Technical Report Series 32 Number 77-2 CHARACTERISTICS OF WATER FLOW AT THE NORTH END OF THE WASSAW BARRIER ISLAND COMPLEX

Size: px
Start display at page:

Download "Technical Report Series 32 Number 77-2 CHARACTERISTICS OF WATER FLOW AT THE NORTH END OF THE WASSAW BARRIER ISLAND COMPLEX"

Transcription

1 32 r Technical Report Series 32 Number 77-2 J CHARACTERSTCS OF WATER FLOW AT THE NORTH END OF THE WASSAW BARRER SLAND COMPLEX Wassaw sland Erosion Study Part by George F. Oertel Georgia Marine Science Center University System of Georgia Skidaway sland, Georgia 81

2 CHARACTERSTCS OF WATER FLOW AT THE NORTH END OF THE WASSAW BARRER SLAND COMPLEX WASSAW SLAND EROSON STUDY PART by George F. Oertel Skidaway nstitute of Oceanography P.O. Box Savannah, Georgia 3146 The Technical Report Series of the Georgia Marine Science Center is issued by the Georgia Sea Grant Program and the Marine Extension Serv ice of the University of Georgia on Skidaway sland (P.O. Box 13687, Savannah, Georgia 3146). t was established to provide dissemination of technical information and progress reports resulting from marine studies and investigations mainly by staff and faculty of the University System of Georgia. n addition, it is intended for the presentation of techniques and methods, reduced data and general information of interest to industry, local, regional, and state governments and the public. nformation contained in these reports is in the public domain. f this prepublication copy is cited, it should be cited as an unpublished manuscript.

3 NTRODUCTON This report supplements an earlier report on the sedimentary framework of a channel margin shoal of an ebb delta, Wassaw Sound, Georgia 11 The purpose of this report is to produce an overview of water currents that may affect the sediment carpet described in the earlier report. Water flow was recorded at four different stations around the marginal shoal (Fig. 1). At each station, data was recorded for two tidal cycles (approximately 25 hours) at six minute intervals. n all, approximately 2, data points were collected. OBSERVATONS Stations A and B were located on the leeward side of the shoal and stations C and D were located on the channelward side of the shoal. Plotted data of water flow surveys illustrate the reversing flow of tidal currents above the shoal and adjacent shoreface. n all cases, flow reverses corresponded to the predicted change in the semi-diurnal tide (Figure 2,3,4,5). Maximum current speeds were recorded at station C located at approximately -6 meters (MLW) on the margin of the shoal and the channel. Station D was located approximately one quarter mile closer to the shoal than station C and at approximately -2 meters (MLW). The mean current speeds at stations C and D were 4 cm/s and 2 cm/s, respectively. Higher velocities at station C illustrate the channelized flow of the main channel. ncreases in 11 bed drag 11 at station D caused a reduction in flow speed. During the ebbing tide the offshore flow of water was 11 Shielding 11 by the marginal shoals and confined to the main channel. During the flooding tide, 11 Shielding 11 caused water

4 Soutl1 Carolina N J ~ ATLANTC OCEAN Noulicot UUes c = Noullcol Milt5 ~=- 1/2 B.c......_... '~,"':>\.,. slolion loco lion -2m m Figure 1. Location map of study area and current meter stations.

5 2 5 Meter A May 28, ' 11 ~ 14 Cl) "' Cl) ' Cl) 2 c 23 c.;: 26 Cl) -~ ,, \./'""' \ r", 1 ''., ' ~ ".J!. \ \ \ ) \~,_/ Time in Hours 4 /,' \~ ~ "!, ,., : ' 16 ~ _,"''',, \ '/',,. \ ~ \ _/', 1,... 1,,,,.. r,-,,.. ' 1---\ ,, 6 < (1) 4 - g 2 '< ::l 3 2 ;;;- 4 (1) sot... VJ Figure 2. Graphic representation of tidal current velocities and directions at Station A during a 26-hour interval (2 cou1plete tidal cycles). Stippled area indicates the portion of the sample when velocities were above the estimated threshol L. velocity for the sediment at the seabed.

6 "'... (/J G> Q)... 1 G> 9 6 -:1/"'\ c 27 c: -~ 24 -u... G> t A ~ tl t t j /' 11 f \ ~,.,, " 1/ ~ 1 '._.. r l ""'p;:..._j_ Meter B r l '', 1 1 '/, n ~ ' / ( ' J r 11 1 ~ 1 1 t r ll 1 ~ U ~ 1 ll l _! ~ A P Jl til \ A 1 l11l \ 1 \1 1.! ~, 4 ~ 1 1 \ 1 # 1 J 1 \" ~ A, ~ \ - June 5, 1975 ~ j r l ' /d /' " "~, tl "-J \ tl A '' ' ~ ' '' v, u 1: f.~ \ ' ' l-4 ~-,3 ~ 2 g 1 -- '< - ::::J (/J CD 2 T Time in Hours Figure 3. Graphi c representation of tidal current velocities and directions at Station B during a 26- hour interval (2 complete tidal cycles). Stippl ed area indicates the portion of the sa111ple when velocities were above the estit»ated threshol d velocity for the sediment at the seabed. ""'

7 Meter c 2-1 t t,, April 28, :\ 9,... 1 J, \ 11 :J.... (/) Q) 4> 14 ~ C1) 17 c: 2 1/~.~:~~j,.:,l. : : : : : : : : : : :-: : : : : :-: : : : : : : : g 23 1\ ~ _}l - ~ 26 '- - :~ ; \ 29 /t /\1 /\ "), -"'',., f \ \.--" 1" \ 32i " ' v \ 35-i / \ \ /\ ~- / \J \ - "'' -"" ' \/ ~ r < (1) - 4 g '< -:J 3 2 ~ (1) 4, Time in Hours V1 Figure 4. Graphic representati on of tida l current vel oc i t ies and directions at Station C during a 26- hour interval (2 comp lete tida l cyc l es). Sti pp l ed area indicates the portion of t he sa111p l e when vel ocities were above the estinlated threshold ve locity for the sediment at the seabed.

