Figure 33.25a Free-living nematode

Size: px
Start display at page:

Download "Figure 33.25a Free-living nematode"

Transcription

1 Figure 33.25a Free-living nematode Bilateraly symmetrical Pseudocoelomates Body covered with secreated, flexible cuticle. No cilia Only longitudinal muscles. No protonephridia Muscular pharynx Gonochoristic

2 Caenorhabditis elegans

3 Structure of cuticle

4

5

6

7

8 Free-living marine Soil nematode Endoparasite Predator detritivore

9 Lymphatic Filariasis or Elephantiasis Anopheles sp. 120 million people in 73 countries in the tropics.

10 Filariasis Wuchereria bancrofti -a filarid

11

12

13

14 Figure 32.7 A comparison of early development in protostomes and deuterostomes

15 Asteroidea Ophiuroidea Crinoidea Echinoidea Holothuroidea P. 673

16 Figure Anatomy of a sea star Pentaradial Symmetry Exoskeleton of calcareous ossicles Water vascular system Ciliated peritoneum lines the coelom

17 Asteroid water-vascular system Tubular outpocketings of body wall System opens to exterior through madreporite Tiedemann s bodies connect water vascular system to coelom Muscular contraction of ampulla forces water into podium

18 Fast and agile Arms composed of vertebral ossicles Podia reduced Ophiuroids

19 Relationships of Chordate Subphyla : Origin of Vertebrates UROCHORDATES CEPHALOCHORDATES VERTEBRATES Greatly expanded pharynx Reduction of nervous system Sessile Anteriorly extended notochord Oral cirri (tentacles) Burrowing Distinct head & brain (cephalization) Muscularization of pharynx Special paired sensory organs (eyes, nose, ears) Neural crest tissue & neurogenetic placodes in embryo Somites; segmented trunk muscles Axial skeleton & postanal tail retained in adult Notochord Dorsal, hollow nerve cord Pharyngeal slits Postanal tail

20 Postanal Tail Segmentation of Trunk Muscles Cephalochordate Notochord Mechanics Myotomes Hydostatic Skeletal Structure Notochord replaced by vertebral column

21 Extended notochord Cephalochordates: Structure, Function, Lifestyle Muscularized Notochord Atrium Text Fig Specialized Features Anteriorly extended notochord Muscularized notochord Specialized nephridia (solenocytes) Relatively inactive burrowers (as adults)

22 Relationships of Chordate Subphyla : Origin of Vertebrates UROCHORDATES CEPHALOCHORDATES VERTEBRATES Greatly expanded pharynx Reduction of nervous system Sessile Anteriorly extended notochord Oral cirri (tentacles) Burrowing Distinct head & brain (cephalization) Muscularization of pharynx Special paired sensory organs (eyes, nose, ears) Neural crest tissue & neurogenetic placodes in embryo Development of New Head Somites; segmented trunk muscles Notochord & postanal tail retained in adult Notochord Dorsal, hollow nerve cord Pharyngeal slits Postanal tail

23 Neural Crest Tissue & Neurogenic Placodes Key Innovation in Vertebrate History Text Fig. 34-6

24 Gill Ventilation

25 Feeding Strategies & Vertebrate Evolution Large Prey Now Possible Become Dominant Predators Neural crest structures Suction feeding Muscularized Pharynx & Supportive Skeleton Suction Feeding Begins Ciliary Driven Food Restricted to Zooplankton

26 Figure Hox mutations and the origin of vertebrates 520 mya 425 mya

27 Relationships Among The Classes of Fishes MYXINI CEPHALASPIDOMORPHA PLACODERMI CHONDRICTHYES OSTEICHTHYES LAMPREYS OSTRACODERMS Oral tentacles Slime glands Scavenging lifestyle Loss of bone Parasitic lifestyle Extensive bony armor Extensive, jointed armor Loss of bone Distinctive tooth-like scales Gills slits exposed externally Gills covered by bony operculum Tendency for tail to become symmetrical Lungs or swim bladder Bony internal skeleton Vertebral column Circular sucking mouth Jaws Paired appendages Lateral line sensory system Bone (dermal) Basic Ancestral Vertebrate Features

28 Myxini AGNATHAN FISHES No jaws No true paired appendages No vertebrae Cephalaspidomorpha HAGFISH LAMPREYS Lateral line Common Ancestor in Cambrian OSTRACODERMS mya Bony armor (calcium phosphate) Not homologous

29 Feeding Strategies in Jawless Fishes Feeding tactics of Lamprey Knotting behavior in Hagfish Keratinaceous teeth

30 Lateral line - line of mechanoreceptors on body surface that detect movement of water.

31 Relationships Among The Classes of Fishes MYXINI CEPHALASPIDOMORPHA PLACODERMI CHONDRICTHYES OSTEICHTHYES LAMPREYS OSTRACODERMS Oral tentacles Slime glands Scavenging lifestyle Loss of bone Parasitic lifestyle Extensive bony armor Extensive, jointed armor Loss of bone Distinctive tooth-like scales Gill slits exposed externally Gills covered by bony operculum Tendency for tail to become symmetrical Lungs or swim bladder AGNATHA = Jawless Fishes Bony internal skeleton Vertebral column Circular sucking mouth Jaws Paired appendages Lateral line sensory system Key Sensory System Bone (dermal) Unique Skeletal Material Basic Ancestral Vertebrate Features

