The Respiratory System Part I Dr. Adelina Vlad The Respiratory Process Breathing automatic, rhythmic and centrally-regulated mechanical process by which the atmospheric gas moves into and out of the lungs

More information

Respiration Lab Instructions

Respiration Lab Instructions Respiration Lab Instructions This laboratory investigation can be performed in any order. Be sure to read all instructions for each section before performing the experiment. PART 1 STUDENT WET SPIROMETER

More information

CHAPTER 3: The cardio-respiratory system

CHAPTER 3: The cardio-respiratory system : The cardio-respiratory system Exam style questions - text book pages 44-45 1) Describe the structures involved in gaseous exchange in the lungs and explain how gaseous exchange occurs within this tissue.

More information

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory 10 II. RESPIRATORY VOLUMES, CAPACITIES & PULMONARY FUNCTION TESTS Respiratory volume is the term used for various volumes of air moved by or associated with the lungs at a given point in the respiratory

More information

Department of Biology Work Sheet Respiratory system,9 class

Department of Biology Work Sheet Respiratory system,9 class I. Name the following : Department of Biology Work Sheet Respiratory system,9 class 1. A muscular sheet separating the thoracic and abdominal cavities. 2. A respiratory tube supported by cartilaginous

More information

1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/

1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/ 1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/ CHAPTER 17 BREATHING AND EXCHANGE OF GASES Oxygen (O2) is utilised by the organisms to indirectly break down nutrient molecules like

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

Cornell Institute for. Biology Teachers. Respirometry Part I: Lung Volumes and Capacities. Lab issue/rev. date: 12/12/96. Title:

Cornell Institute for. Biology Teachers. Respirometry Part I: Lung Volumes and Capacities. Lab issue/rev. date: 12/12/96. Title: Cornell Institute for Biology Teachers Copyright Cornell Institute for Biology Teachers, 1999. This work may be copied by the original recipient from CIBT to provide copies for users working under the

More information

Chapter 15. Lecture and Animation Outline

Chapter 15. Lecture and Animation Outline Chapter 15 Lecture and Animation Outline To run the animations you must be in Slideshow View. Use the buttons on the animation to play, pause, and turn audio/text on or off. Please Note: Once you have

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

Respiratory Pulmonary Ventilation

Respiratory Pulmonary Ventilation Respiratory Pulmonary Ventilation Pulmonary Ventilation Pulmonary ventilation is the act of breathing and the first step in the respiratory process. Pulmonary ventilation brings in air with a new supply

More information

Lung Capacity. Science and Engineering Practices: S.1A.1; S.1A.2; S.1A.4; S.1A.5; S.1A.7

Lung Capacity. Science and Engineering Practices: S.1A.1; S.1A.2; S.1A.4; S.1A.5; S.1A.7 SC Academic Standards: NGSS DCI: Science and Engineering Practices: S.1A.1; S.1A.2; S.1A.4; S.1A.5; S.1A.7 Crosscutting Concepts: Patterns; Cause and Effect: Mechanism and Explanation; Systems and Systems

More information

CHAPTER 17 BREATHING AND EXCHANGE OF GASES

CHAPTER 17 BREATHING AND EXCHANGE OF GASES 268 BIOLOGY CHAPTER 17 BREATHING AND EXCHANGE OF GASES 17.1 Respiratory Organs 17.2 Mechanism of Breathing 17.3 Exchange of Gases 17.4 Transport of Gases 17.5 Regulation of Respiration 17.6 Disorders of

More information

STATIC BIOMECHANICS OF THE MAMMALIAN RESPIRATORY SYSTEM 1

STATIC BIOMECHANICS OF THE MAMMALIAN RESPIRATORY SYSTEM 1 STATIC BIOMECHANICS OF THE MAMMALIAN RESPIRATORY SYSTEM 1 Summary: We begin a consideration of breathing in mammals. We will start with the definitions of a series of sub- volumes of the total volume of

More information

Respiration. The ins and outs

Respiration. The ins and outs Respiration The ins and outs Functions 1. To bring O 2 into the body and transfer it to the blood stream 2. To remove CO 2 Circulation and respiration work together to achieve these functions Why Do We

More information

The Respiratory System. Medical Terminology

The Respiratory System. Medical Terminology The Respiratory System Medical Terminology The respiratory system is where gas exchange occurs via respiration; inhalation/exhalation. pick up oxygen from inhaled air expels carbon dioxide and water sinus

More information

Chapter 16 Respiratory System

Chapter 16 Respiratory System Introduction Chapter 16 Respiratory System The respiratory system consists of tubes that filter incoming air and transport it to alveoli where gases are exchanged. Think pair share: what organs are associated

