Appendix 2. Basic physical properties applied to the respiratory system

Size: px
Start display at page:

Download "Appendix 2. Basic physical properties applied to the respiratory system"

Transcription

1 Appendix 2. Basic physical properties applied to the respiratory system Fluid is a general definition of a state of matter characterized by a weak intermolecular connection (Van der Waal's cohesive forces), with molecules relatively free to change their respective positions. Hence, a fluid is unable to resist even the slightest shearing force, as opposed to a solid, which retains its original shape, or, if deformed, regains it when the force is eliminated. Both a gas and a liquid are fluids. In the former, the intermolecular connections are so weak that the matter does not have its own defined shape and volume. In the latter, the cohesive forces are sufficiently strong for the matter to retain its own volume; in fact, to a large extent, the volume (V) of a liquid cannot change irrespective of the pressure (P) applied. On the other hand, in the case of a gas, V is undefined, depending upon the pressure (P, Boyle's law) and the temperature (T, Charles' law) applied to it: P V = n R T [eq.1] n being the number of molecules and R the gas constant. If P is measured in mm Hg, T in o K, and V in liters, R=62.4*; [*at standard T (273 o K) R approximates 543 calories/mol] in standard Temperature, Pressure, Dry (STPD) conditions (T=273 o K, P=760 mm Hg, dry) 1 mole of gas occupies a volume of approximately 22.4 liters. The cohesive forces are T dependent, becoming weaker when T increases. In fact, an increase in T implies that thermal energy has been added to the kinetic energy of the molecules. Hence, at any given P, T dictates whether a fluid is in a liquid or gaseous state. At standard P, the liquidgas transitional T (boiling T) for H 2 O is at about 100 o C, for O 2 is -183 o C. CO 2 is somewhat special, in that it does not retain a liquid state, subliming directly from the solid to the gaseous form at -42 o C, i.e. melting and boiling T coincide. N 2 retains the liquid form only between -210 (melting T) and -196 o C (boiling T). These values would differ if P changed. For example, a reduction in P, as at high altitude, reduces the boiling T of water; on the highest Tibetan mountains, above 8,000 m, P is less than 240 mm Hg, and water vaporizes at T=-70 o C. Sudden exposure to very low P, as in extraatmospheric spaces, would imply the instantaneous boiling of all body fluids. Gas in a gas mixture When several gases are mixed together, as it is the case of air, gas law [eq.1] still applies, with P indicating Ptotal, i.e. the sum of the individual partial pressures, and N the sum of the total molecules (Dalton's Law: the total pressure of a gas mixture equals the sum of the pressure of each of the components). It follows that the partial pressure Px of a gas x can be easily calculated from its concentration n(x)/n and Ptotal, since Px is n(x)/n of Ptotal. For example, O 2 is 20.95% of the total dry air; therefore, at Ptotal=760 mm Hg, its partial pressure PO 2 is 20.95% of 760 mmhg, or 159 mm Hg. At Ptotal=240 mm Hg, PO 2 is 50 mm Hg. Gas in a liquid In a condition of perfect equilibrium, by definition, there is no net flow of molecules in any direction. This would apply not only to the gas mixture of which the gas x is part, but also to the liquid in which it is dissolved. In other words, in a two-phase system in which a liquid and a gas are in contact with each other, once equilibrium is reached, Px is the same in the gas and in the liquid, i.e. Px(gas) = Px(liquid). If it was not so, a flow of molecules would be generated by the Px difference, negating the assumption of equilibrium. 1

2 However, Px(gas) = Px(liquid) does not necessarily mean that the molar concentration of the gas x is the same in the two media; most often is not. In fact, as stated above, in the gas medium the concentration of x [n(x)/n] simply equals Px/Ptotal. Differently, in the liquid medium the quantity of x, n(x), depends not only on Px but also on its solubility α n(x) = Px α (eq.2) where α is the solubility coefficient expressed as volume of gas contained in a unitary volume of liquid, at STPD, per unit pressure (e.g., ml gas STPD ml liquid -1 mm Hg -1 ). Its value depends not only on the specific gas and liquid, but also on the ionic strength and T of the liquid, both factors being inversely related to α. For example, at 37 o C, the solubility of O 2 in salty water and in distilled water is, respectively, 1.17 and 1.41 µmole liter -1 mm Hg -1 (or approximately 26 and 32 µl STPD liter water -1 mm Hg -1 ). Neither the nature of the liquid electrolytes nor the presence of other gases in solution has an appreciable effect on α. In water at 20 o C, relative to that of O 2, α of CO 2 is almost 30 times greater, whereas α of N 2 is about half. A somewhat more comprehensive concept of solubility is the physiological concept of capacitance coefficient β. It includes not only the solubility coefficient α, but also any possible chemical binding of the gas to any molecule in the liquid. This is of major physiological importance, since in the blood both O 2 and CO 2 bind to hemoglobin, greatly increasing the capacitance of the blood for these gases. Hence, β has the same units of α, but depends on the concentration of hemoglobin; at full hemoglobin saturation (arterial PO 2 =100 mm Hg), 1 liter of blood contains approximately 200 ml O 2 ; hence, β(o 2 ) is 89 µmole liter blood -1 mm Hg -1, i.e. more than 70 times the α(o 2 ) of salty water. From the above, several aspects need to be emphasized. a. Given Ptotal and Px, it is easy to know the concentration of the gas x in the gas mixture, whereas its concentration in the liquid medium cannot be known, unless α is specified. b. Because α varies among liquids, the content of the gas x also changes among different liquids, even if Px remains the same. c. Because gas diffusion depends on difference in Px, and not on the difference in concentration, a gas can diffuse from one liquid to another (with higher α) against its concentration gradient. Conversely, at equilibrium (i.e. same Px), liquids in contact can have different concentrations of the gas x. d. Because gas volumes depend on T and P, the conditions of the measurements need to be specified. Respiratory volumes (i.e. pulmonary ventilation, tidal volume, vital capacity) are usually reported at the temperature and pressure of the body (Body Temperature and Water vapour-saturated Pressure, BTPS). On the other hand, moles of gas (i.e. oxygen consumption, carbon dioxide production) are commonly reported at Standard Temperature (273 o K) and Pressure Dry (760 mm Hg) condition (STPD). In many cases volume measurements are performed neither at STPD nor at BTPS, but at ATPS (Ambient Temperature Pressure Saturation). Conversion among these conditions can be easily performed by applying the general law for ideal gases, with volume proportional to absolute temperature, and inversely proportional to pressure. As an example, if a spirometer is used to measure the tidal volume (VT) of a subject in a mountain region where barometric pressure P=450 mm Hg, and the spirometer is at 23 o C (knowing that the pressure of water vapour at saturation at 23 o C is 21 mm Hg, and that at the body temperature of 37 o C is 47 mm Hg) VBTPS/VATPS = (TBTPS PATPS) / (TATPS PBTPS) = [ (273+37) (450-21) ] / [273+23) (450-47)] 2