32 Evolution of Jaws Text Fig

33 PLACODERMS Jaws Paired appendages Persistent notochord Great size range Jointed armor First fresh water fishes

34 Dunkleosteus 370 mya

35 Relationships Among The Classes of Fishes MYXINI CEPHALASPIDOMORPHA PLACODERMI CHONDRICTHYES OSTEICHTHYES LAMPREYS OSTRACODERMS Oral tentacles Slime glands Scavenging lifestyle Loss of bone Parasitic lifestyle Extensive bony armor Extensive, jointed armor Loss of bone Distinctive tooth-like scales Gills covered by bony operculum Tendency for tail to become symmetrical Lungs or swim bladder Bony internal skeleton Vertebral column Circular sucking mouth Jaws Paired appendages Major Shift in Feeding & Maneuverability Lateral line sensory system Bone (dermal) Basic Ancestral Vertebrate Features

36 Representative Chondrichthyes Cartilage skeleton Tooth-like scales Multiple external gill slits No lungs or swimbladder Sharks Chimaera / ratfish Shark Placoid Scale Ray

37 Relationships Among The Classes of Fishes MYXINI CEPHALASPIDOMORPHA PLACODERMI CHONDRICTHYES OSTEICHTHYES LAMPREYS OSTRACODERMS Oral tentacles Slime glands Scavenging lifestyle Loss of bone Parasitic lifestyle Extensive bony armor Extensive, jointed armor Loss of bone Distinctive tooth-like scales Gills covered by bony operculum Tendency for tail to become symmetrical Lungs or swim bladder Bony internal skeleton Vertebral column Circular sucking mouth Jaws Paired appendages Faster, Sustained Swimming Lateral line sensory system Craniates Bone (dermal) Basic Ancestral Vertebrate Features

38 Relationships Among The Classes of Fishes MYXINI CEPHALASPIDOMORPHA PLACODERMI CHONDRICTHYES OSTEICHTHYES LAMPREYS OSTRACODERMS Oral tentacles Slime glands Scavenging lifestyle Loss of bone Parasitic lifestyle Extensive bony armor Extensive, jointed armor Loss of bone Distinctive tooth-like scales Gills covered by bony operculum Tendency for tail to become symmetrical Lungs or swim bladder Bony internal skeleton Circular sucking mouth Jaws Vertebral column Faster Swimming & Buoyancy Control, Air Breathing Paired appendages Lateral line sensory system Bone (dermal) Basic Ancestral Vertebrate Features

39 Evolution of lungs Basal vertebrate Basal fish Lung fish

Climate Researchers Feeling Heat. By Juliet Eilperin Washington Post Staff Writer Thursday, April 6, 2006; A27

Climate Researchers Feeling Heat. By Juliet Eilperin Washington Post Staff Writer Thursday, April 6, 2006; A27 Biology 2010 April 19, 2006 Readings - From Text (Campbell et al. Biology, 7 th ed.) Chapter 34 pp. 671-707. Climate Researchers Feeling Heat. By Juliet Eilperin Washington Post Staff Writer Thursday,

More information

Figure 1: Chordate Characteristics

Figure 1: Chordate Characteristics I. General Chordate Characteristics Chordates are distinguished as a group by the presence of four embryonic features that may persist into adulthood in some species, but disappear as development progresses

More information

The Deuterostomes and the rise of the Vertebrates: from Echinoderms to Man

The Deuterostomes and the rise of the Vertebrates: from Echinoderms to Man The Deuterostomes and the rise of the Vertebrates: from Echinoderms to Man 1 The Deuterostomes Calcarea and Silicea Cnidaria Lophotrochozoa Ecdysozoa Deuterostomia 2 The Ancestral Deuterostome Bilateral

More information

February 17, Unit 2. Biodiversity. Chordata, the vertebrates

February 17, Unit 2. Biodiversity. Chordata, the vertebrates Unit 2 Biodiversity Chordata, the vertebrates Phylum Chordata Examples: Sea squirts, fish, birds, dinosaurs, humans. General characteristics: 1. Bilaterally symmetrical 2. Coelomate 3. One way digestive

More information

Animal Evolution: Chordate and Vertebrate Evolution and Diversity (Learning Outline)

Animal Evolution: Chordate and Vertebrate Evolution and Diversity (Learning Outline) Animal Evolution: Chordate and Vertebrate Evolution and Diversity (Learning Outline) 1. Distinguishing features of the phylum Chordata and representative organisms. 2. Highlights of evolutionary steps

More information

Chordates 1. Biology 2

Chordates 1. Biology 2 Chordates 1 Biology 2 Kingdom Animals Eukaryotic Multicellular - Many cell types Heterotrophic Feed by ingestion No cell walls Diploid life cycle Phylogenetic Tree Deuterostome Bilateral Symmetry 3 tissues

More information

BI 101: Chordate Animals & Biodiversity

BI 101: Chordate Animals & Biodiversity BI 101: Chordate Animals & Biodiversity Final Exam tomorrow Announcements Same time, same place Review Mary s Peak biodiversity results Lab 10 today 1 Deuterostome Development 2 Phylum Chordata Contains

More information

AP Biology - Zimmerman Guided Reading Chapter 34

AP Biology - Zimmerman Guided Reading Chapter 34 AP Biology - Zimmerman Guided Reading Chapter 34 1. List the four characteristics of the members of the Phylum Chordata. Name 1. 2. 3. 4. 2. Define the following terms: a. notochord b. Dorsal nerve cord

More information

Chapter 12 Marine Fishes

Chapter 12 Marine Fishes Chapter 12 Marine Fishes Marine Protochordates Phylum: Chordata (nerve cord) Subphylum: Protochordata first chordates/primitive Primitive species of marine vertebrates Do not have advanced features (backbone)