8 ,......!., (/) C1) C1) a... Ol Cl) ,, ' :\ 1 1 \ ~. ~.~,..., - ~ Meter C April < (1) 4 g... 2 '< :l c: 2 3 ~ s -... Cl) ',-' " r -"'' /,,...- ' \ \-"'.... J,., \J " ' ' " 1\1 \ " ) \..-""' t" \ v \ \ ~ 2 ;n- 4 (1) T Time in Hours ljl Figure 4. Graphi c representation of t i da l current vel oc i t i es and di rections at Station C during a 26- hour interval {2 comp lete tida l cyc l es). Sti pp l ed area i ndicates t he portion of t he samp l e when ve l ocities were above the estimated t hreshold ve locity for the sed iment at the seabed.

9 ~,, Meter D June 5, 1975 ~--~~----~r---~~~~~----~ ~. A k t 1 1 ' 1 r ll / 1111 lr 11 u,1,, tfj < (J) 2 - '< :l 3 ;;,. 1 (J) Time in Hours \ Figure 5. Graphic representation of tidal current velocities and directions at Station D during a 26- hour interval (2 complete tidal cycles). Stippled area indicates the portion of the samp l e when velocities were above the esti111ated threshold velocity for the sediment at the seabed.

10 7 to flow northeast around the distal end of the shea l and "spi into the main channel. n the channe l, l andward flo od in g water was confined by channel wa l ls and flw wa s t o the northwest. Flow vectors were determined at each station by obtaining the products of the mean speed and duration, and plotted in the mean di rections for the ebb and flood. Vectors and the graphic resultants of vectors are illustrated in figure 6. The resultant of the ebb and flood vectors at station was oriented toward the central axis of the channel. The resultant at station C was very small and oriented away from the channel ax i s. After two complete tidal cyc l es, station appeared to il lustrate a residual flow of water "spilling 11 over the shoals toward the axis of the main channel. This was produced by the flow of flood water toward the channel axis and not directly toward the inlet throat. The flow at station C was parallel to the axis of the main channel and directly toward the inlet throat during flood tide and directly away from the inlet throat during ebb tide. Although stations A and B were shielded from the main channel by marginal shoals, they al so illust rated semi-diurnal reverses in flow direction. The speeds were 25 cm/s and 19 cm/s fo r stations A and 8, respectively. At station A, the flood vector was oriented toward the end of Wassaw sland, and the ebb vector was oriented in a southeast direction. The resultant of the ebb and flood vectors was oriented toward a 11 spi 11 over 11 channe 1 in the shea 1. Observations indicate that water flows over the entire shoa l surface during the earl flood and is issued through 11 Spill-over 11 channels during the l ate flood. The l argest 11 Spi11-over 11 channel on the marginal shoa l was located adjacent to Station A.

11 -2m -2m.uili.._...ili......uit.._ ~L...Jlt.....ill..ulu.....uJu....lili... dlu._ ~ ~ c;_, ~oc;_,,o~ \c;_, Nautical Miles ~ 1/2-2m Vector Seale 3m 6m Figure 6. Vector map for all current velocities recorded lm above the seabed. Vectors are the product of the n~an direction and speed for the ebb and flood portions of the two canplete tidal cycles. The resultant is the graphic average of the ~b b and flood vectors.

12 9 At station B, water is transported toward the axis of the shoal during the flood, however, ebb currents are southeasterly and parallel to the axial flow of the main channel. The resultant flow at station B was toward the axis of the main channel but in an offshore direction. / The general scheme of circulation is similar to the models presented by Oertel (1974) and Hayes (1975). Reversing tidal currents are the major agents of water transport at Wassaw nlet. On the inlet side of the shoal reversing tidal currents were bipolar and parallel to the channel axis as a result of confinement by the channel walls. On the leeward side of the shoal, ebbing currents paralleled the axis of the shoal and channel, however, flooding currents were oblique to the axis and flowed toward the channel. The resultant flow from stations outside of the main channel is toward the channel axis and not necessarily toward the inlet throat. While the data described above yields information on the total velocity field, only a portion of these velocities is competent enough for sediment transport. A gross estimate of the sediment-transporting currents is made by plotting the resultant of the duration and mean velocity of currents greater than 25 cm/s (estimated threshold velocity). n figure 7, ebb, flood and resultant vectors were plotted for produtts of the duration and speeds greater than 25 cm/s. The resultant vectors representing these currents were considerably smaller than the vectors for the total velocity field. Leeward of the shoal, the resultant flow was toward the channel axis. n the channel (station C) the sediment flow was small and away from the channel axis. The resultant pattern of potentially competent currents is toward the axis of the marginal shoals. Observations of bedform orientations appear to confirm this pattern. On the channelward side of the shoal,

13 -2m - 2m _ill!l _illij._...ultl._...~~~....ili.._...1l..-dlll -2 m...ili,_..illkt......illu_..,_\lu..._ (}~ C:J ~(}C:J ~,(}~ \C:J Nautical Miles ~- 1/2 B~. ~ -2m Vector Scale 3m 6m Figure 7. Vector map for current velocities greater than 25 em/sec recorded lm above the seabed. Vectors are the product of the mean direction and speed of velocities greater than 25 an/sec for the ebb and flood portions of two crnnp lete tidal cyc les. The resultant is the graphic average of the ebb and flood vectors. t-'

14 megaripples appeared to be migrating toward the shoal axis in an oblique offshore direction. On the leeward side of the shoal, megaripples appeared to be migrating toward the shoal axis in an oblique onshore direction. Spill-over channels that transect the shoal surface are important structures necessary for maintaining this type of sand and water circulation. he spill-over channel closest to the shore is particularly important for bringing sediment to the north end of Wassaw sland. Events that produce the closure of this channel, would consequently cause stagnation of sediment in the floor of the spill-over channel and decrease the quantity of sediment being transported to the adjacent beach and shoa l. The sediment starved area at the north end of Wassaw would erode until the spill-over channel was reopened.

15 12 ACKNOWLEDGEMENTS This project was sponsored (in part) by the Georgia Sea Grant Program, supported by N.O.A.A., Office of Sea Grant, Department of Commerce, under grant no The u. S. Government is authori zed t o produce and distribute reprints for governmen t a~ purposes not withstanding any copyright notation that may appear hereon.