3 hence, VT, BTPS = VT, ATPS Similar computations are applied to convert volumes into STPD conditions (in which case water vapour pressure is nil). An STPD volume is about 83% of the value at 37 o C, 1 saturated atmosphere. Tables of conversion factors between ATPS, BTPS and STPD are available. e. One important implication of the temperature-sensitivity of α (and β) is the change in blood gas partial pressure with changes in blood temperature. A lower blood temperature (e.g. in the peripheral circulation during exposure to cold, or during hibernation) increases the O 2 and CO 2 solubility, therefore reducing the corresponding partial pressures. Values of ph also depend on temperature, since water dissociation is temperature dependent. This needs to be kept in mind in a number of occasions, of which probably the most frequent is blood gas analysis in the clinical setting. Because the PO 2, PCO 2 and ph electrodes are usually maintained at a fixed temperature (37 o C in most analysers), values need to be corrected to the body temperature of the patient [Fig.1]. 3

4 Fig.1. Effect of changes in temperature on PO 2, PCO 2 and ph of human blood. 4

5 Diffusion In absence of equilibrium, molecules of a gas x 'diffuse', i.e. 'move' from a region of high Px to a region of low Px, until equilibrium is reached. Once more, it is important to stress that diffusion is determined by differences in Px, not differences in concentration. The diffusion equation defining the magnitude of gas diffusion is essentially equivalent to the familiar flow= pressure/resistance (V=P/R), where flow is the quantity of gas diffusing per unit time (V), pressure indicates the difference in Px, and R is the diffusional resistance; the latter is a term which includes the diffusional area A, the diffusional distance d, and the diffusion coefficient D (Fick s law of diffusion) Vx = Px [(A/d) D] [eq.3] The value of the diffusion coefficient D depends on the atomic mass of x (the rate of diffusion of a gas is inversely proportional to its mass) and the strength of its cohesive forces. For a gas diffusing in a liquid, two factors need to be taken into account. First, cohesive forces assume a major role, substantially lowering D; for example, in water, D can be 10-7 the value in air. Of great importance is the solubility α of the gas in the liquid, and equation [3] becomes: Vx = Px [(A/d) D α] [eq.4] The product of the diffusion coefficient D and solubility α are often lumped together in the permeation coefficient (or Krogh's constant, ml gas(stpd) sec -1 cm -1 mm Hg -1 ), a functional parameter of major physiological significance. An increase in T has the double effect of increasing D and lowering α, with a rather small net effect on the permeation coefficient. A few points of physiological significance can be stressed: a. Because of the major decrease of D in liquids compared to gases, times for gas exchange by mere diffusion can be very long in liquids. For example, for the same Px gradient, by the time x has diffused 1 meter in air, in water it may have travelled only about = 1µm. Diffusional gas exchange in water breathers is therefore a slow process. b. Because diffusion time increases with the square of the distance, diffusion alone rapidly becomes inadequate to sustain the metabolic rate of a growing cell aggregate. c. Although D for O 2 is higher than for CO 2, whether in air or in water (~ times, respectively), the solubility of CO 2 is so much greater that the permeation coefficient (D α) of CO 2 is much greater than that of O 2. d. The P for diffusion of CO 2 is normally substantially less than that for the diffusion of O 2 (in the pulmonary capillary only ~6 mm Hg for CO 2 and ~55 mm Hg for O 2 ), but the respective times for equilibration with the air phase do not differ greatly (less than 0.7 sec for both gases) because of the larger CO 2 permeation coefficient. Convection In addition to diffusion, gas molecules often move from one place to another because of movement (or convection) of the fluid of which they are part. In respiratory physiology, convection is mostly of mechanical origin, either the result of contraction of the respiratory muscles or associated to locomotion. Only in special cases, convection generated by thermal gradients assumes some significance. 5