More information

Biol Echinoderms & Chordates. But first a few words about Development

Biol Echinoderms & Chordates. But first a few words about Development Biol 1309 Echinoderms & Chordates 1 But first a few words about Development Blastula- zygote first develops into a hollow ball of cells Deuterostome - mouth second Protostome - mouth first Cleavage - describes

More information

Chordates. Bởi: OpenStaxCollege

Chordates. Bởi: OpenStaxCollege Chordates Bởi: OpenStaxCollege Vertebrates are members of the kingdom Animalia and the phylum Chordata ([link]). Recall that animals that possess bilateral symmetry can be divided into two groups protostomes

More information

Is a seahorse a fish, amphibian, or reptile? FISH

Is a seahorse a fish, amphibian, or reptile? FISH Ch. 30 Loulousis Is a seahorse a fish, amphibian, or reptile? FISH Vertebral Column (Endoskeleton) Gills Single-loop circulation Kidneys Also share all the characteristics of chordates such as notochord,

More information

Body Plan of the Chordates. Notochord, dorsal hollow nerve cord, pharyngeal gill slits, blocks of muscle, post-anal tail

Body Plan of the Chordates. Notochord, dorsal hollow nerve cord, pharyngeal gill slits, blocks of muscle, post-anal tail Chordata The Major Groups Invertebrate Chordates Fishes Class: Agnatha Class Condrichthyes Class Osteichthyes Class: Amphibia Class: Reptilia Class: Aves Class: Mammalia Body Plan of the Chordates Notochord,

More information

Kingdom Animalia part 2.notebook. April 08, The fun continues... Kingdom Animalia

Kingdom Animalia part 2.notebook. April 08, The fun continues... Kingdom Animalia The fun continues....... Kingdom Animalia 1 2 Joint legged animals (arthropoda) found from the bottom of the ocean to high above the Earth's surface included insects, arachnid, and crustacean hard external

More information

Chapter 34A: The Origin & Evolution of Vertebrates I. 1. Overview of the Chordates 2. Invertebrate Chordates

Chapter 34A: The Origin & Evolution of Vertebrates I. 1. Overview of the Chordates 2. Invertebrate Chordates Chapter 34A: The Origin & Evolution of Vertebrates I 1. Overview of the Chordates 2. Invertebrate Chordates 1. Overview of Chordates Echinodermata Phylogeny of ANCESTRAL DEUTEROSTOME NOTOCHORD Common ancestor

More information

Biology 11. Phylum Chordata: Subphylum Vertebrata: The Fishys

Biology 11. Phylum Chordata: Subphylum Vertebrata: The Fishys Biology 11 Phylum Chordata: Subphylum Vertebrata: The Fishys Phylum Chordata is typically divided into four subphyla: Higher Chordates We are going to spend the next few classes talking about the Subphylum

More information

Chordates. Chapter 23

Chordates. Chapter 23 Chordates Chapter 23 Phylum Chordata By the end of the Cambrian period, 540 million years ago, an astonishing variety of animals inhabited Earth s oceans. One of these types of animals gave rise to vertebrates,

More information

Lecture 3 - Early Fishes

Lecture 3 - Early Fishes Lecture 3 - Early Fishes 1. Early Chordates 2. Conodonts 3. Early Vertebrates 4. Jawless fishes 5. Agnatha/ Gnathostomes junction 6. Placoderms 7. Chondrichthyes Cephalochordates (lancelets) Early Chordates

More information

deuterostomes eucoelomates pseudocoelomates acoelomate

deuterostomes eucoelomates pseudocoelomates acoelomate deuterostomes Mollusca Arthropoda Echinodermata Hemichordata Chordata eucoelomates Annelida Rotifera Platyhelminthes Nematoda acoelomate pseudocoelomates Phylum Hemichordata Share characteristics with

More information

Classification. Phylum Chordata

Classification. Phylum Chordata AP Biology Chapter 23 Exercise #17: Chordates: Urochordata & Cephalochordata Lab Guide Chordates show remarkable diversity. Most are vertebrates. All animals that belong to this phylum MUST, at some point

More information

Readings in Chapter 2, 3, and 7.

Readings in Chapter 2, 3, and 7. Early Vertebrates Readings in Chapter 2, 3, and 7. Using the Tree of Life Web Project www.tolweb.org org A project to put the entire tree of life, a phylogeny of all life, on the web. Biologists world-wide

More information

PHYLUM CHORDATA: Subphylum vertebrata

PHYLUM CHORDATA: Subphylum vertebrata PHYLUM CHORDATA: Subphylum vertebrata There are three basic characteristics that distinguish Phylum Chordata from all other animal phyla: The presence of a flexible, rod-like, internal supporting structure

More information

1. Overview of Chordates

1. Overview of Chordates Chapter 34A: The Origin & Evolution of Vertebrates I 1. Overview of the Chordates 2. Invertebrate Chordates 1. Overview of Chordates Echinodermata ANCESTRAL DEUTEROSTOME NOTOCHORD Common ancestor of chordates

More information

Chapter 39. Table of Contents. Section 1 Introduction to Vertebrates. Section 2 Jawless and Cartilaginous Fishes. Section 3 Bony Fishes.