16 13 REFERENCES Hayes, M.O., 1975, Morphology of sand accumulations in estuaries,.ill Cronin, L.E. (ed. ), Estuarine Research, 2, Academic Press, New York, N.Y. Hoyt, J.H., R.J. Weimer and V.J. Henry Late Pleistocene and Recent sedimentation, central Georgia coast, U.S.A., p ,.l!J. Straaten Van, L.M., J.V. (ed.}, Deltaic and Shallow Marine Deposits, Elsevier, Amsterdam. Oertel, G. F. and C. F. Chamberlain Differential rates of shoreline advance and retreat of coastal barriers of Chatham and Liberty Counties, Georgia. Trans. Gulf Coast Assoc. Geol. Soc. XXV:

17

Reading Material. Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall

Reading Material. Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall Reading Material Inshore oceanography, Anikouchine and Sternberg The World Ocean, Prentice-Hall BEACH PROCESSES AND COASTAL ENVIRONMENTS COASTAL FEATURES Cross section Map view Terminology for Coastal

More information

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide.

Figure 4, Photo mosaic taken on February 14 about an hour before sunset near low tide. The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg and Roger Flood School of Marine and Atmospheric Sciences, Stony Brook University Since the last report was issued on January 31

More information

EVALUATION OF BEACH EROSION UP-DRIFT OF TIDAL INLETS IN SOUTHWEST AND CENTRAL FLORIDA, USA. Mohamed A. Dabees 1 and Brett D.

EVALUATION OF BEACH EROSION UP-DRIFT OF TIDAL INLETS IN SOUTHWEST AND CENTRAL FLORIDA, USA. Mohamed A. Dabees 1 and Brett D. EVALUATION OF BEACH EROSION UP-DRIFT OF TIDAL INLETS IN SOUTHWEST AND CENTRAL FLORIDA, USA Mohamed A. Dabees 1 and Brett D. Moore 1 The paper discusses the analysis of up-drift beach erosion near selected

More information

Inlet Management Study for Pass-A-Grille and Bunces Pass, Pinellas County, Florida

Inlet Management Study for Pass-A-Grille and Bunces Pass, Pinellas County, Florida Inlet Management Study for Pass-A-Grille and Bunces Pass, Pinellas County, Florida Final Report Submitted By Ping Wang, Ph.D., Jun Cheng Ph.D., Zachary Westfall, and Mathieu Vallee Coastal Research Laboratory

More information

The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg School of Marine and Atmospheric Sciences, Stony Brook University

The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg School of Marine and Atmospheric Sciences, Stony Brook University The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg School of Marine and Atmospheric Sciences, Stony Brook University This is the sixth in a series of reports describing the evolution

More information

Request Number IR1-12: Flow Passage. Information Request

Request Number IR1-12: Flow Passage. Information Request Request Number IR1-12: Flow Passage Information Request Provide additional information about the 100 metre flow passage channel scenario between the Westshore Terminals and the proposed Project terminal

More information

CHAPTER 134 INTRODUCTION

CHAPTER 134 INTRODUCTION CHAPTER 134 NEW JETTIES FOR TUNG-KANG FISHING HARBOR, TAIWAN Chi-Fu Su Manager Engineering Department Taiwan Fisheries Consultants, Inc. Taipei, Taiwan INTRODUCTION Tung-Kang Fishing Harbor, which is about

More information

WATERWAYS AND HARBORS DIVISION Proceedings of the American Society of Civil Engineers. EQUILIBRIUM FLOW AREAS OF INLETS ON SANDY COASTS a

WATERWAYS AND HARBORS DIVISION Proceedings of the American Society of Civil Engineers. EQUILIBRIUM FLOW AREAS OF INLETS ON SANDY COASTS a 6405 February, 1969 WWl J oumal of the WATERWAYS AND HARBORS DIVISION Proceedings of the American Society of Civil Engineers EQUILIBRIUM FLOW AREAS OF INLETS ON SANDY COASTS a By Morrough P. O'Brien,!

More information

Long Beach Island Holgate Spit Little Egg Inlet Historical Evolution Introduction Longshore Transport Map, Survey and Photo Historic Sequence

Long Beach Island Holgate Spit Little Egg Inlet Historical Evolution Introduction Longshore Transport Map, Survey and Photo Historic Sequence Appendix B Long Beach Island Holgate Spit Little Egg Inlet Historical Evolution Introduction The undeveloped southern end of Long Beach Island (LBI) is referred to as the Holgate spit as it adjoins the

More information

Appendix 5: Currents in Minas Basin. (Oceans Ltd. 2009)

Appendix 5: Currents in Minas Basin. (Oceans Ltd. 2009) Appendix 5: Currents in Minas Basin (Oceans Ltd. 29) Current in Minas Basin May 1, 28 March 29, 29 Submitted To: Minas Basin Pulp and Power P.O. Box 41 53 Prince Street Hansport, NS, BP 1P by 22, Purdy

More information

The Continuing Evolution of the New Inlet

The Continuing Evolution of the New Inlet The Continuing Evolution of the New Inlet Charles N. Flagg, Roger Flood and Robert Wilson School of Marine and Atmospheric Sciences, Stony Brook University It is now a year plus since super storm Sandy

More information

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 15 Earth Science, 12e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 15 Earth Science, 12e Tarbuck/Lutgens 2009 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Volume and Shoreline Changes along Pinellas County Beaches during Tropical Storm Debby

Volume and Shoreline Changes along Pinellas County Beaches during Tropical Storm Debby Volume and Shoreline Changes along Pinellas County Beaches during Tropical Storm Debby Ping Wang and Tiffany M. Roberts Coastal Research Laboratory University of South Florida July 24, 2012 Introduction

More information

page - Laboratory Exercise #5 Shoreline Processes

page - Laboratory Exercise #5 Shoreline Processes page - Laboratory Exercise #5 Shoreline Processes Section A Shoreline Processes: Overview of Waves The ocean s surface is influenced by three types of motion (waves, tides and surface currents). Shorelines

More information

CLAM PASS RESTORATION AND MANAGEMENT PLAN BATHYMETRIC MONITORING REPORT NO. 7 Including Interior Bay Dredge Cuts and Tidal Data

CLAM PASS RESTORATION AND MANAGEMENT PLAN BATHYMETRIC MONITORING REPORT NO. 7 Including Interior Bay Dredge Cuts and Tidal Data CLAM PASS RESTORATION AND MANAGEMENT PLAN BATHYMETRIC MONITORING REPORT NO. 7 Including Interior Bay Dredge Cuts and Tidal Data Submitted to: Florida Department of Environmental Protection DEP File No.

