Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry

Size: px
Start display at page:

Download "Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry"

Transcription

1 Clinical Implementation of the IPEM 2003 Code of Practice for Electron Dosimetry Tom Jordan Royal Surrey County Hospital IPEM Electron Dosimetry Working Party: + DI Thwaites, AR DuSautoy, MR McEwen, AE Nahum A Nisbet & WG Pitchford

2 Basic Methodology Calorimeter based Absorbed Dose to Water calibration in electron beams I. NPL ion chamber compared to calorimeter in graphite II. User ion chamber compared to NPL chamber in water Pictures courtesy of NPL

3 Basic Methodology Calorimeter based Absorbed Dose to Water calibration in electron beams Individualised parallel plate electron chamber calibration at 6 electron beam qualities based on R 50,D (depth of 50% dose) Original NPL accelerator, R 50,D : 1.97 to 6.60cm [6 to 19 MeV] LESS than the range of hospital clinical beams Elekta Clinical Linac, R 50,D : 1.6 up to 8.9*cm [4 to 22* MeV] *(not guaranteed)

4 Basic Methodology NPL Calibration certificate Calorimeter based Absorbed Dose to Water calibration in electron beams Individualised parallel plate electron chamber calibration at 6 electron beam qualities based on R 50,D Uses reference depth defined as Z ref = 0.6 R 50,D 0.1cm NPL determined Recombination f ion = m(dose per pulse) + c

5 % Dose Basic Methodology Calorimeter based Absorbed Dose to Water calibration in electron beams 100 %Depth Dose Individualised parallel plate electron chamber calibration at 7 electron beam qualities based on R 50,D dmax Zref Uses reference depth defined as Z ref = 0.6 R 50,D 0.1cm NPL determined Recombination f ion = m(dose per pulse) + c R50 Depth (mm)

6 Basic Methodology NPL Calibration certificate Calorimeter based Absorbed Dose to Water calibration in electron beams Individualised parallel plate electron chamber calibration at 7 electron beam qualities based on R 50,D Uses reference depth defined as Z ref = 0.6 R 50,D 0.1cm NPL determined Recombination f ion = m(dose per pulse) + c

7 Basic Methodology NPL Calibration certificate Calorimeter based Absorbed Dose to Water calibration in electron beams Individualised parallel plate electron chamber calibration at 6 electron beam qualities based on R 50,D Uses reference depth defined as Z ref = 0.6 R 50,D 0.1cm NPL determined Recombination f ion = m(dose per pulse) + c

8 Determination of R 50,D Measurement of Depth- Dose For photons, Dose w Air ionisation x W/e x [µ en / ] w,air [µ en / ] w,air the Mass Energy Absorption Coefficient for water to air is nearly constant with depth and relative Depth-Ionisation is assumed to Depth-Dose in water. For electrons Dose w Air ionisation x W/e x S w,air As the electron energy spectrum decreases rapidly with depth (from incident energy to 0), the Stopping Power ratio S w,air is NOT constant Depth-Ionisation curve needs renormalising at every point by S w,air ratio to be same shape as Depth-Dose

9 Sw,med Stopping Power Ratios (20MeV Electrons) Water/Air Depth (mm)

10 Sw,med Stopping Power Ratios (20MeV Electrons) Water/Si Water/Air Depth (mm)

11 Determination of R 50,D Protocol gives 3 options; Find R 50,D either from; R 50,D = x R 50,I cm eqn. 2.1 Use measured Depth-Ionisation curve (Need %DD curve clinically, see later) S w,air corrected Depth-Ionisation curve To produce Depth-Dose curve Directly from diode measured Depth-Ionisation curve as S w,silicon constant until deep Measure Depth-Dose directly

12 % Ionisation Depth Dose Measurement DEPTH (mm) NACP

13 % DOSE Depth Dose Measurement NACP S w,air Corr DEPTH (mm)

14 % DOSE Depth Dose Measurement diode NACP S w,air Corr DEPTH (mm)