Chapter 39. Table of Contents. Section 1 Introduction to Vertebrates. Section 2 Jawless and Cartilaginous Fishes. Section 3 Bony Fishes. Fishes Table of Contents Section 1 Introduction to Vertebrates Section 2 Jawless and Cartilaginous Fishes Section 3 Bony Fishes Section 1 Introduction to Vertebrates Objectives Identify the distinguishing

More information

Symmetry. Asymmetrical- no shape. Radial- same in half when cut any angle. Bilateral- having a distinct right and left side

Symmetry. Asymmetrical- no shape. Radial- same in half when cut any angle. Bilateral- having a distinct right and left side Symmetry Asymmetrical- no shape Radial- same in half when cut any angle Bilateral- having a distinct right and left side Invertebrates 95% of Animals No Backbone The simplest animals and they do not have

More information

Figure Figure Phylum Chordata. Possess a dorsal, tubular nerve cord Notochord Pharyngeal gill slits Postanal tail

Figure Figure Phylum Chordata. Possess a dorsal, tubular nerve cord Notochord Pharyngeal gill slits Postanal tail Figure 17.2 Figure 18.3 Phylum Chordata Possess a dorsal, tubular nerve cord Notochord Pharyngeal gill slits Postanal tail 1 Other Characteristics of Phylum Chordata Bilateral symmetry Deuterostome, triploblastic,

More information

Taxonomy of Fishes. Chapter 18. I. SuperClass Agnatha. A. Class Myxini. Kingdom Animalia. The Fishes

Taxonomy of Fishes. Chapter 18. I. SuperClass Agnatha. A. Class Myxini. Kingdom Animalia. The Fishes Taxonomy of Fishes Chapter 18 The Fishes Kingdom Animalia Phylum Chordata SuperClass Agnatha - jawless fish Class Chondrichthyes - cartilagenous fish Class Osteichthyes - bony fish I. SuperClass Agnatha

More information

Unit 19.2: Fish. Vocabulary fish spawning swim bladder

Unit 19.2: Fish. Vocabulary fish spawning swim bladder Unit 19.2: Fish Lesson Objectives Describe structure and function in fish. Explain how fish reproduce and develop. Give an overview of the five living classes of fish. Summarize the evolution of fish.

More information

Invertebrate Chordates

Invertebrate Chordates Invertebrate Chordates Chapter 11.2 - Fishes And Invertebrate Chordates... Invertebrate Chordates Lancelets Filter feed and spend most of their time buried in the sand. Only 2 invertebrate chordates Tunicates

More information

The Animal Kingdom. The Chordates

The Animal Kingdom. The Chordates The Animal Kingdom The Chordates Phylum Hemichordata Hemichordata (hemi = half; chordata= cord) acorn worm entirely marine adults show 3 of 4 basic characteristics: 1) pharyngial pouches 2) dorsal tubular

More information

Marine Life. Fishes. Introductory Oceanography Ray Rector - Instructor

Marine Life. Fishes. Introductory Oceanography Ray Rector - Instructor Marine Life Fishes Introductory Oceanography Ray Rector - Instructor MARINE FISHES - Main Concepts 1) Fishes are the oldest group of vertebrates 2) Fish inhabit virtually every marine habitat worldwide

More information

Outline 15: Paleozoic Life

Outline 15: Paleozoic Life Outline 15: Paleozoic Life The Evolution of Vertebrates: Fish and Amphibians Phylum Chordata All chordates have a dorsal nerve cord. Chordates with vertebrae are the vertebrates. The vertebrae surround

More information

Outline 15: Paleozoic Life. The Evolution of Vertebrates: Fish and Amphibians

Outline 15: Paleozoic Life. The Evolution of Vertebrates: Fish and Amphibians Outline 15: Paleozoic Life The Evolution of Vertebrates: Fish and Amphibians Phylum Chordata All chordates have a dorsal nerve cord. Chordates with vertebrae are the vertebrates. The vertebrae surround

More information

BIOLOGY 11 CHORDATES

BIOLOGY 11 CHORDATES BIOLOGY 11 CHORDATES All chordates share 4 general characteristics: 1. Notochord a dorsal supporting rod located below the nerve cord toward the back in vertebrates, the embryonic notochord is replaced

More information

Aquatic vertebrates that are characterized by:

Aquatic vertebrates that are characterized by: Aquatic vertebrates that are characterized by: Paired fins Used for movement Scales Used for protection Gills Used for exchanging gases Fishes were the first vertebrates to evolve The evolution of jaws

More information

Kingdom Animalia. Eukaryotic Multicellular Heterotrophs Lack Cell Walls

Kingdom Animalia. Eukaryotic Multicellular Heterotrophs Lack Cell Walls Kingdom Animalia Eukaryotic Multicellular Heterotrophs Lack Cell Walls Must do: Feed, Respiration, Circulation, Excretion, Response, Movement, and Reproduction Symmetry Asymmetrical- no shape Radial- same

More information

Chapter 29 Echinoderms and Invertebrate Chordates. Section Echinoderms. I. What Is An Echinoderm? 11/1/2010. Biology II Mrs.

Chapter 29 Echinoderms and Invertebrate Chordates. Section Echinoderms. I. What Is An Echinoderm? 11/1/2010. Biology II Mrs. Chapter 29 Echinoderms and Invertebrate Chordates Section 29.1 - Echinoderms Biology II Mrs. Michaelsen I. What Is An Echinoderm? A. Move by means of hydraulic, suction cuptipped appendages. B. Skin covered

More information

Lecture Notes Chapter 14

Lecture Notes Chapter 14 Lecture Notes Chapter 14 I. Chordata- phylum A. 3 subphyla 1. Urochordata 2. Cephalochordata 3. Vertebrata II. Characteristics of all Chordates (found during some part of the life cycle) A. All have a

More information

Phylum Chordata Featuring Vertebrate Animals

Phylum Chordata Featuring Vertebrate Animals Phylum Chordata Featuring Vertebrate Animals Prepared by Diana C. Wheat For Linn-Benton Community College Characteristics All have a notochord: a stiff but flexible rod that extends the length of the body

More information

Fish Dissection. Background

Fish Dissection. Background Fish Dissection The Fish Dissection program at Hatfield Marine Science Center is a 50-minute hands-on program for 4th through 12th grade students. Students will work in small groups as they examine a variety

More information

Origin and Importance! ! Fish were the first vertebrates to appear on Earth about 500 million years ago.