More information

LAB: WHERE S THE BEACH

LAB: WHERE S THE BEACH Name: LAB: WHERE S THE BEACH Introduction When you build a sandcastle on the beach, you don't expect it to last forever. You spread out your towel to sunbathe, but you know you can't stay in the same spot

More information

BEACH PROCESSES AND COASTAL ENVIRONMENTS

BEACH PROCESSES AND COASTAL ENVIRONMENTS BEACH PROCESSES AND COASTAL ENVIRONMENTS COASTAL FEATURES Cross section Map view TOPICS: Terminology Waves Beach Morphology Barriers Coastal Migration Tides Tidal Flats and Marshes Sediment Budgets Human

More information

Requirements: You will need to bring your laptop with Google Earth and Jtides loaded and ready to go. See Appendix

Requirements: You will need to bring your laptop with Google Earth and Jtides loaded and ready to go. See Appendix Morphological Classification of Shorelines based on Hydrographic Regime Dr. Lindley Hanson, Dept. Geological Sciences Salem State College (lhanson@salemstate.edu) Key Concepts: hydrographic regime, morphological

More information

The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg School of Marine and Atmospheric Sciences, Stony Brook University

The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg School of Marine and Atmospheric Sciences, Stony Brook University The Impact on Great South Bay of the Breach at Old Inlet Charles N. Flagg School of Marine and Atmospheric Sciences, Stony Brook University The previous report provided a detailed look at the conditions

More information

DUXBURY WAVE MODELING STUDY

DUXBURY WAVE MODELING STUDY DUXBURY WAVE MODELING STUDY 2008 Status Report Duncan M. FitzGerald Peter S. Rosen Boston University Northeaster University Boston, MA 02215 Boston, MA 02115 Submitted to: DUXBURY BEACH RESERVATION November

More information

Tidal Inlet Protection Strategies (TIPS) Field Guide API TECHNICAL REPORT JANUARY 2016

Tidal Inlet Protection Strategies (TIPS) Field Guide API TECHNICAL REPORT JANUARY 2016 Tidal Inlet Protection Strategies (TIPS) Field Guide API TECHNICAL REPORT 1153-2 JANUARY 2016 Special Notes API publications necessarily address problems of a general nature. With respect to particular

More information

consulting engineers and scientists

consulting engineers and scientists consulting engineers and scientists Coastal Processes Presented by: January 9, 2015 Varoujan Hagopian, P.E. F.ASCE Senior Consultant, Waterfront Engineer Living Shoreline Workshop Lets Remember Why We

More information

Techniques for Measuring and Analyzing Inlet Ebb-Shoal Evolution

Techniques for Measuring and Analyzing Inlet Ebb-Shoal Evolution US Army Corps of Engineers Coastal Engineering Technical Note IV-13 Techniques for Measuring and Analyzing Inlet Ebb-Shoal Evolution by Donald K. Stauble PURPOSE: The Coastal Engineering Technical Note

More information

Currents measurements in the coast of Montevideo, Uruguay

Currents measurements in the coast of Montevideo, Uruguay Currents measurements in the coast of Montevideo, Uruguay M. Fossati, D. Bellón, E. Lorenzo & I. Piedra-Cueva Fluid Mechanics and Environmental Engineering Institute (IMFIA), School of Engineering, Research

More information

Barrier Progradation Related to Inlet Spacing and Migration Patterns L.E. Budde and W.J. Cleary

Barrier Progradation Related to Inlet Spacing and Migration Patterns L.E. Budde and W.J. Cleary Journal of Coastal Research SI 39 117-121 ICS 2004 (Proceedings) Brazil ISSN 0749-0208 Barrier Progradation Related to Inlet Spacing and Migration Patterns L.E. Budde and W.J. Cleary MS Candidate, Center

More information

Circulation Patterns at Tidal Inlets with Jetties

Circulation Patterns at Tidal Inlets with Jetties Circulation Patterns at Tidal Inlets with Jetties by Adele Militello and Steven A. Hughes PURPOSE: This Coastal Engineering Technical Note (CETN) provides guidance on interpreting horizontal circulation

More information

CHAPTER 281 INFLUENCE OF NEARSHORE HARDBOTTOM ON REGIONAL SEDIMENT TRANSPORT

CHAPTER 281 INFLUENCE OF NEARSHORE HARDBOTTOM ON REGIONAL SEDIMENT TRANSPORT CHAPTER 281 INFLUENCE OF NEARSHORE HARDBOTTOM ON REGIONAL SEDIMENT TRANSPORT Paul C.-P. Lin, Ph.D., P.E. 1 and R. Harvey Sasso, P.E. 2 ABSTRACT The influence of nearshore hardbottom on longshore and cross-shore

More information

/50. Physical Geology Shorelines

/50. Physical Geology Shorelines Physical Geology Shorelines Multiple Guess: (You know the drill 2 points each) 1. The path of movement of a water particle in a wave at sea is 1. circular 2. horizontal 3. vertical 4. elliptical 5. none

More information

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College

Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College Shorelines Earth - Chapter 20 Stan Hatfield Southwestern Illinois College The Shoreline A Dynamic Interface The shoreline is a dynamic interface (common boundary) among air, land, and the ocean. The shoreline

More information

NUMERICAL SIMULATION OF SEDIMENT PATHWAYS AT AN IDEALIZED INLET AND EBB SHOAL

NUMERICAL SIMULATION OF SEDIMENT PATHWAYS AT AN IDEALIZED INLET AND EBB SHOAL In: Proceedings Coastal Sediments 03. 2003. CD-ROM Published by World Scientific Publishing Corp. and East Meets West Productions, Corpus Christi, Texas, USA. ISBN 981-238-422-7. NUMERICAL SIMULATION OF

More information

Chapter 10 Lecture Outline. The Restless Oceans

Chapter 10 Lecture Outline. The Restless Oceans Chapter 10 Lecture Outline The Restless Oceans Focus Question 10.1 How does the Coriolis effect influence ocean currents? The Ocean s Surface Circulation Ocean currents Masses of water that flow from one

More information

HARBOUR SEDIMENTATION - COMPARISON WITH MODEL

HARBOUR SEDIMENTATION - COMPARISON WITH MODEL HARBOUR SEDIMENTATION - COMPARISON WITH MODEL ABSTRACT A mobile-bed model study of Pointe Sapin Harbour, in the Gulf of St. Lawrence, resulted in construction of a detached breakwater and sand trap to

More information

Chapter - Oceans and Coasts

Chapter - Oceans and Coasts Chapter - Oceans and Coasts Discussion: What do oceans contribute to the environment of Earth? How do Earth s major systems relate to the oceans? Oceans and Coasts Oceans are important - Thermal regulation