15 % Dose (corrected) NACP vs Diode: Energy Dependence MeV NACP 9MeV NACP 12MeV NACP 16MeV NACP 20MeV NACP Depth (mm) Bremsstrahlung tail

16 % Dose (corrected) NACP vs Diode: Energy Dependence MeV NACP 9MeV NACP 12MeV NACP 16MeV NACP 20MeV NACP Depth (mm) Bremsstrahlung tail

17 % Dose (corrected) NACP vs Diode: Consistent Error MeV NACP 9MeV NACP 12MeV NACP 16MeV NACP 20MeV NACP Diode Depth (mm)

18 Effective Point of Measurement, P eff An air ionisation chamber introduces an air bubble into the water phantom The effective point of measurement is where the fluence is equivalent to the fluence in the undisturbed medium For a parallel plate chamber P eff is just inside the front window Fluence CHAMBER

19 Effective Point of Measurement, P eff An air ionisation chamber introduces an air bubble into the water phantom The effective point of measurement is where the fluence is equivalent to the fluence in the undisturbed medium For a parallel plate chamber P eff is just inside the front window For a cylindrical chamber it is ~0.6 x Internal Radius forward of the physical centre]

20 Effective Point of Measurement, P eff ROOS 1.18x 1mm NACP FARMER 0.125cc DIODE 1.7x 0.6mm 1.8mm 1.7mm 0.5mm Effective Depths

21 Polarity In an electron beam a polarity effect may arise as some of the primary beam collides with the collecting electrode F pol = ( M + + M - )/2M M is reading with normal polarity M + and M - readings with respective polarity In an electron beam polarity can change with depth (and energy) as electrons scatter obliquely

22 Polarity NPL polarity negative volts (to front window) Collecting electrode positive wrt front window Uses conventional connection of separate HV Connects to flying lead, or outer braid of cable

23 Polarity (conventional) NACP FLYING LEAD -100V EARTH NEGATIVE TYPE B

24 Polarity (electrometer floating at volts) NACP +100V EARTH POSITIVE TYPE A

25 Polarity NACP FLYING LEAD -100V EARTH NEGATIVE TYPE B

26 Polarity NACP +100V EARTH POSITIVE TYPE A

27 Reading Polarity: Measurement Accuracy NACP: 4MeV, R50-50V -200V +200V Time Time USE A GOOD REFERENCE CHAMBER Switch off and disconnect Earth cable Reverse polarity Reconnect and switch on Take readings until stable Repeat Do +/- volts consecutively (not as part of recombination study) If in doubt use F pol = 1.0(!)

28 1/Reading Ion Recombination Theory Plotting 1/Reading vs 1/Voltage is a straight line This can easily be extrapolated to volts, or 100% collection efficiency 0 ( volt) 1/Volts Linear dependence permits use of the 2 voltage method f ion - 1 = (M 1 /M 2-1)/(V 1 /V 2-1) In particular, if V 1 = 2x V 2 then f ion = M 1 / M 2 (M is reading)

29 1/Reading Recombination Correction f ion Actual: Farmer Well behaved mev 20mev Parallel lines means curves overlay when normalised This means recombination is independent of energy Unless dose per pulse, Dp changes /Voltage Volts

30 1/reading Recombination Correction f ion Roos chamber ion recombination MeV 9MeV 12MeV 16MeV 20MeV /voltage

31 1/Reading Recombination Correction f ion Actual: NACP Parallel Plate chamber MeV NACP 10 MeV NACP 15 MeV NACP /VOLTS o o VOLTS

32 1/Reading Recombination Correction f ion Actual: Parallel Plate chambers MeV, Markus 4 MeV NACP 10 MeV NACP 15 MeV NACP /VOLTS o o VOLTS