6 Fig.2. P-V relationships in conditions of laminar flow regime ( P α V, at left), or of fully turbulent flow regime ( P α V 2 at right). Both relationships are affected by temperature. Fluid flow (V) is produced by the difference in pressure ( P) applied to the fluid, and its magnitude depends on the flow resistance R. The actual relationship between these three variables, P, V and R, depends on numerous factors. In the simplest case of low flow velocities, in a cylindrical container, P is proportional to V [Fig.2, left], the proportionality constant R being determined by geometrical and physical factors, the length (l) and radius (r) of the cylindrical container, and viscosity η of the fluid. Hence, at a constant T, P=V [(8η l) / (π r 4 )] * [eq.5] [*viscosity: 1 poise = 1 dyne sec cm 2 ] This relationship is linear because, at a given T, η is usually independent of V. However, η does depend on T, being inversely related to it. Although, for a given V, the average speed* of the fluid may be constant, cohesive forces both within the fluid and between [*speed, or velocity (length/time) of a fluid with flow V (length 3 /time) in a container of cross section A (length 2 ) equals V/A] the fluid and the container create an important velocity gradient among the fluid molecular layers; of these, the layers closest to the wall are the slowest [Fig.3], eventually approaching zero motion (unstirred layer), and those in the center are the fastest. Hence, convection prevails in the center, whereas it approaches zero at the periphery. The smaller is r, the 6

7 disproportionately greater becomes the importance of the peripheral layers, raising exponentially (in fact, to the fourth power, eq.5) the total flow resistance R. Fig.3. Parabolic velocity profile. Convection prevails in the center, where the layers have the highest linear velocity, whereas it is minimal in the layers closest to the wall (unstirred layer). When the flow speed v reaches high values, motion is not only forward (i.e. tangential) to the cylinder, but also in other directions. This implies additional pressure losses, resulting in alinear P-V behaviour [Fig.2, right]. In such a case, P and V are no longer linearly related; P becomes now proportional to an exponent of V, the exponent being between 1 and 2. In addition to the speed v, the transition between the linear and alinear P- V behaviour (or between laminar and turbulent flow regime) is also influenced by the cylinder r, and the viscosity η and density δ of the fluid. These parameters relate to each [*density = mass/volume, g/ml] other in a dimensionless number (Re, Reynolds' number) Re= (v 2 r δ) / η [eq.6] which can be considered as a ratio between kinetic and viscous forces. If viscous factors are small, compared to kinetic, Re is high, and turbulency occurs. On the opposite, a flow with small kinetic, with respect to viscous, factors has a low Re, and a laminar flow regime, governed by eq. [5], prevails. 7

8 From the above, some physiological implications should be emphasized. a. Small changes in airways diameter have profound effects on airflow resistance. For example, from eq. [5], a reduction in r of only 1/8 will increase resistance by (1+1/8) 4, or ~60%. b. Breathing low density gases (i.e. helium) decreases Re (eq.6), hence it decreases the resistive pressure losses. c. For any given V, diffusion prevails over convection whenever the velocity v is low. This is toward the unstirred layers, and also whenever the cross sectional area A is large. An example of the latter are the alveoli, in which, because of their extremely large total (i.e. cumulative) cross sectional area, v approaches zero, and movement of gases is solely by diffusion. 8

Lung Volumes and Capacities

Lung Volumes and Capacities Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

More information

Collin County Community College. Lung Physiology

Collin County Community College. Lung Physiology Collin County Community College BIOL. 2402 Anatomy & Physiology WEEK 9 Respiratory System 1 Lung Physiology Factors affecting Ventillation 1. Airway resistance Flow = Δ P / R Most resistance is encountered

More information

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

More information

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Application of the gas laws to pulmonary physiology. 2. How to

More information

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works.

Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5: Gases 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. A Gas Uniformly fills any container. Easily compressed. Mixes completely

More information

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them.

Gas Pressure. Pressure is the force exerted per unit area by gas molecules as they strike the surfaces around them. Chapter 5 Gases Gas Gases are composed of particles that are moving around very fast in their container(s). These particles moves in straight lines until they collides with either the container wall or

More information

Chem 110 General Principles of Chemistry

Chem 110 General Principles of Chemistry CHEM110 Worksheet - Gases Chem 110 General Principles of Chemistry Chapter 9 Gases (pages 337-373) In this chapter we - first contrast gases with liquids and solids and then discuss gas pressure. - review

More information

Section Two Diffusion of gases

Section Two Diffusion of gases Section Two Diffusion of gases Lecture 5: Partial pressure and the composition of gasses in air. Factors affecting diffusion of gases. Ventilation perfusion ratio effect on alveolar gas concentration.