More information

Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff

Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff Tides & Beaches Nearshore Sediment Transport What influences the loss of sediment on Beaches? - Waves - Winds - Tidal Currents - River discharge - Runoff Oceans Ocean Topography Physical Structure of the

More information

Coastal Sediment Transport Modeling Ocean Beach & San Francisco Bight, CA

Coastal Sediment Transport Modeling Ocean Beach & San Francisco Bight, CA 1 Coastal Sediment Transport Modeling Ocean Beach & San Francisco Bight, CA Honghai Li and Lihwa Lin Engineering Research and Development Center U.S. Army Corps of Engineers Frank Wu, Lisa Andes, and James

More information

Follets Island Nearshore Beach Nourishment Project

Follets Island Nearshore Beach Nourishment Project Coast & Harbor Engineering A division of Hatch Mott MacDonald Follets Island Nearshore Beach Nourishment Project Arpit Agarwal, P.E. April 1, 2016 Project Site!"#$% &'(% &)*+% )#,'-+% Shoreline Erosion

More information

UPPER BEACH REPLENISHMENT PROJECT RELATED

UPPER BEACH REPLENISHMENT PROJECT RELATED ASSESSMENT OF SAND VOLUME LOSS at the TOWNSHIP of UPPER BEACH REPLENISHMENT PROJECT RELATED to the LANDFALL OF HURRICANE SANDY - PURSUANT TO NJ-DR 4086 This assessment is in response to Hurricane Sandy

More information

CHAPTER 56 SOFT DESIGNS FOR COASTAL PROTECTION AT SEABROOK ISLAND, S.C. ABSTRACT

CHAPTER 56 SOFT DESIGNS FOR COASTAL PROTECTION AT SEABROOK ISLAND, S.C. ABSTRACT CHAPTER 56 SOFT DESIGNS FOR COASTAL PROTECTION AT SEABROOK ISLAND, S.C. Miles 0. Hayes 1, Timothy W. Kana 2 and John H. Barwis 3 ABSTRACT To gain a better understanding of the cycles of shoreline changes

More information

Chapter. The Dynamic Ocean

Chapter. The Dynamic Ocean Chapter The Dynamic Ocean An ocean current is the mass of ocean water that flows from one place to another. 16.1 The Composition of Seawater Surface Circulation Surface Currents Surface currents are movements

More information

Imagine that you can see a side view of a wave as it approaches a beach. Describe how the wave changes as the wave approaches the beach.

Imagine that you can see a side view of a wave as it approaches a beach. Describe how the wave changes as the wave approaches the beach. Geology 101 Name Reading Guide for Ch. 19: Shores and Coastal Processes (p. 612) Waves, Currents, and Tides (p. 614) Waves and Currents (p. 614) Imagine that you can see a side view of a wave as it approaches

More information

Deep-water orbital waves

Deep-water orbital waves What happens when waves approach shore? Deep-water orbital waves Fig. 9.16, p. 211 Wave motion is influenced by water depth and shape of the shoreline wave buildup zone surf zone beach Wave base deepwater

More information

Nearshore Morphodynamics. Bars and Nearshore Bathymetry. Sediment packages parallel to shore, that store beach sediment

Nearshore Morphodynamics. Bars and Nearshore Bathymetry. Sediment packages parallel to shore, that store beach sediment Nearshore Morphodynamics http://coastal.er.usgs.gov/bier/images/chandeleur-xbeach-lg.jpg Bars and Nearshore Bathymetry Sediment packages parallel to shore, that store beach sediment Can be up to 50 km

More information

SAND BOTTOM EROSION AND CHANGES OF AN ACTIVE LAYER THICKNESS IN THE SURF ZONE OF THE NORDERNEY ISLAND

SAND BOTTOM EROSION AND CHANGES OF AN ACTIVE LAYER THICKNESS IN THE SURF ZONE OF THE NORDERNEY ISLAND SAND BOTTOM EROSION AND CHANGES OF AN ACTIVE LAYER THICKNESS IN THE SURF ZONE OF THE NORDERNEY ISLAND Kos'yan R. 1, Kunz H. 2, Podymov l. 3 1 Prof.Dr.,The Southern Branch of the P.P.Shirshov Institute

More information

Natural Mechanisms of Sediment Bypassing at Tidal Inlets

Natural Mechanisms of Sediment Bypassing at Tidal Inlets Natural Mechanisms of Sediment Bypassing at Tidal Inlets by D. M. FitzGerald, N. C. Kraus, and E. B. Hands PURPOSE: The Coastal and Hydraulics Engineering Technical Note (CHETN) described herein describes

More information

Southern California Beach Processes Study

Southern California Beach Processes Study Southern California Beach Processes Study Torrey Pines Field Site 5th Quarterly Report 31 May 22 to California Resources Agency and California Department of Boating and Waterways R.T. Guza 1, W.C. O Reilly

More information

LITTLE LAGOON & LITTLE LAGOON PASS: RESEARCH UPDATES & DIRECTIONS

LITTLE LAGOON & LITTLE LAGOON PASS: RESEARCH UPDATES & DIRECTIONS LITTLE LAGOON & LITTLE LAGOON PASS: RESEARCH UPDATES & DIRECTIONS Bret M. Webb, PhD, PE, DCE Professor Department of Civil, Coastal, and Environmental Engineering October 19, 2017 LLPS Meeting Acknowledgments

More information

EROSION CRITERION APPLIED TO A SHORELINE ADJACENT TO A COASTAL INLET

EROSION CRITERION APPLIED TO A SHORELINE ADJACENT TO A COASTAL INLET EROSION CRITERION APPLIED TO A SHORELINE ADJACENT TO A COASTAL INLET By Brian Batten and Henry Bokuniewicz Marine Sciences Research Center State University of New York Stony Brook, New York 11794-5000

More information

OCEAN WAVES NAME. I. Introduction

OCEAN WAVES NAME. I. Introduction NAME OCEAN WAVES I. Introduction The physical definition of a wave is a disturbance that transmits energy from one place to another. In the open ocean waves are formed when wis blowing across the water

More information

OECS Regional Engineering Workshop September 29 October 3, 2014

OECS Regional Engineering Workshop September 29 October 3, 2014 B E A C H E S. M A R I N A S. D E S I G N. C O N S T R U C T I O N. OECS Regional Engineering Workshop September 29 October 3, 2014 Coastal Erosion and Sea Defense: Introduction to Coastal Dynamics David