33 Recombination Correction Use of lower voltages (~100V) on parallel plate ensures linear region but may give large correction factor (2-3% on Varian) Use of higher voltages will give a smaller correction but loss of linearity means the error on the volt intercept is high It is recommended to stay close to NPL calibration voltage (100V) to reduce uncertainty MEASURE LOCALLY and use NPL as check only Due to uncertainty in Dose per Pulse Royal Surrey Varian ix, 0.1cGy per pulse for electrons (cf NPL 0.033cGy)

34 Recombination/Polarity NPL Certificate

35 Recombination Correction Recombination depends only on the Dose per Pulse (D p ) and chamber voltage Recombination is independent of energy But different energies might use a different Dose per Pulse!! Recombination is linearly related to D p F ion = 1 + (c-1)(v cal /V user ) + m(v cal /V user ) D p F ion = c + m x D p (NPL eqn. at V user = 100Volt)

36 Linear Accelerator Calibration Roos or NACP with inside of front window at Z ref D w = R x N D,w x f t,p x f ion x f pol x %DD From %Depth Dose curve establish correction for dose at Z ref depth to D max depth Clinically quote Dose at d max and calibrate linac for 1cGy/mu at that point (NOT Z ref ) Negligible up to >12MeV Can be 4-5% at higher energy

37 Spreadsheet Designed to aid implementation of new protocol Contains NPL data and User data sheets NPL Calibration Certificate Data for Reference Chamber and Electrometer Type data into yellow cells only Ionisation Chamber type NACP Serial Number 3404 Polarising Voltage (V) 100 negative NPL Absorbed Dose to Water Calibration Factor; N w,u E nom R 50,D d ref,w N w,u Polarity (MeV) (cm) (cm) 10 7 (Gy/C) f pol Recombination Parameters f ion = c + md m = cgy -1 c = d is dose per pulse Electrometer Charge Calibration Electrometer type PTW Unidos Serial Number Measured Charge for nc displayed

38 Extrapolation to Higher (& Lower) Beam Qualities The previous NPL calibration covers a limited range of electron beam qualities The higher end was equivalent to a ~16MeV clinical beam To extrapolate to a higher energy use the ratio of stopping powers at Zref for the desired energy to the highest available calibration energy. N w,user = N w,r50=6.6 x [S w,air, R50=User, Zref ] / [S w,air, R50=6.6 ] (eg R50=6.6 as highest NPL calibration) Use SPR table in protocol or spreadsheet

39 Nw,u Spreadsheet: Extrapolation to Higher Beam Qualities PLOT Nw,u calibration and extrapolation N w,u x 10 7 (Gy/C) R 50,D (cm) Type extrapolation value S w,air R50,D

40 Nw,u Spreadsheet: Extrapolation to Higher Beam Qualities PLOT Nw,u calibration and extrapolation Type extrapolation value S w,air lin regrssn N w,u x 10 7 (Gy/C) R 50,D (cm) % R50,D

41 Nw,u Spreadsheet: Extrapolation to Higher Beam Qualities PLOT Nw,u calibration and extrapolation Type extrapolation value S w,air lin regrssn cubic N w,u x 10 7 (Gy/C) R 50,D (cm) % -0.47% R50,D

42 2,3,4 Rule of Thumb

Trial calibrations of therapy level electron beam ionisation chambers in terms of absorbed dose to water

Trial calibrations of therapy level electron beam ionisation chambers in terms of absorbed dose to water Trial calibrations of therapy level electron beam ionisation chambers in terms of absorbed dose to water M R McEwen, A J Williams and A R DuSautoy Centre for Ionising Radiation Metrology National Physical

More information

Only 8% to go. TOTAL 1494 of 1623 ACTIVE INSTITUTIONS (92%) May-09. May-04 Nov-04. May-07. Nov-02 May-03. Nov-05. Nov-06. Nov-07 May-08.