Origin and Importance! ! Fish were the first vertebrates to appear on Earth about 500 million years ago. 2/9/14 Origin and Importance Evolution Marine Fish Fish were the first vertebrates to appear on Earth about 500 million years ago. Fish are the most economically important organism and are a vital source

More information

Chapter 10. Part 1: Cartilaginous Fishes

Chapter 10. Part 1: Cartilaginous Fishes Chapter 10 Part 1: Cartilaginous Fishes Objectives Understand how hagfishes and lampreys differ from all other fishes. Describe how sharks, skates, and rays are related. Differentiate between cartilaginous

More information

CHAPTER 22. Echinoderms 22-1

CHAPTER 22. Echinoderms 22-1 CHAPTER 22 Echinoderms 22-1 Phylum Echinodermata: Diversity and Characteristics Characteristics All members have a calcareous skeleton Spiny endoskeleton consists of plates Unique water-vascular system

More information

Fish. Water Dwelling Animals

Fish. Water Dwelling Animals Fish Water Dwelling Animals Class Agnatha (Jawless fish) They are believed to be the most primitive and oldest vertebrates. Lamprey and hagfish are the only 2 living members of this class and are placed

More information

The Animal Kingdom: The Deuterostomes. Deuterostomes. Phylum Echinodermata 4/23/2012. Chapter 31. (bilateral ciliated larvae)

The Animal Kingdom: The Deuterostomes. Deuterostomes. Phylum Echinodermata 4/23/2012. Chapter 31. (bilateral ciliated larvae) Porifera Porifera Cnidaria Cnidaria Ctenophora Ctenophora Platyhelminthes Platyhelminthes Nemerteans Nemerteans Nematoda Nematoda Rotifera Rotifera Tardigrada Tardigrada Onychophora Onychophora Arthropoda

More information

Phyla Echinodermata and Chordata

Phyla Echinodermata and Chordata 10/27/14 Deuterostomes! v Echinoderms and Phyla Echinodermata and Chordata Deuterostome Review v Deuterostomes share developmental characteristics Radial cleavage Formation of the anus from the blastopore

More information

Phyla Echinodermata and Chordata

Phyla Echinodermata and Chordata Phyla Echinodermata and Chordata Deuterostomes! v Echinoderms and chordates constitute the clade Deuterostomia v Echinoderms (phylum Echinodermata) include sea stars and sea urchins v Chordates (phylum

More information

Animal Diversity. Kingdom Animalia

Animal Diversity. Kingdom Animalia 7ch11 Animal Diversity Kingdom Animalia Animal Characteristics 1. animals are eukaryotes and are multicellular 2. cells are specialized for different functions (vision,digestion,reproduction) 3. protein,

More information

Biology 11 - Chapter 31 Assignment

Biology 11 - Chapter 31 Assignment Name: Class: Date: Biology 11 - Chapter 31 Assignment True/False Indicate whether the statement is true or false. 1. Echinoderms exhibit their invertebrate heritage by their hard exoskeletons made of calcium

More information

What is a Fish? Fishes are aquatic vertebrates. Most fishes have paired fins, scales, and gills.

What is a Fish? Fishes are aquatic vertebrates. Most fishes have paired fins, scales, and gills. What is a Fish? Fishes are aquatic vertebrates. Most fishes have paired fins, scales, and gills. Feeding and Digestion Every mode of feeding is seen in fish herbivores, carnivores, parasites, filter feeders,

More information

Phylum Chordata. Chief characteristics (some are embryonic):

Phylum Chordata. Chief characteristics (some are embryonic): Phylum Chordata Vertebrates, sea squirts or tunicates, lancelets such as Amphioxus. Name: "Chord" means "string," referring to the nerve cord and/or notochord. Geologic range: Cambrian to Holocene. Mode

More information

Chapter 25: Fishes 1

Chapter 25: Fishes 1 Chapter 25: Fishes 1 2 Jawless Fishes (Agnatha) Cartilaginous Fishes (Chondrichthyes) Bony Fishes (Osteichthyes) Lamprey Whale shark Scorpion fish 3 Gills Single-loop Blood Circulation Vertebral column

More information

Lecture 8 History of fishes

Lecture 8 History of fishes Lecture 8 History of fishes Ray Troll Picture = CARD SHARKS Structural Patterns and Trends in Diversification Fish subsumed (since Cope (1889) proposed - Agnatha - jawless fishes and Gnathostome lines

More information

Animals II: The Chordates

Animals II: The Chordates Animals II: The Chordates Phylum : Chordata Subphylum: Urochordata: Tunicates Cephalochordata: Lancelets Vertebrata: Vertebrates Chordate Characteristics Bilaterally symmetrical, coelomate animals Complete

More information

Class Polychaeta: Marine Worms

Class Polychaeta: Marine Worms Class Polychaeta: Marine Worms Animal Phyla Phylum Mollusca (Snails, Clams, Octopods and Allies): Radula: rasping tongue Shell: 3 layers, mostly calcium carbonate Inner-most = nacre = mother of pearl Mantle:

More information

Phylum Mollusca Snails, slugs, oysters, clams, octopuses, and squids

Phylum Mollusca Snails, slugs, oysters, clams, octopuses, and squids Phylum Mollusca Snails, slugs, oysters, clams, octopuses, and squids Nephridium Most are marine Visceral mass Soft-bodied animals, but most are protected by a hard shell Coelom Digestive tract Gonads Shell

More information

BIO 221 Invertebrate Zoology I Spring Larval Development. Larval Development. Lecture 18

BIO 221 Invertebrate Zoology I Spring Larval Development. Larval Development. Lecture 18 BIO 221 Invertebrate Zoology I Spring 2010 Stephen M. Shuster Northern Arizona University http://www4.nau.edu/isopod Lecture 18 Larval Development 1. Often presented as a progression of stages a. Representative

More information

Basic mollusc body plan

Basic mollusc body plan Phylum Mollusca Phylum Mollusca 3 embryonic germ layers true coelom complete gut second largest phylum of animals, around 100,000 species mainly aquatic, but some terrestrial species Basic mollusc body

More information

Lecture III.5a. Animals II. Deuterostomes include echinoderms and chordates.

Lecture III.5a. Animals II. Deuterostomes include echinoderms and chordates. Lecture III.5a. Animals II. Deuterostomes include echinoderms and chordates. Overview. Deuterostomes: 1. Echinoderms - Pentameral (5-way) symmetry. Marine. Include sea lilies (crinoids - mostly extinct),

More information

Hemichordates and Invert chordates

Hemichordates and Invert chordates Hemichordates and Invertebrate chordates 1 Animal innovations (Symplesiomorphies) Pharyngeal gill slits Dorsal hollow nerve cord Porifera Placozoa Cnidaria Ctenophora Platyhelminthes Gastrotricha Gnathostomulida

More information

2/17/2017. Lec. 11: Ch. 32 Deuterostomes

2/17/2017. Lec. 11: Ch. 32 Deuterostomes 1 2 3 4 5 6 7 8 Lec. 11: Ch. 32 Deuterostomes Deuterostomes Radial cleavage Indeterminant blastomeres Blastopore becomes anus Coelom forms by outpouching of the gut (enterocoelous) Phylum Echinodermata

More information

Internal Anatomy of Fish

Internal Anatomy of Fish Internal Anatomy of Fish The Systems of a Fish Skeletal System Muscular System Respiratory System Digestive System Circulatory System Nervous System Reproductive System Special Organs Skeletal System

More information

Fishes are vertebrates that have characteristics allowing them to live and reproduce in water.

Fishes are vertebrates that have characteristics allowing them to live and reproduce in water. Section 1: are vertebrates that have characteristics allowing them to live and reproduce in water. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the features of

More information

Copyright 2011 Pearson Education, Inc.

Copyright 2011 Pearson Education, Inc. Urochordata (tunicates) Cephalochordata (lancelets) Myxini (hagfishes) Petromyzontiformes (lampreys) Chondrichthyes (sharks, rays) Actinopterygii (ray-finned fish) Actinistia (coelacanths) Dipnoi (lungfishes)

More information

ADVANCED INVERTEBRATES HAVE COMPLEX BODIES AND INTERNAL SYSTEMS

ADVANCED INVERTEBRATES HAVE COMPLEX BODIES AND INTERNAL SYSTEMS ADVANCED INVERTEBRATES HAVE COMPLEX BODIES AND INTERNAL SYSTEMS Arthropoda Most successful phylum on Earth Exoskeleton chitin Striated muscle Articulation Crayfish, lobsters, shrimp, crabs Echinodermata

More information

FI F SH A ND F I F SHES E SUBPHYLUM VERTEBRATA

FI F SH A ND F I F SHES E SUBPHYLUM VERTEBRATA FISH AND FISHES SUBPHYLUM VERTEBRATA 24,600 LIVING SPECIES FUN FACTS THAT S MORE THAN TERRESTRIAL ANIMALS! EARTH IS 70% WATER BUT LESS THAN.1% OF THE WATER ON THE PLANET IS FRESHWATER 41% OF FISH SPECIES

More information

Dorsal hollow nerve chord that forms spinal cord and brain. VERTEBRATES [OVERVIEW - OVERHEAD, similar to fig. 19.1, p. 390]:

Dorsal hollow nerve chord that forms spinal cord and brain. VERTEBRATES [OVERVIEW - OVERHEAD, similar to fig. 19.1, p. 390]: Phylum Chordata (44,000 species) Dorsal hollow nerve chord that forms spinal cord and brain Notochord at some stage of life cycle Gill slits at some point in life cycle VERTEBRATES [OVERVIEW - OVERHEAD,

More information

Chapter 5 Marine Protozoans and Invertebrates

Chapter 5 Marine Protozoans and Invertebrates Chapter 5 Marine Protozoans and Invertebrates I. The Protozoans A. Kindgom Protista a catch-all category B. Characteristics 1. Mode of nutrition 2. Single-celled or multicellular? 3. Cell structure 4.

