Isocapnic hyperpnea (IH): fast-filtering foreign gases

Size: px
Start display at page:

Download "Isocapnic hyperpnea (IH): fast-filtering foreign gases"

Transcription

1 Isocapnic hyperpnea (IH): fast-filtering foreign gases Joseph A. Fisher M.D. FRCP(C) Professor, Faculty of Medicine University of Toronto and Chief Scientist, Thornhill Research Inc.

2 Aims: isocapnic hyperpnea (IH) What is it? What can it be used for? How does it work? Why does it work?

3 Background Uptake and of

4 uptake: CBF Tissue 1 Tissue 2 Tissue n

5 uptake: CBF Tissue 1 á V E Tissue 2 Tissue n

6 uptake: CBF á V E á [lung] Tissue 1 Tissue 2 Tissue n

7 uptake: lung and blood: via V E Brain: via CBF CBF á [blood] [An] gradient á [lung] Tissue 1 á V E Tissue 2 Tissue n

8 clearance: á V E Tissue 1 V E Tissue 2 Tissue n

9 clearance: á V E [lung] Tissue 1 V E Tissue 2 Tissue n

10 clearance: á V E [lung] [blood] [An] gradient á [An] gradient form brain Tissue 1 V E Tissue 2 Tissue n

11 clearance: á V E [lung] PaCO 2 [blood] á [An] gradient form brain CBF [An] gradient Tissue 1 V E Tissue n Tissue 2

12 clearance: á V E [lung] PaCO 2 [blood] á [An] gradient form brain CBF [An] gradient Tissue 1 V E Tissue n Tissue 2

13 clearance: á V E [lung] PaCO 2 [blood] á [An] gradient form brain CBF [An] gradient Tissue 1 V E Tissue n Tissue 2

14 clearance: á V E [lung] PaCO 2 [blood] á [An] gradient form brain CBF [An] gradient Tissue 1 V E Tissue n Tissue 2

15 clearance: á V E [lung] PaCO 2 [blood] á [An] gradient form brain CBF [An] gradient Tissue 1 V E Tissue n Tissue 2

16 clearance: á V E [lung] PaCO 2 [blood] á [An] gradient form brain CBF [An] gradient

17 clearance:! V E [lung] PaCO 2 [blood]! [An] gradient form brain CBF [An] gradient

18 clearance:! V E [lung] PaCO 2 [blood]! [An] gradient form brain CBF [An] gradient

19 clearance:! V E [lung] PaCO 2 [blood]! [An] gradient form brain CBF [An] gradient First issue: maintain isocapnia

20 Rebreathing series deadspace rebreathes An as well as CO 2 PaCO 2 not isocapnic 40 V E

21 Needed: A separate effect on anaesthe'c and on CO 2

22 Principle : Exhaled gas has equilibrated with the alveoli. **Does not contribute to gas exchange.

23 gas delivery Gas 1: non O rebreathing 2 demand regulator CO 2 is like in exhaled gas Gas 2 5% CO 2 Bal O 2 Gas bag (reservoir)

24 gas delivery Gas 1: O 2 Demand regulator Gas 2 5% CO 2 Gas bag (reservoir) Bal O 2 FRC FRC Gas 1 FRC A B Inspira@on C

25 gas delivery Gas 1: non O rebreathing 2 Gas bag (reservoir) Demand regulator Gas 2 5% CO 2 Bal O 2 Gas 1 = FRC FRC FRC FRC A B Inspira@on C D F

26 gas delivery Gas 1: non O rebreathing 2 Gas bag (reservoir) Demand regulator Gas 2 5% CO 2 Bal O 2 FRC FRC A B Inspira@on Gas 1 FRC C = FRC D FGF = FRC E = FGF FRC FRC F

27 Principle : 5% CO 2 **Does not contribute to gas exchange. total ven@la@on = FGF FRC FRC no CO 2 exchange CO 2 exchange

28 A PCO 2 (mmhg) 40 0 end-tidal PCO 2 VE (L/min) (min) Fisher et al. Exp Phys. 96(12);

29 A B PCO 2 (mmhg) 40 0 end-tidal PCO 2 End-tidal PCO 2 inspired PCO 2 VE (L/min) (min) 3 6 (min) Fisher et al. Exp Phys. 96(12);

30 Gas bag (reservoir) demand valve Gas 1: non O 2 rebreathing Demand regulator Gas 2 5% CO 2 Bal O 2 Gas bag (reservoir)