More information

Applied Physics Topics 2

Applied Physics Topics 2 Applied Physics Topics 2 Dr Andrey Varvinskiy Consultant Anaesthetist Torbay Hospital, UK EDAIC Paper B Lead and Examiner TOPICS 2 Gas Laws Other Laws: Dalton, Avogadro Critical temperature Critical pressure

More information

Ch. 11 Mass transfer principles

Ch. 11 Mass transfer principles Transport of chemical species in solid, liquid, or gas mixture Transport driven by composition gradient, similar to temperature gradients driving heat transport We will look at two mass transport mechanisms,

More information

Gas Law Worksheets - WS: Boyle s and Charles Law

Gas Law Worksheets - WS: Boyle s and Charles Law Gas Law Worksheets - WS: Boyle s and Charles Law Boyle s Law states that the volume of a gas varies inversely with its pressure if temperature is held constant. (If one goes up the, other goes down.) We

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

RESPIRATORY REGULATION DURING EXERCISE

RESPIRATORY REGULATION DURING EXERCISE RESPIRATORY REGULATION DURING EXERCISE Respiration Respiration delivery of oxygen to and removal of carbon dioxide from the tissue External respiration ventilation and exchange of gases in the lung Internal

More information

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT:

Kinetic Molecular Theory imaginary Assumptions of Kinetic Molecular Theory: Problems with KMT: AP Chemistry Ms. Ye Name Date Block Kinetic Molecular Theory Explains properties of gases, liquids, and solids in terms of energy using an ideal gas, an imaginary which fits all the assumptions of kinetic

More information

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1

AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 AN OVERVIEW OF RESPIRATION AND AN INTRODUCTION TO DIFFUSION AND SOLUBILITY OF GASES 1 Summary: This set of notes gives an overview of respiration and then follows the overview with a detailed discussion

More information

Gilbert Kirss Foster. Chapter 10. Properties of Gases The Air We Breathe

Gilbert Kirss Foster. Chapter 10. Properties of Gases The Air We Breathe Gilbert Kirss Foster Chapter 10 Properties of Gases The Air We Breathe Chapter Outline 10.1 The Properties of Gases 10.2 Effusion and the Kinetic Molecular Theory of Gases 10.3 Atmospheric Pressure 10.4

More information

Chapter 12. The Gaseous State of Matter

Chapter 12. The Gaseous State of Matter Chapter 12 The Gaseous State of Matter The air in a hot air balloon expands When it is heated. Some of the air escapes from the top of the balloon, lowering the air density inside the balloon, making the

More information

Name Chemistry Pre-AP

Name Chemistry Pre-AP Name Chemistry Pre-AP Notes: Gas Laws and Gas Stoichiometry Period Part 1: The Nature of Gases and The Gas Laws I. Nature of Gases A. Kinetic-Molecular Theory The - theory was developed to account for

More information

AP TOPIC 6: Gases. Revised August General properties and kinetic theory

AP TOPIC 6: Gases. Revised August General properties and kinetic theory AP OPIC 6: Gases General properties and kinetic theory Gases are made up of particles that have (relatively) large amounts of energy. A gas has no definite shape or volume and will expand to fill as much

More information

Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn

Elements that exist as gases at 25 o C and 1 atmosphere H 2, N 2, O 2, F 2, Cl 2, He, Ne, Ar, Kr, Xe, Rn AP Chemistry Chapter 5 Sections 5. 5.9 Note Organizer Pressure, The Gas Laws of Boyle, Charles, and Avogadro, The Ideal Gas Law, Gas Stoichiometry, Dalton s Law of Partial Pressure, The Kinetic olecular

More information

Gases and Respiration. Respiration Overview I

Gases and Respiration. Respiration Overview I Respiration Overview I Respiration Overview II Gas Laws Equation of State: PV = nrt Same volumes of different gases have same # of molecules BTPS: body temp, atmospheric pressure, saturated ATPS: ambient

More information

PROPERTIES OF GASES. [MH5; Ch 5, (only)]

PROPERTIES OF GASES. [MH5; Ch 5, (only)] PROPERTIES OF GASES [MH5; Ch 5, 5.1-5.5 (only)] FEATURES OF A GAS Molecules in a gas are a long way apart (under normal conditions). Molecules in a gas are in rapid motion in all directions. The forces

More information

States of Matter Review

States of Matter Review States of Matter Review May 13 8:16 PM Physical States of Matter (Phases) Solid Liquid Melting Gas Condensation Freezing Evaporation Deposition Sublimation Sep 13 6:04 PM 1 May 13 8:11 PM Gases Chapter

More information

RESPIRATORY GAS EXCHANGE

RESPIRATORY GAS EXCHANGE RESPIRATORY GAS EXCHANGE Alveolar PO 2 = 105 mmhg; Pulmonary artery PO 2 = 40 mmhg PO 2 gradient across respiratory membrane 65 mmhg (105 mmhg 40 mmhg) Results in pulmonary vein PO 2 ~100 mmhg Partial

More information

PSI Chemistry: Gases Multiple Choice Review

PSI Chemistry: Gases Multiple Choice Review PSI Chemistry: Gases Multiple Choice Review Name Kinetic Molecular Theory 1. According to the kinetic-molecular theory, particles of matterare in constant motion (A) have different shapes (B) have different

More information

I Physical Principles of Gas Exchange

I Physical Principles of Gas Exchange Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

More information

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory

CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory CP Chapter 13/14 Notes The Property of Gases Kinetic Molecular Theory Kinetic Molecular Theory of Gases The word kinetic refers to. Kinetic energy is the an object has because of its motion. Kinetic Molecular

More information

Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter.