More information

Analyses of Amelander Nourishments. Sander van Rooij

Analyses of Amelander Nourishments. Sander van Rooij Analyses of Amelander Nourishments Sander van Rooij Deltares, 2008 Prepared for: Kustlijnzorg Analyses of Amelander Nourishments Sander van Rooij Report December 2008 Z4582.12 Client Kustlijnzorg Title

More information

Dune Monitoring Data Update Summary: 2013

Dune Monitoring Data Update Summary: 2013 Dune Monitoring Data Update Summary: 13 Shoreline Studies Program Virginia Institute of Marine Science College of William & Mary Gloucester Point, Virginia September 13 Dune Monitoring Data Update Summary:

More information

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS

IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS IMPACTS OF COASTAL PROTECTION STRATEGIES ON THE COASTS OF CRETE: NUMERICAL EXPERIMENTS Tsanis, I.K., Saied, U.M., Valavanis V. Department of Environmental Engineering, Technical University of Crete, Chania,

More information

Oceans and Coasts. Chapter 18

Oceans and Coasts. Chapter 18 Oceans and Coasts Chapter 18 Exploring the oceans The ocean floor Sediments thicken and the age of the seafloor increases from ridge to shore The continental shelf off the northeast United States Constituent

More information

Modeling Sediment Transport Along the Upper Texas Coast

Modeling Sediment Transport Along the Upper Texas Coast Modeling Sediment Transport Along the Upper Texas Coast David B. King Jr. Jeffery P. Waters William R. Curtis Highway 87 roadbed, Jefferson County Galveston District Corps Sabine Pass to San Luis Pass

More information

Jimmy s beach preliminary results

Jimmy s beach preliminary results Jimmy s beach preliminary results LP 668979 Jimmy s Beach Restoration Society 1 Outline 1. Long term: GIS analyses. Aerial photos, charts Shoreline analyses Storm data from MHL/DECC 2. Medium term: morphologic

More information

What causes the tides in the ocean?

What causes the tides in the ocean? What causes the tides in the ocean? By NASA and NOAA, adapted by Newsela staff on 02.09.17 Word Count 769 Level 970L Flying gulls on Morro Strand State Beach, California, at low tide. Morro Rock is seen

More information

INFLUENCES OF CHANNEL DREDGING ON FLOW AND SEDIMENTATION PATTERNS AT MICROTIDAL INLETS, WEST-CENTRAL FLORIDA, USA. Tanya M. Beck 1 and Ping Wang 2

INFLUENCES OF CHANNEL DREDGING ON FLOW AND SEDIMENTATION PATTERNS AT MICROTIDAL INLETS, WEST-CENTRAL FLORIDA, USA. Tanya M. Beck 1 and Ping Wang 2 INFLUENCES OF CHANNEL DREDGING ON FLOW AND SEDIMENTATION PATTERNS AT MICROTIDAL INLETS, WEST-CENTRAL FLORIDA, USA Tanya M. Beck 1 and Ping Wang 2 Abstract Four inlets (Johns Pass and Blind Pass; and New

More information

CROSS-SHORE SEDIMENT PROCESSES

CROSS-SHORE SEDIMENT PROCESSES The University of the West Indies Organization of American States PROFESSIONAL DEVELOPMENT PROGRAMME: COASTAL INFRASTRUCTURE DESIGN, CONSTRUCTION AND MAINTENANCE A COURSE IN COASTAL DEFENSE SYSTEMS I CHAPTER

More information

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches

Ocean Waves. Capillary. Gravity. Wind generated. Tides Tsunamis Seiches Ocean Waves Capillary Wind generated Gravity Tides Tsunamis Seiches Capillary waves are driven by the surface tension produced by electrically polarized water molecule San Pedro Lighthouse Waves are alternate

More information

4/20/17. #31 - Coastal Erosion. Coastal Erosion - Overview

4/20/17. #31 - Coastal Erosion. Coastal Erosion - Overview Writing Assignment Due Monday by 11:59 pm #31 - Coastal Erosion Beach front property! Great View! Buy now at a great price! See main class web pages for detailed instructions Essays will be submitted in

More information

Simulation of hydraulic regime and sediment transport in the Mekong delta coast

Simulation of hydraulic regime and sediment transport in the Mekong delta coast Simulation of hydraulic regime and sediment transport in the Mekong delta coast 1. Introduction Coastal erosion in the Mekong Delta has been recorded in recent years and the erosion rate has been increasing

More information

The Sand Beaches of New Hampshire and Maine

The Sand Beaches of New Hampshire and Maine The Sand Beaches of New Hampshire and Maine Beach Preservation and Erosion Control Photographs provided by Joe Kelly and Steve Adams Cover photo: Reid State Park, ME Introduction The sand beaches of New

More information

Appendix E Cat Island Borrow Area Analysis

Appendix E Cat Island Borrow Area Analysis Appendix E Cat Island Borrow Area Analysis ERDC/CHL Letter Report 1 Cat Island Borrow Area Analysis Multiple borrow area configurations were considered for Cat Island restoration. Borrow area CI1 is located

More information

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular

There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular Fig. 11-11, p. 253 There are many different kinds of beaches which are generally characterized by the dominance of waves, tides, rivers and currents, and in particular differ by the amount of energy, which

More information

Beach profile surveys and morphological change, Otago Harbour entrance to Karitane May 2014 to June 2015

Beach profile surveys and morphological change, Otago Harbour entrance to Karitane May 2014 to June 2015 Beach profile surveys and morphological change, Otago Harbour entrance to Karitane May 2014 to June 2015 Prepared for Port Otago Ltd Martin Single September 2015 Shore Processes and Management Ltd Contact

More information

ACOUSTIC DOPPLER CURRENT PROFILING FROM KIRRA BEACH TO COOK ISLAND FIELD EXERCISES UNDERTAKEN BY THE TWEED RIVER ENTRANCE SAND BYPASSING PROJECT

ACOUSTIC DOPPLER CURRENT PROFILING FROM KIRRA BEACH TO COOK ISLAND FIELD EXERCISES UNDERTAKEN BY THE TWEED RIVER ENTRANCE SAND BYPASSING PROJECT ACOUSTIC DOPPLER CURRENT PROFILING FROM KIRRA BEACH TO COOK ISLAND FIELD EXERCISES UNDERTAKEN BY THE TWEED RIVER ENTRANCE SAND BYPASSING PROJECT Z Helyer 1, C Acworth 1, K Nielsen 1, 1 Coastal Impacts