31 demand valve O 2 5% CO 2 bal O 2 CO 2 O 2

32 IH in the clearance of * Or any other hydrocarbons

33 Principle : total ven@la@on *An exchange = FGF FRC FRC no CO 2 exchange CO 2 exchange

34 Vesely et al. BJA (2003) 91(6):

35 Vesely et al. BJA (2003) 91(6):

36 IH with sevoflurane Katznelson A&A (106):

37 Katznelson A&A (106):

38 Effect doesn t last into PACU Katznelson A&A (106):

39 Isoflurane ( λ 1.4) $$$$ Sevoflurane (λ 0.6) $$$$ dopamine 1 receptor anatagonist 30% shorter wake- up

40 Isoflurane ( λ 1.4) $$$$ Sevoflurane (λ 0.6) $$$$ dopamine 1 receptor anatagonist 30% shorter wake- up $ IH Clearance VA (L/min) sevoflurane isoflurane

41 Isoflurane ( λ 1.4) $$$$ Sevoflurane (λ 0.6) $$$$ dopamine 1 receptor anatagonist 30% shorter wake- up $ IH Clearance VA (L/min) sevoflurane isoflurane

42 IH and the clearance of highly soluble hydrocarbons: CO

43 Rx of CO poisoning Air + COHb CO + O 2 Hb O 2 + COHb CO + O 2 Hb HBO 2 + COHb CO + O 2 Hb

44 Can IH to reduce COHb? O 2 + COHb CO + O 2 Hb IH does nothing for PO 2 IH does nothing to Hb affinity for CO: keeps CO on rbc IH can reduce PCO in alveoli: But PCO in blood is low. Is this puny gradient is worth it? Won t work?

45 Can IH reduce COHb? Maybe! The large store of CO in the blood... maintains PCO gradient... transfers CO equilibrium... so total CO elim α VA comes out of fast compartments: lung, blood so just may have rapid drop in [COHb] So, how important is this effect, say, relazve ot HBO 2?

46 COHb (% saturation) CO poisoning Room air 100% O O 2 + I H Time (min) Fisher et al. Am.J.Crit.Care Med :

47 70 COHb (% saturation) CO poisoning Room air Hyperbaric O 2 Treatment 1 Hyperbaric O 2 Treatment Time (min) Fisher et al. Am.J.Crit.Care Med :

48 CO poisoning Room air COHb (% saturation) CO poisoning Room air 100% O O 2 + I H Hyperbaric O 2 Treatment 1 Hyperbaric O 2 Treatment Time (min)

49 t1/2 reduction in [COHb] Air 100% O 2 O 2 + IH HBO 2 Fisher Am J Resp Crit Care Med.1999;159:

50 Minute ventilation vs t 1/2 in humans Small increase in VE 120 t 1/2 [COHb] (min) x + Large reduczon in t1/2 x Minute ventilation (ml min -1 kg -1 ) Takeuchi et al. Am J Resp Crit Care Med. 161,

51 Aims: isocapnic hyperpnea (IH) What is it? What can it be used for? How does it work? Why does it work?

52 Take home message : IH: total ven@la@on *An exchange *CO exchange = FGF FRC FRC no CO 2 exchange CO 2 exchange * Or any other vola@le hydrocarbons

53 Aims: isocapnic hyperpnea (IH) What is it? What can it be used for? How does it work? Why does it work? Is it safe? How would I implement it at my place?

54 demand valve O 2 5% CO 2 bal O 2 CO 2 O 2

55

56

57 ANEclear, QED Gopalakrishnan A&A (104):815-21

58 IH ANEclear simple ++/ /++++ Control PCO 2 independent of VE Risk of â PO 2 N Y Risk of á PCO 2 N Y Airway R- spont vent unchanged á Minimum VT No ~ 0.5 L cost ++/ /++++ Y N

59 Gopalakrishnan A&A (104):815-21

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

Kinetics of Inhaled Anesthetic Agents

Kinetics of Inhaled Anesthetic Agents Kinetics of Inhaled Anesthetic Agents Copyright 1995-2011, James H Philip, all rights reserved. Dr. James Philip has performed funded research on Isoflurane, Sevoflurane, and Desflurane. He is often supported

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

Measurement of cardiac output by Alveolar gas exchange - Inert gas rebreathing

Measurement of cardiac output by Alveolar gas exchange - Inert gas rebreathing Measurement of cardiac output by Alveolar gas exchange - Inert gas rebreathing Carlo Capelli SS.MM. Università degli Studi di Verona Soluble Inert gas They dissolve and do not form bonds with haemoglobyn

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

Respiration - Human 1

Respiration - Human 1 Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

RESPIRATORY GAS EXCHANGE

RESPIRATORY GAS EXCHANGE RESPIRATORY GAS EXCHANGE Alveolar PO 2 = 105 mmhg; Pulmonary artery PO 2 = 40 mmhg PO 2 gradient across respiratory membrane 65 mmhg (105 mmhg 40 mmhg) Results in pulmonary vein PO 2 ~100 mmhg Partial