Chemistry 51 Chapter 7 PROPERTIES OF GASES. Gases are the least dense and most mobile of the three phases of matter. ROERIES OF GASES Gases are the least dense and most mobile of the three phases of matter. articles of matter in the gas phase are spaced far apart from one another and move rapidly and collide with each

More information

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange

By: Aseel Jamil Al-twaijer. Lec : physical principles of gas exchange By: Aseel Jamil Al-twaijer Lec : physical principles of gas exchange Date:30 /10/2017 this lecture is about the exchange of gases between the blood and the alveoli. I might add some external definitions

More information

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer

You should be able to: Describe Equipment Barometer Manometer. 5.1 Pressure Read and outline 5.1 Define Barometer A P CHEMISTRY - Unit 5: Gases Unit 5: Gases Gases are distinguished from other forms of matter, not only by their power of indefinite expansion so as to fill any vessel, however large, and by the great

More information

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure =

Chapter 13 Gases and Pressure. Pressure and Force. Pressure is the force per unit area on a surface. Force Area. Pressure = Chapter 13 Gas Laws Chapter 13 Gases and Pressure Pressure and Force Pressure is the force per unit area on a surface. Pressure = Force Area Chapter 13 Gases and Pressure Gases in the Atmosphere The atmosphere

More information

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas.

THE GAS STATE. Unit 4. CHAPTER KEY TERMS HOME WORK 9.1 Kinetic Molecular Theory States of Matter Solid, Liquid, gas. Unit 4 THE GAS STATE CHAPTER KEY TERMS HOME WORK 9. Kinetic Molecular Theory States of Matter Solid, Liquid, gas Page 4 # to 4 9. Boyles Law P α /V PV = Constant P V = P V Pressure Atmospheric Pressure

More information

Honors Chemistry Unit 7 Gas Laws Notes

Honors Chemistry Unit 7 Gas Laws Notes Honors Chemistry Unit 7 Gas Laws Notes Kinetic Molecular Theory 1. List the five assumptions: Assumption Description Extra Info 1 Basically means: the particles themselves have compared to the space between

More information

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc. Lecture Presentation Chapter 10 John D. Bookstaver St. Charles Community College Cottleville, MO Characteristics of Unlike liquids and solids, gases Expand to fill their containers. Are highly compressible.

More information

Chapter 14-Gases. Dr. Walker

Chapter 14-Gases. Dr. Walker Chapter 14-Gases Dr. Walker State of Matter Gases are one of the four states of matter along with solids, liquids, and plasma Conversion to Gases From liquids Evaporation Example: Boiling water From solids

More information

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation

Chapter 10 Gases. Characteristics of Gases. Pressure. The Gas Laws. The Ideal-Gas Equation. Applications of the Ideal-Gas Equation Characteristics of Gases Chapter 10 Gases Pressure The Gas Laws The Ideal-Gas Equation Applications of the Ideal-Gas Equation Gas mixtures and partial pressures Kinetic-Molecular Theory Real Gases: Deviations

More information

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure.

Pressure of the atmosphere varies with elevation and weather conditions. Barometer- device used to measure atmospheric pressure. Chapter 12 Section 1 Pressure A gas exerts pressure on its surroundings. Blow up a balloon. The gas we are most familiar with is the atmosphere, a mixture of mostly elemental nitrogen and oxygen. Pressure

More information

temperature and pressure unchanging

temperature and pressure unchanging Gas Laws Review I. Variables Used to Describe a Gas A. Pressure (P) kpa, atm, mmhg (torr) -Pressure=force exerted per unit area (force/area) -Generated by collisions within container walls (more collisions=more

More information

CHAPTER 3: The respiratory system

CHAPTER 3: The respiratory system CHAPTER 3: The respiratory system Practice questions - text book pages 56-58 1) When the inspiratory muscles contract, which one of the following statements is true? a. the size of the thoracic cavity

More information

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c).

Section 8: Gases. The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC (c). Section 8: Gases The following maps the videos in this section to the Texas Essential Knowledge and Skills for Science TAC 112.35(c). 8.01 Simple Gas Laws Chemistry (9)(A) 8.02 Ideal Gas Law Chemistry

More information

Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses.

Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses. Chemistry Ms. Ye Name Date Block Graham s Law of Diffusion- Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses. In other words, gas molecules

More information

P215 Respiratory System, Part 2

P215 Respiratory System, Part 2 P15 Respiratory System, Part Gas Exchange Oxygen and Carbon Dioxide constant need for oxygen constant production of carbon dioxide exchange (and movement) lung alveoli pulmonary arteries pulmonary capillaries

More information

Chapter 10: Gases. Characteristics of Gases

Chapter 10: Gases. Characteristics of Gases Chapter 10: Gases Learning Outcomes: Calculate pressure and convert between pressure units with an emphasis on torr and atmospheres. Calculate P, V, n, or T using the ideal-gas equation. Explain how the

More information

Unit 8: Gases and States of Matter

Unit 8: Gases and States of Matter Unit 8: Gases and States of Matter Gases Particles that have no definite shape or volume. They adapt to the shape and volume of their container. Ideal gases are imaginary gases that comply with all the

More information

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols

Worksheet 1.7: Gas Laws. Charles Law. Guy-Lassac's Law. Standard Conditions. Abbreviations. Conversions. Gas Law s Equation Symbols Name Block Worksheet 1.7: Gas Laws Boyle s Law Charles Law Guy-Lassac's Law Combined Gas Law For a given mass of gas at constant temperature, the volume of a gas varies inversely with pressure PV = k The

More information

Chemistry A Molecular Approach. Fourth Edition. Chapter 5. Gases. Copyright 2017, 2014, 2011 Pearson Education, Inc. All Rights Reserved

Chemistry A Molecular Approach. Fourth Edition. Chapter 5. Gases. Copyright 2017, 2014, 2011 Pearson Education, Inc. All Rights Reserved Chemistry A Molecular Approach Fourth Edition Chapter 5 Gases Supersonic Skydiving and the Risk of Decompression Gas Gases are composed of particles that are moving around very fast in their container(s).