More information

Chapter 12: Coasts (after a brief review of Tides)

Chapter 12: Coasts (after a brief review of Tides) Chapter 12: Coasts (after a brief review of Tides) 1 Questions from previous classes: What happens when a wave meets a current? wave = people walking current = bus If wave goes with the current, the wave

More information

Impact of Dredging the Lower Narrow River on Circulation and Flushing

Impact of Dredging the Lower Narrow River on Circulation and Flushing Impact of Dredging the Lower Narrow River on Circulation and Flushing Craig Swanson Ph.D. Swanson Environmental Alex Shaw Ocean Engineering, URI Prof. Malcolm L. Spaulding Ocean Engineering, URI 29 January

More information

A Preliminary Review of Beach Profile and Hardbottom Interactions

A Preliminary Review of Beach Profile and Hardbottom Interactions A Preliminary Review of Beach Profile and Hardbottom Interactions Douglas W. Mann, P.E., D.CE. CB&I A World of Solutions Presentation Goal Lead to a better understanding of the challenges regarding the

More information

Evaluation Report Teluk Chempedak Oct 2005

Evaluation Report Teluk Chempedak Oct 2005 Evaluation Report Teluk Chempedak Oct 2005 Beach Nourishment combined with the SIC System Hyatt Hotel SIC Skagen Innovation Centre Dr. Alexandrinesvej 75 Dk 9990 Skagen Denmark Phone 00 45 98 44 57 13

More information

The Composition of Seawater

The Composition of Seawater The Composition of Seawater Salinity Salinity is the total amount of solid material dissolved in water. Most of the salt in seawater is sodium chloride, common table salt. Element Percent Element Percent

More information

A Modeling Study of Coastal Sediment Transport and Morphology Change

A Modeling Study of Coastal Sediment Transport and Morphology Change A Modeling Study of Coastal Sediment Transport and Morphology Change Honghai Li 1, Alejandro Sanchez 1, Mitchell E. Brown 1, Irene M. Watts 2, Zeki Demirbilek 1, Julie D. Rosati 1, and David R. Michalsen

More information

US Beach Nourishment Experience:

US Beach Nourishment Experience: Beach Nourishment: Introduction of new sand to the beach by truck or dredge Large beach >1 million cubic yards (100,000 dump truck loads) Funding is a combination of federal, state, local & private Also

More information

Inner-Bank Erosion Processes and Solutions at Coastal Inlets

Inner-Bank Erosion Processes and Solutions at Coastal Inlets Inner-Bank Erosion Processes and Solutions at Coastal Inlets by William C. Seabergh PURPOSE: The Coastal and Hydraulics Engineering Technical Note (CHETN) herein provides information on erosion which occurs

More information

Sediment Transport Analysis Village of Asharoken, New York

Sediment Transport Analysis Village of Asharoken, New York Sediment Transport Analysis Village of Asharoken, New York NORTH SHORE OF LONG ISLAND, NEW YORK COMBINED EROSION CONTROL AND STORM DAMAGE PROTECTION FEASIBILITY STUDY FINAL REPORT August 2004 Cell 0 Asharoken

More information

General Coastal Notes + Landforms! 1

General Coastal Notes + Landforms! 1 General Coastal Notes + Landforms! 1 Types of Coastlines: Type Description Primary Coast which is essentially in the same condition when sea level stabilized Coastline after the last ice age, younger.

More information

New Jersey Coastal Zone Overview. The New Jersey Beach Profile Network (NJBPN) 3 Dimensional Assessments. Quantifying Shoreline Migration

New Jersey Coastal Zone Overview. The New Jersey Beach Profile Network (NJBPN) 3 Dimensional Assessments. Quantifying Shoreline Migration New Jersey Coastal Zone Overview The New Jersey Beach Profile Network (NJBPN) Objectives Profile Locations Data Collection Analyzing NJBPN Data Examples 3 Dimensional Assessments Methodology Examples Quantifying

More information

Figure 1 Example feature overview.

Figure 1 Example feature overview. 1. Introduction This case focuses on the northeastern region of Onslow Bay, NC, and includes an initial shoreline, regional contour, wave gauges, inlets, dredging, and beach fills. Most of the features

More information

Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters. Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi

Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters. Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi Shoreline Evolution Due to Oblique Waves in Presence of Submerged Breakwaters Nima Zakeri (Corresponding Author), Mojtaba Tajziehchi Department of Civil Engineering, Faculty of Engineering, University

More information

Inlet Impacts on Local Coastal Processes

Inlet Impacts on Local Coastal Processes Inlet Impacts on Local Coastal Processes Rajesh Srinivas 1, Associate Member, and R. Bruce Taylor 1, Fellow Abstract St. Augustine Inlet, a trained, ebb-dominated inlet, acts as an efficient sediment trap

More information

13. TIDES Tidal waters

13. TIDES Tidal waters Water levels vary in tidal and non-tidal waters: sailors should be aware that the depths shown on the charts do not always represent the actual amount of water under the boat. 13.1 Tidal waters In tidal

More information

WAVE MECHANICS FOR OCEAN ENGINEERING

WAVE MECHANICS FOR OCEAN ENGINEERING Elsevier Oceanography Series, 64 WAVE MECHANICS FOR OCEAN ENGINEERING P. Boccotti Faculty of Engineering University of Reggio-Calabria Feo di Vito 1-89060 Reggio-Calabria Italy 2000 ELSEVIER Amsterdam

More information

CLAM PASS ANNUAL RESTORATION & MANAGEMENT PLAN TIDAL ANALYSIS ELEMENT REPORT NO. 13

CLAM PASS ANNUAL RESTORATION & MANAGEMENT PLAN TIDAL ANALYSIS ELEMENT REPORT NO. 13 CLAM PASS ANNUAL RESTORATION & MANAGEMENT PLAN TIDAL ANALYSIS ELEMENT REPORT NO. 13 Submitted to: Pelican Bay Services Division Prepared by: Humiston & Moore Engineers H&M File No. 13-078 November 2012

More information

Fred Mushacke, Marine Resource Specialist, G.I.S. Unit, N.Y. State Department of Environmental Conservation, S.U.N.Y. Stony Brook, 11790