More information

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing

Outline - Respiratory System. Function of the respiratory system Parts of the respiratory system Mechanics of breathing Regulation of breathing Respiratory system Function Outline - Respiratory System I. II. III. IV. Respiratory System The function of the respiratory system is to bring in oxygen to the body and remove carbon dioxide. Function

More information

Respiratory Physiology. ED Primary Teaching

Respiratory Physiology. ED Primary Teaching Respiratory Physiology ED Primary Teaching Functions of the respiratory system Gas exchange with O2 and CO2 Surfactant production Defence - IgA and macrophages Filer - pollutants and thromboembolism Metabolises

More information

Breathing oxygenates the blood to allow food to be respired

Breathing oxygenates the blood to allow food to be respired Chapter 6 Breathing oxygenates the blood to allow food to be respired This chapter covers: the structure of the human gas exchange system the mechanism of breathing gas exchange in the alveoli the concept

More information

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biophysics of breathing.

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biophysics of breathing. Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno Biophysics of breathing. Spirometry 1 Lecture outline Mechanisms of gas exchange between organism and

More information

UNIT 9 - RESPIRATORY SYSTEM LECTURE NOTES

UNIT 9 - RESPIRATORY SYSTEM LECTURE NOTES UNIT 9 - RESPIRATORY SYSTEM LECTURE NOTES 9.01 GENERAL FUNCTIONS OF THE RESPIRATORY SYSTEM A. Brings oxygenated air to the alveoli B. Removes air containing carbon dioxide C. Filters, warms, and humidifies

More information

Pulmonary Function I (modified by C. S. Tritt, April 10, 2006) Volumes and Capacities

Pulmonary Function I (modified by C. S. Tritt, April 10, 2006) Volumes and Capacities I. Introduction Pulmonary Function I (modified by C. S. Tritt, April 10, 2006) Volumes and Capacities The volume of air a person inhales (inspires) and exhales (expires) can be measured with a spirometer

More information

LAB 3: RESPIRATORY MECHANICS

LAB 3: RESPIRATORY MECHANICS BIOEN 327 Autumn 2012 LAB 3: RESPIRATORY MECHANICS Pressures throughout the cardiovascular system are important for the health of the body and of the system itself. Today we explore pulmonary pressures

More information

Human Biology Respiratory System

Human Biology Respiratory System Human Biology Respiratory System Respiratory System Responsible for process of breathing Works in cooperation with Circulatory system Three types: 1. Internal Respiration 2. External Respiration 3. Cellular

More information

Respiratory System Homework

Respiratory System Homework Respiratory System Homework The R S is the body s breathing equipment. Similar to the D system, it takes S from outside the body (G, particularly O ), circulates them through the body to C and T, then

More information

Lung Volumes and Capacities

Lung Volumes and Capacities BIOL242 Lung Volumes and Capacities Measurement of lung volumes provides a tool for understanding normal function of the lungs as well as disease states. The breathing cycle is initiated by expansion of

More information

BIOH122 Human Biological Science 2

BIOH122 Human Biological Science 2 BIOH122 Human Biological Science 2 Session 11 Respiratory System 2 Pulmonary Ventilation Bioscience Department Endeavour College of Natural Health endeavour.edu.au Session plan o Pulmonary Ventilation

More information

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo

Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Test Bank for Pilbeams Mechanical Ventilation Physiological and Clinical Applications 6th Edition by Cairo Link full download: http://testbankair.com/download/test-bank-for-pilbeams-mechanicalventilation-physiological-and-clinical-applications-6th-edition-by-cairo/

More information

Respiratory/Pulmonary Laboratory Experimentation

Respiratory/Pulmonary Laboratory Experimentation Respiratory/Pulmonary Laboratory Experimentation Introduction Anatomy Review The respiratory system has the dubious honor of being the system that permits the transport of gases from the environment inside

More information

Respiratory Lecture Test Questions Set 1

Respiratory Lecture Test Questions Set 1 Respiratory Lecture Test Questions Set 1 1. The term "respiration" in its most complete meaning is: a. breathing b. oxygen transport c. carbon dioxide transport d. cellular energy production e. all of

More information

Regulation of Breathing

Regulation of Breathing Regulation of Breathing Introduction Breathing involves a complex interaction between many important respiratory organs and the blood. Air is brought into the lungs through the active process of inhalation,

More information

THE MECHANICS of RESPIRATION. Introduction

THE MECHANICS of RESPIRATION. Introduction THE MECHANICS of RESPIRATION Dr. James Duffin Departments of Physiology and Anaesthesia General Learning Objectives: 1. How is air moved into and out of the lungs? 2. What mechanical factors affect the