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Test General Chemistry CH116 UMass Boston Summer 2013 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The pressure exerted by a column of

More information

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot?

4. Using the kinetic molecular theory, explain why a gas can be easily compressed, while a liquid and a solid cannot? Name Period HW 1 Worksheet (Goals 1-4) - Kinetic Molecular Theory 1. Describe how gases, liquids, and solids compare using the following table. Solids Liquids Gases Volume (definite or indefinite) Molecular

More information

Chemistry 101 Chapter 5 GAS MIXTURES

Chemistry 101 Chapter 5 GAS MIXTURES GAS MIXTURES Consider mixing equal volumes of 3 different gases, all at the same temperature and pressure in a container of the same size. 1 L He 1 L N 2 1 L O 2 1 L mixture t = 0 0 C t = 0 0 C t = 0 0

More information

ALVEOLAR - BLOOD GAS EXCHANGE 1

ALVEOLAR - BLOOD GAS EXCHANGE 1 ALVEOLAR - BLOOD GAS EXCHANGE 1 Summary: These notes examine the general means by which ventilation is regulated in terrestrial mammals. It then moves on to a discussion of what happens when someone over

More information

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Section 5.1 Pressure. Why study gases? An understanding of real world phenomena. An understanding of how science works. Chapter 5 Gases Section 5.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage Learning. All rights reserved 2 Section 5.1 Pressure

More information

Topic 6: Gases and Colligative Properties

Topic 6: Gases and Colligative Properties Topic 6: Gases and Colligative Properties Ideal Gas Equation Boyle noticed an inverse relationship between volume and pressure. Pressure x volume = constant P = a P 1/P Charles found the volume of a gas,

More information

Respiratory physiology II.

Respiratory physiology II. Respiratory physiology II. Learning objectives: 29. Pulmonary gas exchange. 30. Oxygen transport in the blood. 31. Carbon-dioxide transport in the blood. 1 Pulmonary gas exchange The transport mechanism

More information

Sign up to receive ATOTW weekly -

Sign up to receive ATOTW weekly - THE PHYSICS OF FLOW ANAESTHESIA TUTORIAL OF THE WEEK 84 9TH APRIL 2008 Paul Clements, SpR in Anaesthetics, Hope Hospital, Salford, UK. Carl Gwinnutt, Consultant Anaesthetist, Hope Hospital, Salford, UK.

More information

Name: Period: Date: CHAPTER 10 NOTES 10.3: The Gas Laws

Name: Period: Date: CHAPTER 10 NOTES 10.3: The Gas Laws Name: Period: Date: 1. Define gas laws: CHAPTER 10 NOTES 10.3: The Gas Laws 2. What units do the following measurements need to be in to describe gases? Boyle s Law a. Temperature b. Volume c. Pressure

More information

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases.

8.1 Properties of Gases. Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases. Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

More information

Gases Chapter 8. Chapter 8

Gases Chapter 8. Chapter 8 Gases Chapter 8 Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle s Law) 8.3 Temperature and Volume (Charles Law) 8.4 Temperature and Pressure (Guy-Lussac s Law) 8.5 The Combined Gas Low

More information

Gases. Chapter 8. Chapter 8. Gases Properties of Gases. We are surrounded by gases, but we are often

Gases. Chapter 8. Chapter 8. Gases Properties of Gases. We are surrounded by gases, but we are often Gases Chapter 8 8.1 Properties of Gases Goal: Describe the Kinetic Molecular Theory of Gases and the units of measurement used for gases. Chapter 8 8.1 - Properties of Gases 8.2 Pressure and Volume (Boyle

More information

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases

World of Chemistry Notes for Students [Chapter 13, page 1] Chapter 13 Gases World of Chemistry Notes for Students [Chapter 3, page ] Chapter 3 Gases ) Sec 3.8 Kinetic Theory of Gases and the Nature of Gases The Kinetic Theory of Matter says that the tiny particles in all forms

More information

Each gas sample has the same A) density B) mass C) number of molecules D) number of atoms

Each gas sample has the same A) density B) mass C) number of molecules D) number of atoms 1. A real gas behaves most like an ideal gas at A) low pressure and high temperature B) average potential energy of its particles C) ionization energy of its particles D) activation energy of its particles

More information

Kinetic-Molecular Theory

Kinetic-Molecular Theory GASES Chapter Eleven Kinetic-Molecular Theory! Recall that our only previous description of gases stated that gases completely fill and take the shape of their containers.! The Kinetic-Molecular Theory

More information

To play movie you must be in Slide Show Mode CLICK HERE EXERCISE! EXERCISE! To play movie you must be in Slide Show Mode CLICK HERE

To play movie you must be in Slide Show Mode CLICK HERE EXERCISE! EXERCISE! To play movie you must be in Slide Show Mode CLICK HERE Boyle s Law Boyle s law Pressure and volume are inversely related (constant T, temperature, and n, # of moles of gas). PV k (kis a constant for a given sample of air at a specific temperature) P V P V

More information

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases.

Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Chapter 8 Gases Practice Problems Section 8.1 Properties of Gases Goal: Describe the kinetic molecular theory of gases and the units of measurement used for gases. Summary: In a gas, particles are so far

More information

Unit 8: Kinetic Theory Homework Packet (90 points)

Unit 8: Kinetic Theory Homework Packet (90 points) Name: Key Period: By the end of Unit 8, you should be able to: Kinetic Theory Chapter 13-14 4. Define kinetic theory of gases including collisions 5. Define pressure, including atmospheric pressure, vapor

More information

Gases. Name: Class: Date: Matching

Gases. Name: Class: Date: Matching Name: Class: Date: Gases Matching Match each item with the correct statement below. a. Boyle's law d. Graham's law b. Charles's law e. Gay-Lussac's law c. Dalton's law f. ideal gas law 1. For a given mass

More information

Classes at: - Topic: Gaseous State

Classes at: - Topic: Gaseous State PHYSICAL CHEMISTRY by: SHAILENDRA KR. Classes at: - SCIENCE TUTORIALS; Opp. Khuda Baksh Library, Ashok Rajpath, Patna PIN POINT STUDY CIRCLE; House No. 5A/65, Opp. Mahual Kothi, Alpana Market, Patna Topic:

More information

Kinetic Molecular Theory Gases. Behavior of gases. Postulate two. Postulate one. Postulate three. Postulate four

Kinetic Molecular Theory Gases. Behavior of gases. Postulate two. Postulate one. Postulate three. Postulate four Kinetic Molecular Theory Gases Gas particles are so small that their individual volume can be considered to be negligible Gas particles are in constant motion and the collisions of the particles with the

More information

Unit 9: Gas Laws REGENTS CHEMISTRY

Unit 9: Gas Laws REGENTS CHEMISTRY Name: Unit 9: Gas Laws REGENTS CHEMISTRY 1 Name: Unit 9: Gas Laws The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

CHAPTER 3: The cardio-respiratory system

CHAPTER 3: The cardio-respiratory system : The cardio-respiratory system Exam style questions - text book pages 44-45 1) Describe the structures involved in gaseous exchange in the lungs and explain how gaseous exchange occurs within this tissue.

More information

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101.

Simple Gas Laws. To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and kpa. SATP: 25 C (298 K) and 101. Simple Gas Laws To facilitate comparison of gases, the following standards are used: STP: O C (273 K) and 101.3 kpa If assuming 1 mol, V = 22.4L SATP: 25 C (298 K) and 101.3 kpa If assuming 1 mol, V =

More information

Section 10-1: The Kinetic-Molecular Theory of Matter. 1) How does the word kinetic apply to particles of matter?

Section 10-1: The Kinetic-Molecular Theory of Matter. 1) How does the word kinetic apply to particles of matter? Kinetic-Molecular theory of Matter/Ch10, Gases/Ch11 Column notes: Answer all parts of each question IN YOUR OWN WORDS. Use the text, figures and captions as resources. Section 10-1: The Kinetic-Molecular

More information

Respiratory System. Part 2

Respiratory System. Part 2 Respiratory System Part 2 Respiration Exchange of gases between air and body cells Three steps 1. Ventilation 2. External respiration 3. Internal respiration Ventilation Pulmonary ventilation consists

More information

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases

Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] D J Weinkauff - Nerinx Hall High School. Chapter 10 Gases Basic Concepts of Chemistry Notes for Students [Chapter 10, page 1] Chapter 10 Gases We have talked a little about gases in Chapter 3 and we dealt briefly with them in our stoichiometric calculations in

More information

Chapter 13 Gases, Vapors, Liquids, and Solids

Chapter 13 Gases, Vapors, Liquids, and Solids Chapter 13 Gases, Vapors, Liquids, and Solids Property is meaning any measurable characteristic of a substance, such as pressure, volume, or temperature, or a characteristic that can be calculated or deduced,

More information

Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

More information

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE. Nitrogen and gaseous air are pure substances. CLASS Third Units PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure substance. Nitrogen and

More information

NOTES: Behavior of Gases

NOTES: Behavior of Gases NOTES: Behavior of Gases Properties of Gases Gases have weight Gases take up space Gases exert pressure Gases fill their containers Gases are mostly empty space The molecules in a gas are separate, very

More information

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1

Chapter 13. Gases. Copyright Cengage Learning. All rights reserved 1 Chapter 13 Gases Copyright Cengage Learning. All rights reserved 1 Section 13.1 Pressure Why study gases? An understanding of real world phenomena. An understanding of how science works. Copyright Cengage

More information

Respiratory System Physiology. Dr. Vedat Evren

Respiratory System Physiology. Dr. Vedat Evren Respiratory System Physiology Dr. Vedat Evren Respiration Processes involved in oxygen transport from the atmosphere to the body tissues and the release and transportation of carbon dioxide produced in

More information

GASES. Unit #8. AP Chemistry

GASES. Unit #8. AP Chemistry GASES Unit #8 AP Chemistry I. Characteristics of Gases A. Gas Characteristics: 1. Fills its container a. no definite shape b. no definite vol. 2. Easily mixes w/ other gases 3. Exerts pressure on its surroundings

More information

Chapter 5. Pressure. Atmospheric Pressure. Gases. Force Pressure = Area

Chapter 5. Pressure. Atmospheric Pressure. Gases. Force Pressure = Area Chapter 5 Gases Water for many homes is supplied by a well The pump removes air from the pipe, decreasing the air pressure in the pipe The pressure then pushes the water up the pipe Pressure Atmospheric

More information

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model

Fluid Flow. Link. Flow» P 1 P 2 Figure 1. Flow Model Fluid Flow Equipment: Water reservoir, output tubes of various dimensions (length, diameter), beaker, electronic scale for each table. Computer and Logger Pro software. Lots of ice.temperature probe on