More information

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Table of Contents. By Adam Hollingworth

Table of Contents. By Adam Hollingworth By Adam Hollingworth Table of Contents Oxygen Cascade... 2 Diffusion... 2 Laws of Diffusion... 2 Diffusion & Perfusion Limitations... 3 Oxygen Uptake Along Pulmon Capillary... 4 Measurement of Diffusing

More information

Mechanical Ventilation. Which of the following is true regarding ventilation? Basics of Ventilation

Mechanical Ventilation. Which of the following is true regarding ventilation? Basics of Ventilation Mechanical Ventilation Jeffrey L. Wilt, MD, FACP, FCCP Associate Professor of Medicine Michigan State University Associate Program Director MSU-Grand Rapids Internal Medicine Residency Which of the following

More information

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG

IV. FROM AQUATIC TO ATMOSPHERIC BREATHING: THE TRACHEA & THE LUNG GAS EXCHANGE AND TRANSPORT I. INTRODUCTION: Heterotrophs oxidize carbon cmpds using O 2 to generate CO 2 & H 2 O. This is cellular respiration II. HOW GAS ENTERS A CELL A. The composition of air: 79% N

More information

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory 10 II. RESPIRATORY VOLUMES, CAPACITIES & PULMONARY FUNCTION TESTS Respiratory volume is the term used for various volumes of air moved by or associated with the lungs at a given point in the respiratory

More information

Fysiologie van de ademhaling - gasuitwisseling

Fysiologie van de ademhaling - gasuitwisseling What you will learn in this lecture... Lessenreeks co s 014-015 Fysiologie van de ademhaling - gasuitwisseling Professor Dr. Steffen Rex Department of Anesthesiology University Hospitals Leuven Department

More information

Respiratory Lecture Test Questions Set 3

Respiratory Lecture Test Questions Set 3 Respiratory Lecture Test Questions Set 3 1. The pressure of a gas: a. is inversely proportional to its volume b. is unaffected by temperature changes c. is directly proportional to its volume d. does not

More information

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial

Gas Exchange in Animals. Uptake of O2 from environment and discharge of CO2. Respiratory medium! water for aquatic animals, air for terrestial Gas Exchange in Animals Uptake of O2 from environment and discharge of CO2 Respiratory medium! water for aquatic animals, air for terrestial Respiratory surface! skin, gills, lungs Circulatory System O2/CO2

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

CHAPTER 3: The cardio-respiratory system

CHAPTER 3: The cardio-respiratory system : The cardio-respiratory system Exam style questions - text book pages 44-45 1) Describe the structures involved in gaseous exchange in the lungs and explain how gaseous exchange occurs within this tissue.

More information

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan

The Physiologic Basis of DLCO testing. Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan The Physiologic Basis of DLCO testing Brian Graham Division of Respirology, Critical Care and Sleep Medicine University of Saskatchewan Objectives Review gas transport from inhaled gas to the rest of the

More information

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie

RESPIRATORY PHYSIOLOGY. Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie RESPIRATORY PHYSIOLOGY Anaesthesiology Block 18 (GNK 586) Prof Pierre Fourie Outline Ventilation Diffusion Perfusion Ventilation-Perfusion relationship Work of breathing Control of Ventilation 2 This image

More information

VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL

VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL VENTILATION STRATEGIES FOR THE CRITICALLY UNWELL Dr Nick Taylor Visiting Emergency Specialist Teaching Hospital Karapitiya Senior Specialist and Director ED Training Clinical Lecturer, Australian National

More information

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi Oxygen and Carbon dioxide Transport Dr. Laila Al-Dokhi Objectives 1. Understand the forms of oxygen transport in the blood, the importance of each. 2. Differentiate between O2 capacity, O2 content and

More information

2. State the volume of air remaining in the lungs after a normal breathing.

2. State the volume of air remaining in the lungs after a normal breathing. CLASS XI BIOLOGY Breathing And Exchange of Gases 1. Define vital capacity. What is its significance? Answer: Vital Capacity (VC): The maximum volume of air a person can breathe in after a forced expiration.

More information

Respiratory physiology II.

Respiratory physiology II. Respiratory physiology II. Learning objectives: 29. Pulmonary gas exchange. 30. Oxygen transport in the blood. 31. Carbon-dioxide transport in the blood. 1 Pulmonary gas exchange The transport mechanism

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The cell exchange O 2 directly with the air in the

More information

αo 2 : solubility coefficient of O 2

αo 2 : solubility coefficient of O 2 Version 2006 Dr. Puntarica Suwanprathes 1) Fick s law of diffusion 2) facts which limit gas transfer 3) diffusion capacity gas volume gaseous phase dissolved gas exert pressure*** Solubility of Gas C =P.