More information

The Human Respiratory System. Mary McKenna. Lab Partners: Jennifer Daciolas-Semon Veronika Mach Colette Roblee

The Human Respiratory System. Mary McKenna. Lab Partners: Jennifer Daciolas-Semon Veronika Mach Colette Roblee 1 The Human Respiratory System Mary McKenna Lab Partners: Jennifer Daciolas-Semon Veronika Mach Colette Roblee TA: Pearl Chen NPB 101L Section 1 November 25, 2014 2 Introduction The average human will

More information

1.2 The structure and functions of the cardio-respiratory system Learning objectives

1.2 The structure and functions of the cardio-respiratory system Learning objectives 1.2 The structure and functions of the cardio-respiratory system Learning objectives To understand the functions of the circulatory system. To be able to identify the differences between veins, arteries

More information

GASEOUS EXCHANGE 17 JULY 2013

GASEOUS EXCHANGE 17 JULY 2013 GASEOUS EXCHANGE 17 JULY 2013 Lesson Description In this lesson we: Discuss what is gaseous exchange? Consider requirements of an efficient gaseous exchange surface. Look at diversity in gas exchange systems.

More information

inquiry question How does the respiratory system contribute to energy production for movement? UNCORRECTED PAGE PROOFS

inquiry question How does the respiratory system contribute to energy production for movement? UNCORRECTED PAGE PROOFS inquiry question How does the respiratory system contribute to energy production for movement? chapter 7 Structure and functions of the respiratory system The respiratory system is the starting point for

More information

Respiratory System 1

Respiratory System 1 Respiratory System 1 Outline Respiratory structures Gills Air-Breathing Animals Amphibians and Reptiles Mammals Birds Structures and Mechanisms of Breathing 2 Copyright The McGraw-Hill Companies, Inc.

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

Part 1: Inspiratory and expiratory pressures

Part 1: Inspiratory and expiratory pressures BIOEN 327 Autumn 2013 Experimental procedures Throughout these experiments, record in your notebook the purpose of the experiments, the methods you used, and the results. Where possible, make predictions

More information

Biology 347 General Physiology Lab Basic Pulmonary Functions: Respirometry and Factors that Effect Respiration

Biology 347 General Physiology Lab Basic Pulmonary Functions: Respirometry and Factors that Effect Respiration Biology 347 General Physiology Lab Basic Pulmonary Functions: Respirometry and Factors that Effect Respiration Objectives Students will measure breathing parameters in a resting subject. Students will

More information

2.1.1 List the principal structures of the

2.1.1 List the principal structures of the physiology 2.1.1 List the principal structures of the The principle structures of the respiratory are: Nose/Mouth used for inhalation of oxygen-rich air and expelling carbon dioxide rich air Pharynx -

More information

RSPT 1060 OBJECTIVES OBJECTIVES OBJECTIVES EQUATION OF MOTION. MODULE C Applied Physics Lesson #1 - Mechanics. Ventilation vs.

RSPT 1060 OBJECTIVES OBJECTIVES OBJECTIVES EQUATION OF MOTION. MODULE C Applied Physics Lesson #1 - Mechanics. Ventilation vs. RSPT 1060 MODULE C Applied Physics Lesson #1 - Mechanics OBJECTIVES At the end of this module, the student should be able to define the terms and abbreviations used in the module. draw & explain the equation

More information

The Human Respiratory System

The Human Respiratory System The Human Respiratory System Maryam Maheri Kiana Kayoda, Nazalia, Emerald Bocobo NPB 101 L section 008 TA: Ashneel Krishna 2/26/2015 Introduction: The respiratory system allows gas exchange between cells

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Experiment 19 Measurement of lung volumes provides a tool for understanding normal function of the lungs as well as disease states. The breathing cycle is initiated by expansion

More information

The Respiration System in Humans. Madeline Pitman. Group Members: Kathryn Hillegass Michelle Liu Noelle Owen. Section 62 Danielle Cooper

The Respiration System in Humans. Madeline Pitman. Group Members: Kathryn Hillegass Michelle Liu Noelle Owen. Section 62 Danielle Cooper 1 The Respiration System in Humans Madeline Pitman Group Members: Kathryn Hillegass Michelle Liu Noelle Owen Section 62 Danielle Cooper August 11, 2014 2 A. Introduction Experiment Goals The experiment

More information

Assignments for Life Processes(Respiration)

Assignments for Life Processes(Respiration) Assignments for Life Processes(Respiration) 1 Question 1 Why do organisms need food? Organisms need food for obtaining energy to perform the vital functions. Question 2 What is a respiratory substrate?