More information

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very

Behavior of Gases. Gases are mostly The molecules in a gas are separate, very small and very Properties of Gases Gases have Gases Gases exert Gases fill their containers Behavior of Gases Gases are mostly The molecules in a gas are separate, very small and very Kinetic Theory of Matter: Gas molecules

More information

To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure

To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure Standard Molar Volume To compare one gas to another, it is convenient to define a set of conditions: Standard Temperature and Pressure At STP, one mole of any gas has a volume of: 22.4 L = (This is a cube

More information

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion

The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion The Kinetic-Molecular Theory of Gases based on the idea that particles are always in motion Five assumptions: 1. Most of the volume occupied dby a gas is empty space 2. Collisions between gas particles

More information

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. Honors Chemistry - Problem Set Chapter 13 Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 1. Atmospheric pressure is 760 mm Hg. 2. The SI unit of pressure is

More information

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math!

PICU Resident Self-Study Tutorial The Basic Physics of Oxygen Transport. I was told that there would be no math! Physiology of Oxygen Transport PICU Resident Self-Study Tutorial I was told that there would be no math! INTRODUCTION Christopher Carroll, MD Although cells rely on oxygen for aerobic metabolism and viability,

More information

Circulatory And Respiration

Circulatory And Respiration Circulatory And Respiration Composition Of Blood Blood Heart 200mmHg 120mmHg Aorta Artery Arteriole 50mmHg Capillary Bed Venule Vein Vena Cava Heart Differences Between Arteries and Veins Veins transport

More information

KINETIC THEORY OF GASES

KINETIC THEORY OF GASES CHAPTER 18 GASES KINETIC THEORY OF GASES A given amt. of gas will occupy the entire volume of its container. Changes in temp. have a greater effect on the vol. of a gas than on a liquid or solid KINETIC

More information

Ch. 14 The Behavior of Gases

Ch. 14 The Behavior of Gases Ch. 14 The Behavior of Gases 14.1 PROPERTIES OF GASES Compressibility Compressibility: a measure of how much the volume of matter decreases under pressure Gases are easily compressed because of the spaces

More information

Chapter 9 Gases: Their Properties and Behavior

Chapter 9 Gases: Their Properties and Behavior Chapter 9 Gases: Their Properties and Behavior 國防醫學院生化學科王明芳老師 2011-11-15 & 2011-11-22 Chapter 9/1 Gases and Gas Pressure Gas mixtures are homogeneous and compressible. Air-the mixture of gases. Molecular

More information

Respiratory System Study Guide, Chapter 16

Respiratory System Study Guide, Chapter 16 Part I. Clinical Applications Name: Respiratory System Study Guide, Chapter 16 Lab Day/Time: 1. A person with ketoacidosis may hyperventilate. Explain why this occurs, and explain why this hyperventilation

More information

4.) There are no forces of attraction or repulsion between gas particles. This means that

4.) There are no forces of attraction or repulsion between gas particles. This means that KINETIC MOLECULAR (K-M) THEORY OF MATTER NOTES - based on the idea that particles of matter are always in motion - assumptions of the K-M Theory 1.) Gases consist of large numbers of tiny particles that

More information

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory

respiratory cycle. point in the volumes: 500 milliliters. for men. expiration, up to 1200 milliliters extra makes breathing Respiratory 10 II. RESPIRATORY VOLUMES, CAPACITIES & PULMONARY FUNCTION TESTS Respiratory volume is the term used for various volumes of air moved by or associated with the lungs at a given point in the respiratory

More information

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2

Example: 25 C = ( ) K = 298 K. Pressure Symbol: p Units: force per area 1Pa (Pascal) = 1 N/m 2 Chapter 6: Gases 6.1 Measurements on Gases MH5, Chapter 5.1 Let s look at a certain amount of gas, i.e. trapped inside a balloon. To completely describe the state of this gas one has to specify the following

More information

A. What are the three states of matter chemists work with?

A. What are the three states of matter chemists work with? Chapter 10 and 12 The Behavior of Gases Chapter 10 The States of Matter A. What are the three states of matter chemists work with? Section 10.1 Pg 267 B. We will explain the behavior of gases using the

More information

Kinetic Molecular Theory

Kinetic Molecular Theory Kinetic Molecular Theory Name Period Unit 7 HW 1 Worksheet (Goals 1 & 2) 1. Describe how gases, liquids, and solids compare using the following table. Volume (definite or indefinite) Molecular Motion (high,

More information

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12

LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/12 LOW PRESSURE EFFUSION OF GASES revised by Igor Bolotin 03/05/ This experiment will introduce you to the kinetic properties of low-pressure gases. You will make observations on the rates with which selected

More information

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries

Gas exchange. Tissue cells CO2 CO 2 O 2. Pulmonary capillary. Tissue capillaries Gas exchange Pulmonary gas exchange Tissue gas exchange CO 2 O 2 O 2 Tissue cells CO2 CO 2 Pulmonary capillary O 2 O 2 CO 2 Tissue capillaries Physical principles of gas exchange Diffusion: continuous

More information

Under pressure pushing down

Under pressure pushing down Under pressure pushing down on me When Dalton was conducting his studies, which led him to the atomic-molecular theory of matter, he also included studies of the behaviour of gases. These led him to propose,

More information