More information

BREATHING AND EXCHANGE OF GASES

BREATHING AND EXCHANGE OF GASES 96 BIOLOGY, EXEMPLAR PROBLEMS CHAPTER 17 BREATHING AND EXCHANGE OF GASES MULTIPLE CHOICE QUESTIONS 1. Respiration in insects is called direct because a. The tissues exchange O 2 directly with the air in

More information

VIMA. (Volatile Induction and Maintenance Anesthesia) How and Why. James H. Philip M.E.(E), M.D.

VIMA. (Volatile Induction and Maintenance Anesthesia) How and Why. James H. Philip M.E.(E), M.D. VIMA (Volatile Induction and Maintenance Anesthesia) How and Why James H. Philip M.E.(E), M.D. Copyright 1995-2007, James H Philip, all rights reserved VIMA (Volatile Induction and Maintenance Anesthesia)

More information

Selecting and Connecting Breathing Systems

Selecting and Connecting Breathing Systems Selecting and Connecting Breathing Year Group: BVSc3 + Document number: CSL_A03 Equipment for this station: Equipment list: Pen Paper Calculator T-piece (in CSL a strip of white tape is around this system)

More information

ALVEOLAR - BLOOD GAS EXCHANGE 1

ALVEOLAR - BLOOD GAS EXCHANGE 1 ALVEOLAR - BLOOD GAS EXCHANGE 1 Summary: These notes examine the general means by which ventilation is regulated in terrestrial mammals. It then moves on to a discussion of what happens when someone over

More information

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange By: Aseel Jamil Al-twaijer Lec : physical principles of gas exchange Date:30 /10/2017 this lecture is about the exchange of gases between the blood and the alveoli. I might add some external definitions

More information

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC 66 LAB 7 HUMAN RESPIRATORY LAB Assignments: Due before lab: Quiz: Three Respiratory Interactive Physiology Animations pages 69 73. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

More information

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi

AIIMS, New Delhi. Dr. K. K. Deepak, Prof. & HOD, Physiology AIIMS, New Delhi Dr. Geetanjali Bade, Asst. Professor AIIMS, New Delhi Course : PG Pathshala-Biophysics Paper 13 : Physiological Biophysics Module 17 : Gas transport and pulmonary circulation Principal Investigator: Co-Principal Investigator: Paper Coordinator: Content Writer:

More information

Diffusion. Dr. Gyanendra Agrawal Senior Resident Deptt. of Pulmonary Medicine PGIMER, Chandigarh

Diffusion. Dr. Gyanendra Agrawal Senior Resident Deptt. of Pulmonary Medicine PGIMER, Chandigarh Diffusion Dr. Gyanendra Agrawal Senior Resident Deptt. of Pulmonary Medicine PGIMER, Chandigarh Diffusion Primary function of lung gas exchange Movement of gas across the blood gas interface is by simple

More information

OXYGEN THERAPY. (Non-invasive O2 therapy in patient >8yrs)

OXYGEN THERAPY. (Non-invasive O2 therapy in patient >8yrs) OXYGEN THERAPY (Non-invasive O2 therapy in patient >8yrs) Learning aims Indications and precautions for O2 therapy Targets of therapy Standard notation O2 delivery devices Taps, tanks and tubing Notation

More information

P215 Respiratory System, Part 2

P215 Respiratory System, Part 2 P15 Respiratory System, Part Gas Exchange Oxygen and Carbon Dioxide constant need for oxygen constant production of carbon dioxide exchange (and movement) lung alveoli pulmonary arteries pulmonary capillaries

More information

Measurement of cardiac output by Alveolar gas exchange - CO 2 -O 2 based methods

Measurement of cardiac output by Alveolar gas exchange - CO 2 -O 2 based methods Measurement of cardiac output by Alveolar gas exchange - CO 2 -O 2 based methods Carlo Capelli SS.MM. Università degli Studi di Verona Why CO? V O 2 = CO * (C a C v )O 2 It s a determinat of V O 2 It dictates/modulates

More information

2.1.1 List the principal structures of the

2.1.1 List the principal structures of the physiology 2.1.1 List the principal structures of the The principle structures of the respiratory are: Nose/Mouth used for inhalation of oxygen-rich air and expelling carbon dioxide rich air Pharynx -

More information

Respiratory Signs: Tachypnea (RR>30/min), Desaturation, Shallow breathing, Use of accessory muscles Breathing sound: Wheezing, Rhonchi, Crepitation.