Fred Mushacke, Marine Resource Specialist, G.I.S. Unit, N.Y. State Department of Environmental Conservation, S.U.N.Y. Stony Brook, 11790 81 THE COMPUTER MORPHOLOGY AND GEOMORPHOLOGY OF THE NATURAL OPENNG AND ARTFCAL CLOSNG OF LTTLE PKE'S NLET AT WESTHAMPTON BEACH, LONG SLAND (DECEMBER, 1992-SEPTEMBER, 1993). Fred Mushacke, Marine Resource

More information

Earth Science Chapter 16 Section 3 Review

Earth Science Chapter 16 Section 3 Review Name: Class: Date: Earth Science Chapter 16 Section 3 Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. The movement of water that parallels the shore

More information

Tanya M. Beck. Kelly Legault. Research Physical Scientist Coastal & Hydraulics Lab, ERDC Vicksburg, MS

Tanya M. Beck. Kelly Legault. Research Physical Scientist Coastal & Hydraulics Lab, ERDC Vicksburg, MS Inlet And Adjacent Shoreline Processes at Cascading Time Scales Using the Coastal Modeling System and GenCade Tanya M. Beck Research Physical Scientist Coastal & Hydraulics Lab, ERDC Vicksburg, MS Kelly

More information

Nearshore Placed Mound Physical Model Experiment

Nearshore Placed Mound Physical Model Experiment Nearshore Placed Mound Physical Model Experiment PURPOSE: This technical note describes the migration and dispersion of a nearshore mound subjected to waves in a physical model. The summary includes recommendations

More information

Tidally influenced environments. By Alex Tkaczyk, Henrique Menezes, and Isaac Foli

Tidally influenced environments. By Alex Tkaczyk, Henrique Menezes, and Isaac Foli Tidally influenced environments By Alex Tkaczyk, Henrique Menezes, and Isaac Foli Goals and aims Describe the role of tidal influence in depositional environments. - Deltas - Estuaries Provide an overview

More information

Hydrologic Feasibility of Storm Surge Barriers

Hydrologic Feasibility of Storm Surge Barriers Hydrologic Feasibility of Storm Surge Barriers Malcolm J. Bowman, School of Marine and Atmospheric Sciences State University of New York, Stony Brook, NY. Presented at Against the Deluge: Storm Surge Barriers

More information

GENERAL METHODOLOGY FOR INLET RESERVOIR MODEL ANALYSIS OF SAND MANAGEMENT NEAR TIDAL INLETS. Mohamed A. Dabees 1, Nicholas C.

GENERAL METHODOLOGY FOR INLET RESERVOIR MODEL ANALYSIS OF SAND MANAGEMENT NEAR TIDAL INLETS. Mohamed A. Dabees 1, Nicholas C. GENERAL METHODOLOGY FOR INLET RESERVOIR MODEL ANALYSIS OF SAND MANAGEMENT NEAR TIDAL INLETS Mohamed A. Dabees 1, Nicholas C. Kraus 2 1 Humiston& Moore Engineers, 5679 Strand Court, Naples, FL 34109, USA.

More information

Julebæk Strand. Effect full beach nourishment

Julebæk Strand. Effect full beach nourishment Julebæk Strand Effect full beach nourishment Aim of Study This study is a part of the COADAPT funding and the aim of the study is to analyze the effect of beach nourishment. In order to investigate the

More information

First Year Morphological Evolution of an Artificial Berm at Fort Myers Beach, Florida

First Year Morphological Evolution of an Artificial Berm at Fort Myers Beach, Florida University of South Florida Scholar Commons Geology Faculty Publications Geology 1-2012 First Year Morphological Evolution of an Artificial Berm at Fort Myers Beach, Florida Katherine Brutsche University

More information

Questions # 4 7 refer to Figure # 2 (page 321, Fig )

Questions # 4 7 refer to Figure # 2 (page 321, Fig ) Shoreline Community College OCEANOGRAPHY 101 Fall 2006 Sample Exam # 3 Instructor: Linda Khandro Questions # 1 3 refer to Figure # 1 (page 284, Fig 11.7) 1. At which position is the moon in its new moon

More information

Australian Coastal Councils Conference

Australian Coastal Councils Conference Australian Coastal Councils Conference Kiama March 2019 Where Has My Beach Gone? (and what can I do about it?) Dr Andrew McCowan Water Technology Where Has My Beach Gone? Where Has My Beach Gone? Where

More information

APPENDIX A Hydrodynamic Model Qualicum Beach Waterfront Master Plan

APPENDIX A Hydrodynamic Model Qualicum Beach Waterfront Master Plan Page 1 of 21 CLIENT: Town of Qualicum Beach PROJECT: SIGNATURE DATE CONTRIBUTORS : M. Marti Lopez REVIEWED BY : P. St-Germain, EIT APPROVED BY: J. Readshaw, P.Eng ISSUE/REVISION INDEX Issue Details Code

More information

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company

Unit 11 Lesson 2 How Does Ocean Water Move? Copyright Houghton Mifflin Harcourt Publishing Company Unit 11 Lesson 2 How Does Ocean Water Move? Catch a Wave A wave is the up-and-down movement of surface water. Catch a Wave Catch a Wave (wave effects) Surface waves are caused by wind pushing against

More information

BYPASS HARBOURS AT LITTORAL TRANSPORT COASTS

BYPASS HARBOURS AT LITTORAL TRANSPORT COASTS BYPASS HARBOURS AT LITTORAL TRANSPORT COASTS by K. Mangor 1, I. Brøker 2, R. Deigaard 3 and N. Grunnet 4 ABSTRACT Maintaining sufficient navigation depth in front of the entrance at harbours on littoral

More information

Variation in Beach Profile and Sediment Characteristics at Popham Beach, Phippsburg, ME

Variation in Beach Profile and Sediment Characteristics at Popham Beach, Phippsburg, ME Colby College Digital Commons @ Colby Undergraduate Research Symposium Student Research 2006 Variation in Beach Profile and Sediment Characteristics at Popham Beach, Phippsburg, ME Kathryn Lidington Colby

More information

SURFACE CURRENTS AND TIDES

SURFACE CURRENTS AND TIDES NAME SURFACE CURRENTS AND TIDES I. Origin of surface currents Surface currents arise due to the interaction of the prevailing wis a the ocean surface. Hence the surface wi pattern (Figure 1) plays a key

More information

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks.

Chapter 11 Tides. A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks. Chapter 11 Tides A tidal bore is formed when a tide arrives to an enclosed river mouth. This is a forced wave that breaks. Tidal range can be very large Tide - rhythmic oscillation of the ocean surface

More information