More information

Restrictive and Obstructive Airway Diseases

Restrictive and Obstructive Airway Diseases iworx Physiology Lab Experiment Experiment HS-8-1 Restrictive and Obstructive Airway Diseases Note: The lab presented here is intended for evaluation purposes only. iworx users should refer to the User

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG GAS EXCHANGE AND TRANSPORT I. INTRODUCTION: Heterotrophs oxidize carbon cmpds using O 2 to generate CO 2 & H 2 O. This is cellular respiration II. HOW GAS ENTERS A CELL A. The composition of air: 79% N

More information

2/28/18. Respiratory System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Anatomy. Physiology. Respiratory System

2/28/18. Respiratory System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Anatomy. Physiology. Respiratory System Introduction Respiratory System Chapter 28 Respiration: We inhale air, extract oxygen from it, exhale air Cardiovascular and respiratory systems work together Failure of either system: - Disruption of

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Lab 17. The Respiratory System. Laboratory Objectives

Lab 17. The Respiratory System. Laboratory Objectives Lab 17 The Respiratory System Laboratory Objectives Identify and describe the anatomical structures of the respiratory system. Describe the relationship between volume and pressure. Describe changes in

More information

Human Respiration and Regulation. Jean Liu. Group Bernard (Group 1): Megan Bailey, Katharine Chew, David Ma. Section 12, TA Justin Van Hoorebeke

Human Respiration and Regulation. Jean Liu. Group Bernard (Group 1): Megan Bailey, Katharine Chew, David Ma. Section 12, TA Justin Van Hoorebeke 1 Human Respiration and Regulation Jean Liu Group Bernard (Group 1): Megan Bailey, Katharine Chew, David Ma Section 12, TA Justin Van Hoorebeke November 28, 2014 2 Introduction The respiratory system is

More information

Respiratory system. Premedical - Biology

Respiratory system. Premedical - Biology Respiratory system Premedical - Biology Composition of atmosphere Nitrogen (N 2 ) 840 ppmv (78.084%) Oxygen (O 2 ) 209,460 ppmv (20.946%) Carbon dioxide (CO 2 ) 387 ppmv (0.0387%) Argon (Ar), Neon (Ne),

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

(Slide 1) Lecture Notes: Respiratory System

(Slide 1) Lecture Notes: Respiratory System (Slide 1) Lecture Notes: Respiratory System I. (Slide 2) The Respiratory Tract A) Major structures and regions of the respiratory Tract/Route INTO body 1) nose 2) nasal cavity 3) pharynx 4) glottis 5)

More information

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46

Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46 Human gas exchange Question Paper Level Subject Exam oard Topic Sub Topic ooklet O Level iology ambridge International Examinations Respiration Human gas exchange Question Paper Time llowed: 56 minutes

More information

Monday, ! Today: Respiratory system! 5/20/14! Transport of Blood! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing!

Monday, ! Today: Respiratory system! 5/20/14! Transport of Blood! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing! Monday, 5.19.14! What we ve been covering! Circulatory system! Parts of blood! Heart! tubing! Transport of Blood! What is transported! Nutrients! Oxygen! Carbon Dioxide! Hormones! Antibodies! What it is/does!

More information

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e 2 Yanal Jumana Jihad Jamil Nazzal 0 P a g e note: this sheet was written and corrected according to the records from section 2 so you may find differences in the arrangement of topics from the records

More information

Human Respiration Laboratory Experiment By

Human Respiration Laboratory Experiment By Human Respiration Laboratory Experiment By Alison L., Thurow, Brittany Baierlein, Rachel C. Holsinger and Robin L. Cooper Department of Biology, University of Kentucky, Lexington, KY 40506 0225, USA. Purpose:

More information

(A) The partial pressure in the lungs is higher than in the blood, and oxygen diffuses out of the lungs passively.

(A) The partial pressure in the lungs is higher than in the blood, and oxygen diffuses out of the lungs passively. DAT Biology - Problem Drill 12: The Respiratory System Question No. 1 of 10 1. Which statement about the partial pressure of oxygen inside the lungs is correct? Question #01 (A) The partial pressure in

More information

Department of Biology Work Sheet Respiratory system

Department of Biology Work Sheet Respiratory system Department of Biology Work Sheet Respiratory system 1. Name the following : i. A muscular sheet separating the thoracic and abdominal cavities. ii. A respiratory tube supported by cartilaginous rings.

More information