More information

VERTEBRATE EVOLUTION & DIVERSITY

VERTEBRATE EVOLUTION & DIVERSITY VERTEBRATE EVOLUTION & DIVERSITY 1 ANIMAL DIVERSITY No true tissues Ancestral protist True tissues Radial symmetry True Animals Bilateral symmetry Bilateral Animals Deuterostomes Lophotrochophores Ecdysozoans

More information

Class Myxini Order Myxiniformes Family Myxinidae (hagfishes)

Class Myxini Order Myxiniformes Family Myxinidae (hagfishes) Class Myxini Order Myxiniformes Family Myxinidae (hagfishes) Lacks jaws Mouth not disk-like barbels present Unpaired fins as continuous fin-fold Branchial skeleton not well developed Eyes degenerate 70-200

More information

Natural History of Vertebrates Lecture Notes Chapter 2 - Vertebrate Relationships and Basic Structure

Natural History of Vertebrates Lecture Notes Chapter 2 - Vertebrate Relationships and Basic Structure Natural History of Vertebrates Lecture Notes Chapter 2 - Vertebrate Relationships and Basic Structure These notes are provided to help direct your study from the textbook. They are not designed to explain

More information

Phylum Chordata:

Phylum Chordata: The Chordates: Putting a Backbone Into Spineless Animals Note: These links do not work. Use the links within the outline to access the mages in the popup windows. This text is the same as the scrolling

More information

Chapter 28 Arthropods and Echinoderms. Body Terms. Evolution has led to:

Chapter 28 Arthropods and Echinoderms. Body Terms. Evolution has led to: Chapter 28 Arthropods and Echinoderms Introduction to Arthropods jointed feet Most diverse and successful animals Over 750,000 species identified Segmented bodies Tough exoskeleton Jointed appendages Body

More information

Overview of Invertebrates

Overview of Invertebrates Overview of Invertebrates General Features of Animals Heterotrophic Multicellular (eukaryotic) Cells lack rigid cell walls Cells are usually quite flexible. Cells (except sponges) are organized into structural

More information

Spiny skinned animals with radial symmetrical body plan. Rays emanating from a common center. Internal skeleton of hardened plates of calcium

Spiny skinned animals with radial symmetrical body plan. Rays emanating from a common center. Internal skeleton of hardened plates of calcium Echinodermata Spiny skinned animals with radial symmetrical body plan. Rays emanating from a common center. Internal skeleton of hardened plates of calcium carbonate. Water vascular system and tube feet

More information

The Animals: Kingdom Animalia

The Animals: Kingdom Animalia The Animals: Kingdom Animalia Kingdom Animalia (Animals) What is an Animal? Zoology- The study of Animals General Characteristics of 1. Animals are multicellular and eukaryotic. Animals 2. Animals consume

More information

FISHES. Agnatha Chondrichthyes Osteichthyes

FISHES. Agnatha Chondrichthyes Osteichthyes FISHES Agnatha Chondrichthyes Osteichthyes General Characteristics! Ectothermic! Vertebrates! Have scales! Swim with fins! Almost all exclusively aquatic! Filter oxygen from water over gills Classes of

More information

Class Osteichthyes. Bony Fish

Class Osteichthyes. Bony Fish Class Osteichthyes Bony Fish General Characteristics of Class internal skeleton ossified (turned to bone) Paired fins made of rays and spines, or lobed fins swim bladder or lung present bony scales (ganoid,

More information

Fishes and Amphibians Objectives

Fishes and Amphibians Objectives Fishes and Amphibians Objectives List the four common body parts of chordates. Describe the two main characteristics of vertebrates. Explain the difference between an ectotherm and an endotherm. Describe

More information

BIO Animal Form and Function Final Examination Worth 35 % of the final grade. April 19, BIO 2135 Animal Form and Function

BIO Animal Form and Function Final Examination Worth 35 % of the final grade. April 19, BIO 2135 Animal Form and Function BIO 2135 - Animal Form and Function Final Examination Worth 35 % of the final grade April 19, 2016 Please read and sign in the space provided to acknowledge these instructions: a) Cellular phones, unauthorized

More information

Phylum Chordata (Focus will be on Subphylum Vertebrata) Kingdom Animalia Phylum Chordata

Phylum Chordata (Focus will be on Subphylum Vertebrata) Kingdom Animalia Phylum Chordata Phylum Chordata (Focus will be on Subphylum Vertebrata) Kingdom Animalia Phylum Chordata - All members have three basic characteristics: 1) a hollow dorsal nerve cord, - spinal cord has small fluid fill

More information

Subphylum Urochordata Subphylum Cephalochordata Subphylum Vertebrata

Subphylum Urochordata Subphylum Cephalochordata Subphylum Vertebrata Subphylum Urochordata Subphylum Cephalochordata Subphylum Vertebrata The most diverse of all vertebrates My research on fish * PhD Program (Oregon State University) Olfaction

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 17. Annelids 17-1

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 17. Annelids 17-1 CHAPTER 17 Annelids 17-1 Characteristics of the Phylum Annelida Diversity Exhibit segmentation or metamerism Bodies composed of repeated units Each unit contains components of most MAJOR organ systems

More information

Protostome: Embryonic blastopore becomes mouth

Protostome: Embryonic blastopore becomes mouth Classical hypothesis Molecular hypothesis Adoutte 2000 PNAS Protostome: Embryonic blastopore becomes mouth Schizocoelous development (typical of the protostome coelomates) 1 Deuterostome: Embryonic blastopore

More information

Reading guide for exam 1 Chapter 1 Chapter 2 Chapter 3

Reading guide for exam 1 Chapter 1 Chapter 2 Chapter 3 Reading guide for exam 1 In general, when you are studying for an exam in this class you should learn your lecture notes (that is the notes you take in lecture) and use those along with the handout of

More information

~ Chapter 3 ~ Early Vertebrates: Jawless Vertebrates & the Origin of Jawed Vertebrates