Respiratory Signs: Tachypnea (RR>30/min), Desaturation, Shallow breathing, Use of accessory muscles Breathing sound: Wheezing, Rhonchi, Crepitation. Respiratory Signs: Tachypnea (RR>30/min), Desaturation, Shallow breathing, Use of accessory muscles Breathing sound: Wheezing, Rhonchi, Crepitation. Paradoxical breathing Hyper-resonance on percussion:

More information

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation

Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation Unit II Problem 4 Physiology: Diffusion of Gases and Pulmonary Circulation - Physical principles of gases: Pressure of a gas is caused by the movement of its molecules against a surface (more concentration

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity and minor gases argon,

More information

Rodney Shandukani 14/03/2012

Rodney Shandukani 14/03/2012 Rodney Shandukani 14/03/2012 OXYGEN THERAPY Aerobic metabolism accounts for 90% of Oxygen consumption by tissues. generates ATP by oxidative phosphorylation. Oxygen cascade: Oxygen exerts a partial pressure,

More information

Respiratory system & exercise. Dr. Rehab F Gwada

Respiratory system & exercise. Dr. Rehab F Gwada Respiratory system & exercise Dr. Rehab F Gwada Objectives of lecture Outline the major anatomical components & important functions of the respiratory system. Describe the mechanics of ventilation. List

More information

LUNG CLEARANCE INDEX. COR-MAN IN Issue A, Rev INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark

LUNG CLEARANCE INDEX. COR-MAN IN Issue A, Rev INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark LUNG CLEARANCE INDEX METHOD COR-MAN-0000-008-IN Issue A, Rev. 3 2013-07-01 INNOVISION ApS Skovvænget 2 DK-5620 Glamsbjerg Denmark Tel.: +45 65 95 91 00 Fax: +45 65 95 78 00 info@innovision.dk www.innovision.dk

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

New Anesthesia Delivery Systems What Do I Need to Know About My New Machine?

New Anesthesia Delivery Systems What Do I Need to Know About My New Machine? New Anesthesia Delivery Systems What Do I Need to Know About My New Machine? James H. Philip, MEE, MD, CCE Anesthesiologist and Director Bioengineering Department of Anesthesiology, Pain, and Peri-operative

More information

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE

Chapter 4: Ventilation Test Bank MULTIPLE CHOICE Instant download and all chapters Test Bank Respiratory Care Anatomy and Physiology Foundations for Clinical Practice 3rd Edition Will Beachey https://testbanklab.com/download/test-bank-respiratory-care-anatomy-physiologyfoundations-clinical-practice-3rd-edition-will-beachey/

More information

ROUTINE PREOXYGENATION

ROUTINE PREOXYGENATION EDITORIAL ROUTINE PREOXYGENATION It is a fact of great clinical importance that the body oxygen stores are so small, and if replenishment ceases, they are normally insufficient to sustain life for more

More information

Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective

Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective Cory M. Alwardt, PhD, CCP Chief Perfusionist/ECMO Coordinator Assistant Professor of Surgery Mayo Clinic Hospital, Phoenix alwardt.cory@mayo.edu

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biophysics of breathing.

Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno. Biophysics of breathing. Lectures on Medical Biophysics Department of Biophysics, Medical Faculty, Masaryk University in Brno Biophysics of breathing. Spirometry 1 Lecture outline Mechanisms of gas exchange between organism and

More information

Regulation of Breathing

Regulation of Breathing Regulation of Breathing Introduction Breathing involves a complex interaction between many important respiratory organs and the blood. Air is brought into the lungs through the active process of inhalation,

More information

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook

Essential Skills Course Acute Care Module. Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Essential Skills Course Acute Care Module Respiratory Day 2 (Arterial Blood Gases) Pre course Workbook Acknowledgements This pre course workbook has been complied and updated with reference to the original

More information

Accumulation of EEV Barotrauma Affect hemodynamic Hypoxemia Hypercapnia Increase WOB Unable to trigger MV

Accumulation of EEV Barotrauma Affect hemodynamic Hypoxemia Hypercapnia Increase WOB Unable to trigger MV Complicated cases during mechanical ventilation Pongdhep Theerawit M.D. Pulmonary and Critical Care Division Ramathibodi Hospital Case I Presentation Male COPD 50 YO, respiratory failure, on mechanical

More information

Chapter 23. Gas Exchange and Transportation

Chapter 23. Gas Exchange and Transportation Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity other minor gases argon,

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA

Capnography in the Veterinary Technician Toolbox. Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA Capnography in the Veterinary Technician Toolbox Katie Pinner BS, LVT Bush Advanced Veterinary Imaging Richmond, VA What are Respiration and Ventilation? Respiration includes all those chemical and physical

More information

Activity 2: Examining the Effect of Changing Airway Resistance on Respiratory Volumes

Activity 2: Examining the Effect of Changing Airway Resistance on Respiratory Volumes 1 BGYC34 PhysioEx Lab 7 Respiratory Systems Mechanics Marking Scheme Part 1 Complete PhysioEx lab #7. Hand-in all of the pages associated with the lab. Note that there are 5 activities to be completed.