~ Chapter 3 ~ Early Vertebrates: Jawless Vertebrates & the Origin of Jawed Vertebrates ~ Chapter 3 ~ Early Vertebrates: Jawless Vertebrates & the Origin of Jawed Vertebrates New Vertebrate Features 1) Distinct head end 2) Tripartite brain 3) Cartilaginous cranium (skull) 4) Complex sense

More information

5/3/15. Vertebrate Evolution Traces a Long and Diverse History. Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold

5/3/15. Vertebrate Evolution Traces a Long and Diverse History. Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold Construction of Complex Chordate Bodies Begins on a Stiffening Scaffold Chordata is the most advanced animal phylum. All chordates have, at some time during development, a notochord. Both invertebrate

More information

LECTURE 6 - OUTLINE. Evolution & Classification - Part II. Agnatha (cont.) Gnathostomata

LECTURE 6 - OUTLINE. Evolution & Classification - Part II. Agnatha (cont.) Gnathostomata LECTURE 6 - OUTLINE Evolution & Classification - Part II Agnatha (cont.) 6. Myxini 7. Cephalaspidomorphi Gnathostomata 1. Phylogenetic relationships 2. Placodermi 3. Acanthodii BIOL 4340 Lecture 6-1 Class

More information

Perch Dissection Lab

Perch Dissection Lab Name: Block: Due Date: Perch Dissection Lab Background The fish in the class Osteichthyes have bony skeletons. There are three groups of the bony fish: ray-finned, lobe-finned, and the lungfish. The perch

More information

"Protochordates" BIO3334 Invertebrate Zoology. Page 1. Hemichordates and Invertebrate chordates. Protochordate taxa 2 8:30 AM

Protochordates BIO3334 Invertebrate Zoology. Page 1. Hemichordates and Invertebrate chordates. Protochordate taxa 2 8:30 AM Hemichordates and Invertebrate chordates 1 Protochordate taxa Phylum. Hemichordata Class. Enteropneusta Class. Pterobranchia Phylum. Chordata Subphylum. Urochordata Subphylum. Cephalochordata Subphylum.

More information

CHAPTER 23 Chordates

CHAPTER 23 Chordates CHAPTER 23 Chordates 23-1 23-2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 23-3 The Chordates: Characteristics Structural Plan Name chordata comes from the

More information

Requirements for Animal Life. Phylum Bryozoa. Colonial Bryozoans. A lophophore is a structure used for:

Requirements for Animal Life. Phylum Bryozoa. Colonial Bryozoans. A lophophore is a structure used for: Requirements for Animal Life Animal phylogeny based on sequencing of SSU-rRNA The demands of 3 unique environments Marine, freshwater, terrestrial Gas exchange Nutrition Distribution and transport Disposal

More information

Biology 3315 Comparative Vertebrate Morphology Protochordates and Fishes

Biology 3315 Comparative Vertebrate Morphology Protochordates and Fishes Biology 3315 Comparative Vertebrate Morphology Protochordates and Fishes 1. Echinodermata If fossil forms are included, echinoderms are a very diverse assemblage; several classes are now entirely extinct.

More information

Phylum: Porifera (sponges)

Phylum: Porifera (sponges) Phylum: Porifera (sponges) (8,761 known species) General Description: Simplest animals, multicellular No organs or body systems Skeleton composed of spongin (soft) and spicules (hard) Symmetry: Asymmetrical

More information

CHORDATA SK.M.BASHA Phylum Chordata Vertebrates, sea squirts or tunicates, lancelets such as Amphioxus. Name: "Chord" means "string", referring to the nerve cord and/or notochord. Chief characteristics:

More information

Myxiniformes Petromyzontiformes Chondrichthyes Osteichthyes. Before we get to jaws, we need to know something about hard tissues.

Myxiniformes Petromyzontiformes Chondrichthyes Osteichthyes. Before we get to jaws, we need to know something about hard tissues. Behold the Gnathostomata: gnathos (jaw) + stoma (mouth) Cephalochordata Urochordata Haikouella Myxiniformes Petromyzontiformes Chondrichthyes Osteichthyes jaws skull proto-vertebrae, true gills, two eyes,

More information

Reference: Chapter Phylum Chordata! Part Two, Fish

Reference: Chapter Phylum Chordata! Part Two, Fish Reference: Chapter 34.1-34.4 Phylum Chordata! Part Two, Fish 2 Clade Craniata v Evolution of a head (cranium) opened up a completely new way of feeding (for chordates): active predation v Craniates share

More information

A. Porifera (sponges): B. Cnidaria (jellies, hydra, sea anemones, and corals):

A. Porifera (sponges): B. Cnidaria (jellies, hydra, sea anemones, and corals): Invertebrates Notes A. Porifera (sponges): Porifera literally means. Most sponges are. They are that collect food particles from the water as they pass through flagellated cells called. These cells then

More information

I n t r o d u c t i o n. A n i m a l s

I n t r o d u c t i o n. A n i m a l s I n t r o d u c t i o n t o A n i m a l s What is an Animal? Taxonomy: Kingdom Animalia Type of Cells: Eukaryotic Cellular Organization: Multicellular Reproduction: Sexual / Asexual Feeding: Heterotrophic

More information

Characteristics of Animals pp Topic 7: Animal Diversity Ch Symmetry pp Characteristics of Animals

Characteristics of Animals pp Topic 7: Animal Diversity Ch Symmetry pp Characteristics of Animals Topic 7: Animal Diversity Ch. 32-34 Characteristics of Animals pp.704-705 Animals: Are eukaryotic Are multicellular Are ingestive heterotrophs Have no cell walls Most are motile Most have tissues organized

More information