More information

birth: a transition better guidelines better outcomes the birth experience a challenging transition the fountains of life: 2/8/2018

birth: a transition better guidelines better outcomes the birth experience a challenging transition the fountains of life: 2/8/2018 better guidelines better outcomes neonatal resuscitation Anne G. Wlodaver, MD neonatology OU medical center the birth experience a challenging transition birth requires major and sudden transitions some

More information

(A) The partial pressure in the lungs is higher than in the blood, and oxygen diffuses out of the lungs passively.

(A) The partial pressure in the lungs is higher than in the blood, and oxygen diffuses out of the lungs passively. DAT Biology - Problem Drill 12: The Respiratory System Question No. 1 of 10 1. Which statement about the partial pressure of oxygen inside the lungs is correct? Question #01 (A) The partial pressure in

More information

PROBLEM SET 9. SOLUTIONS April 23, 2004

PROBLEM SET 9. SOLUTIONS April 23, 2004 Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

More information

OXYGEN PHYSIOLOGY AND PULSE OXIMETRY

OXYGEN PHYSIOLOGY AND PULSE OXIMETRY Louis Al-Saleem 5/4/13 OXYGEN PHYSIOLOGY AND PULSE OXIMETRY A very experienced senior resuscitation nurse approached me at work recently, and asked if there was any circulating academic evidence about

More information

Physiological Basis of Mechanical Ventilation

Physiological Basis of Mechanical Ventilation Physiological Basis of Mechanical Ventilation Wally Carlo, M.D. University of Alabama at Birmingham Department of Pediatrics Division of Neonatology wcarlo@peds.uab.edu Fine Tuning Mechanical Ventilation

More information

Introduction to Conventional Ventilation

Introduction to Conventional Ventilation Introduction to Conventional Ventilation Dr Julian Eason Consultant Neonatologist Derriford Hospital Mechanics Inspiration diaphragm lowers and thorax expands Negative intrathoracic/intrapleural pressure

More information

4. For external respiration to occur effectively, you need three parameters. They are:

4. For external respiration to occur effectively, you need three parameters. They are: Self Assessment Module D Name: ANSWER KEY 1. Hypoxia should be assumed whenever the PaO 2 is below 45 mm Hg. 2. Name some clinical conditions that will result in hyperventilation (respiratory alkalosis).

More information

Selecting the Ventilator and the Mode. Chapter 6

Selecting the Ventilator and the Mode. Chapter 6 Selecting the Ventilator and the Mode Chapter 6 Criteria for Ventilator Selection Why does the patient need ventilatory support? Does the ventilation problem require a special mode? What therapeutic goals

More information

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e

Yanal. Jumana Jihad. Jamil Nazzal. 0 P a g e 2 Yanal Jumana Jihad Jamil Nazzal 0 P a g e note: this sheet was written and corrected according to the records from section 2 so you may find differences in the arrangement of topics from the records

More information

Principles of mechanical ventilation. Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands

Principles of mechanical ventilation. Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands Principles of mechanical ventilation Anton van Kaam, MD, PhD Emma Children s Hospital AMC Amsterdam, The Netherlands Disclosure Research grant Chiesi Pharmaceuticals Research grant CareFusion GA: 27 weeks,

More information

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE

Office. Hypoxia. Or this. Or even this. Hypoxia E-1. COL Brian W. Smalley DO, MSPH, CPE Hypoxia Office COL Brian W. Smalley DO, MSPH, CPE Or this Or even this Hypoxia State of oxygen deficiency in the blood cells and tissues sufficient to cause impairment of function 4 Types Hypoxic Hypemic

More information

RC-178 a/a ratio. Better. PaO2 ACM than. a/a= PAO2. guessing!! Copyrights All rights reserved Louis M. Sinopoli

RC-178 a/a ratio. Better. PaO2 ACM than. a/a= PAO2. guessing!! Copyrights All rights reserved Louis M. Sinopoli RC-178 a/a ratio Better a/a= PaO2 ACM than PAO2 guessing!! 1 A relative RC-178 a/a ratio way to judge the lungs ability to transport O2. Determine new FIO2 to achieve PaO 2 amount that got through the:

More information

APNOEA AND PRE-OXYGENATION

APNOEA AND PRE-OXYGENATION APNOEA AND PRE-OXYGENATION Original article by Dr Andrew Biffen, Dr Richard Hughes Torbay Hospital, UK INTRODUCTION The purpose of pre-oxygenation is to increase physiological stores of oxygen in order

More information

The Human Respiratory System

The Human Respiratory System The Human Respiratory System Maryam Maheri Kiana Kayoda, Nazalia, Emerald Bocobo NPB 101 L section 008 TA: Ashneel Krishna 2/26/2015 Introduction: The respiratory system allows gas exchange between cells

More information

Indications for Mechanical Ventilation. Mechanical Ventilation. Indications for Mechanical Ventilation. Modes. Modes: Volume cycled

Indications for Mechanical Ventilation. Mechanical Ventilation. Indications for Mechanical Ventilation. Modes. Modes: Volume cycled Mechanical Ventilation Eric A. Libré, MD VCU School of Medicine Inova Fairfax Hospital and VHC Indications for Mechanical Ventilation Inadequate ventilatory effort Rising pco2 with resp acidosis (7.25)

More information

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS

VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS VENTILATION AND PERFUSION IN HEALTH AND DISEASE Dr.HARIPRASAD VS Ventilation Total ventilation - total rate of air flow in and out of the lung during normal tidal breathing. Alveolar ventilation -represents

More information

Understanding Rebreathing Kinetics

Understanding Rebreathing Kinetics Understanding Rebreathing Kinetics James H Philip, ME(E), MD, CCE Anesthesiologist and Director Bioengineering, Brigham and Women's Hospital Professor of Anaesthesia, Harvard Medical School Boston Massachusetts

More information

Mechanical ven3la3on. Neonatal Mechanical Ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on 8/25/11. What we need to do"

Mechanical ven3la3on. Neonatal Mechanical Ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on. Mechanical ven3la3on 8/25/11. What we need to do 8/25/11 Mechanical ven3la3on Neonatal Mechanical Ven3la3on Support oxygen delivery, CO2 elimination" Prevent added injury, decrease ongoing injury" Enhance normal development" Mark C Mammel, MD University

More information

Monitoring, Ventilation & Capnography

Monitoring, Ventilation & Capnography Why do we need to monitor? Monitoring, Ventilation & Capnography Keith Simpson BVSc MRCVS MIET(Electronics) Torquay, Devon. Under anaesthesia animals no longer have the ability to adequately control their

More information

RESPIRATORY MONITORING AND OXIMETRY

RESPIRATORY MONITORING AND OXIMETRY RESPIRATORY MONITORING AND OXIMETRY EE 471 F2016 Prof. Yasser Mostafa Kadah Introduction Respiratory monitoring includes measurement, evaluation, and monitoring of parameters of respiratory system, First

More information

Pressure Controlled Modes of Mechanical Ventilation

Pressure Controlled Modes of Mechanical Ventilation Pressure Controlled Modes of Mechanical Ventilation Christopher Junker Department of Anesthesiology & Critical Care Medicine George Washington University Saturday, August 20, 2011 Assist Control Hypoxemic

More information

PHTY 300 Wk 1 Lectures

PHTY 300 Wk 1 Lectures PHTY 300 Wk 1 Lectures Arterial Blood Gas Components The test provides information on - Acid base balance - Oxygenation - Hemoglobin levels - Electrolyte blood glucose, lactate, renal function When initially

More information

QED-100 Clinical Brief

QED-100 Clinical Brief QED-100 Clinical Brief THE QED-100 WITH SPONTANEOUSLY BREATHING PATIENTS Author: Derek Sakata, MD Assistant Professor of Anesthesiology University of Utah Department of Anesthesiology QED-100 offers clinical

More information

Respiratory Response to Physiologic Challenges. Evaluation copy

Respiratory Response to Physiologic Challenges. Evaluation copy Respiratory Response to Physiologic Challenges Computer 20 The respiratory cycle of inspiration and expiration is controlled by complex mechanisms involving neurons in the cerebral cortex, brain stem,

More information

Anesthesia Machine Intro

Anesthesia Machine Intro Anesthesia Machine Intro Brigham and Women s Hospital New Residents July 9, 2010 Copyright 2000-2010, James H Philip, all rights reserved ADS1 Ready JHP Anesthesia Machine Intro James H. Philip, MEE, MD,

More information

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here

Respiratory Medicine. A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics. Alveolar Gas Equation. See online here Respiratory Medicine A-A Gradient & Alveolar Gas Equation Laboratory Diagnostics See online here Alveolar gas equation helps to calculate the partial pressure of oxygen in alveoli and A-a gradient is the

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

Historically, rebreathing anesthesia systems

Historically, rebreathing anesthesia systems ISSN 2466-488X (Online) doi:10.5937/sjait1608193h Revijalni članak/review article LOW FLOW ANESTHESIA Cristian Hönemann 1, Marie-Luise Rübsam 1 1 Klinikum Leer ggmbh, Klinik für Anästhesie und Intensivmedizin,

More information

GAS EXCHANGE & PHYSIOLOGY

GAS EXCHANGE & PHYSIOLOGY GAS EXCHANGE & PHYSIOLOGY Atmospheric Pressure Intra-Alveolar Pressure Inspiration 760 mm HG at Sea Level (= 1 atm) Pressure due to gases (N2, O2, CO2, Misc.) Pressure inside the alveolus (air sac) Phrenic

More information

Respiratory Anatomy and Physiology. Respiratory Anatomy. Function of the Respiratory System

Respiratory Anatomy and Physiology. Respiratory Anatomy. Function of the Respiratory System Respiratory Anatomy and Physiology Michaela Dixon Clinical Development Nurse PICU BRHFC Respiratory Anatomy Function of the Respiratory System - In conjunction with the cardiovascular system, to supply

More information

Observations of the Properties of the Human Respiratory System. April Ramos Dela Fuente. Bill Keenen; Tommy Kham; Grace Park

Observations of the Properties of the Human Respiratory System. April Ramos Dela Fuente. Bill Keenen; Tommy Kham; Grace Park P a g e 1 Observations of the Properties of the Human Respiratory System April Ramos Dela Fuente Bill Keenen; Tommy Kham; Grace Park NPB 101L - Section 06 - Ailsa Dalgliesh 11/25/14 P a g e 2 INTRODUCTION

More information

Respiration (revised 2006) Pulmonary Mechanics

Respiration (revised 2006) Pulmonary Mechanics Respiration (revised 2006) Pulmonary Mechanics PUL 1. Diagram how pleural pressure, alveolar pressure, airflow, and lung volume change during a normal quiet breathing cycle. Identify on the figure the

More information

Chapter 13 The Respiratory System

Chapter 13 The Respiratory System Chapter 13 The Respiratory System by Dr. Jay M. Templin Brooks/Cole - Thomson Learning Atmosphere Tissue cell External respiration Alveoli of lungs 1 Ventilation or gas exchange between the atmosphere

More information

The Human Respiratory System Yuki Yang Aug.14, 2012

The Human Respiratory System Yuki Yang Aug.14, 2012 The Human Respiratory System Yuki Yang Aug.14, 2012 Introduction The human respiratory system is responsible for gas exchange between the environment and body tissues.(sherwood,461) The organs involved

More information

Comparison Of The Efficacy Of Two Low Fresh Gas Flow Techniques In Low Flow Anaesthesia

Comparison Of The Efficacy Of Two Low Fresh Gas Flow Techniques In Low Flow Anaesthesia ISPUB.COM The Internet Journal of Anesthesiology Volume 7 Number 1 Comparison Of The Efficacy Of Two Low Fresh Gas Flow Techniques In Low Flow Anaesthesia S Kulandayan, L Ng, D Kamarudin Citation S Kulandayan,

More information

Draeger Fabius GS Pre-Use Check

Draeger Fabius GS Pre-Use Check Draeger Fabius GS Pre-Use Check James H Philip MEE, MD, CCE 2011 James H Philip All rights reserved Remember to enter Machine # Fabius GS front view Fabius GS pre-use checkout procedure Fabius GS pre-use

More information

Errors in Monitoring. BWH Clinical Conference 10/06/04. Copyright 2004, James H Philip, all rights reserved.

Errors in Monitoring. BWH Clinical Conference 10/06/04. Copyright 2004, James H Philip, all rights reserved. Errors in Monitoring BWH Clinical Conference 10/06/04 Copyright 2004, James H Philip, all rights reserved. Technology Block 2004 10/06/04 James Philip MD Low flow&closed circuit safety&danger 10/06/04

More information

Vienna, Austria May 2005 MONITORING GAS EXCHANGE: FROM THEORY TO CLINICAL APPLICATION

Vienna, Austria May 2005 MONITORING GAS EXCHANGE: FROM THEORY TO CLINICAL APPLICATION EUROANESTHESIA 2005 Vienna, Austria 28-31 May 2005 MONITORING GAS EXCHANGE: FROM THEORY TO CLINICAL APPLICATION 5RC2 OLA STENQVIST Department of Anaesthesia and Intensive Care Sahlgrenska University Hospital

More information

Disclosures. The Pediatric Challenge. Topics for Discussion. Traditional Anesthesia Machine. Tidal Volume = mls/kg 2/13/14

Disclosures. The Pediatric Challenge. Topics for Discussion. Traditional Anesthesia Machine. Tidal Volume = mls/kg 2/13/14 2/13/14 Disclosures Optimal Ventilation of the Pediatric Patient in the OR Consulting Draeger Medical Jeffrey M. Feldman, MD, MSE Division Chief, General Anesthesia Dept. of Anesthesiology and Critical

More information