Only 8% to go. TOTAL 1494 of 1623 ACTIVE INSTITUTIONS (92%) May-09. May-04 Nov-04. May-07. Nov-02 May-03. Nov-05. Nov-06. Nov-07 May-08. Clinical Implementation of the TG-51 Protocol David Followill Radiological Physics Center Houston Texas 2009 AAPM Summer School Educational Objectives Improve your understanding of how to implement TG-51

More information

Clinical Implementation of the TG-51 Protocol. David Followill Radiological Physics Center Houston Texas

Clinical Implementation of the TG-51 Protocol. David Followill Radiological Physics Center Houston Texas Clinical Implementation of the TG-51 Protocol David Followill Radiological Physics Center Houston Texas Current Implementation Status Current Implementation Status 1600 1400 TOTAL 1494 of 1623 ACTIVE INSTITUTIONS

More information

IPEM Working Party: D IThwaites(Chair), A R DuSautoy, T Jordan, MRMcEwen, A Nisbet, A E Nahum and W G Pitchford

IPEM Working Party: D IThwaites(Chair), A R DuSautoy, T Jordan, MRMcEwen, A Nisbet, A E Nahum and W G Pitchford INSTITUTE OF PHYSICSPUBLISHING Phys. Med. Biol. 48 (2003) 2929 2970 PHYSICS INMEDICINE AND BIOLOGY PII: S0031-9155(03)65222-X The IPEM code of practice for electron dosimetry for radiotherapy beams of

More information

Relative Dosimetry. Photons

Relative Dosimetry. Photons Relative Dosimetry Photons What you need to measure! Required Data (Photon) Central Axis Percent Depth Dose Tissue Maximum Ratio Scatter Maximum Ratio Output Factors S c & S cp! S p Beam profiles Wedge

More information

Practical Course in Reference Dosimetry, National Physical Laboratory February 2014 MV Photon Dosimetry in the Clinic Page 1 of 11

Practical Course in Reference Dosimetry, National Physical Laboratory February 2014 MV Photon Dosimetry in the Clinic Page 1 of 11 MV Photon Dosimetry in the Clinic This document discusses both the scientific methods and the system of work required to calibrate a field instrument expanding upon the practical details of both.. Introduction

More information

Technical Note: On the use of cylindrical ionization chambers for electron beam reference dosimetry

Technical Note: On the use of cylindrical ionization chambers for electron beam reference dosimetry Technical Note: On the use of cylindrical ionization chambers for electron beam reference dosimetry Bryan R. Muir a) and Malcolm R. McEwen Measurement Science and Standards, National Research Council of

More information

Abstract: Introduction:

Abstract: Introduction: Are photon and electron beam calibrations more consistent with TG-51 than with TG-21? Ramesh C. Tailor, William F. Hanson, Nathan Wells, and Geoffrey S. Ibbott. U.T. MD Anderson Cancer Center, Houston

More information

Monitor Unit Calculations Part 1. Return to our first patient. Purpose. 62 yr old woman with Stage IIIB (T1N3M0) NSCLC rt lower lobe Dose prescription

Monitor Unit Calculations Part 1. Return to our first patient. Purpose. 62 yr old woman with Stage IIIB (T1N3M0) NSCLC rt lower lobe Dose prescription Monitor Unit Calculations Part 1 George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Return to our first patient 62 yr old woman with Stage IIIB (T1N3M0) NSCLC rt

More information

AAPM s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams

AAPM s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams AAPM s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams Peter R. Almond Brown Cancer Center, Louisville, Kentucky 40202 Peter J. Biggs Department of Radiation Oncology,

More information

Review of fundamental photon dosimetry quantities

Review of fundamental photon dosimetry quantities Review of fundamental photon dosimetry quantities Narayan Sahoo Main sources of the materials included in this lecture notes are: (1) Radiation Oncology Physics: A Handbook for Teachers and Students Edited

More information

Maintenance and general care of secondary standard and field instruments

Maintenance and general care of secondary standard and field instruments Maintenance and general care of secondary standard and field instruments This is without doubt the most important lecture that you will be given during this course. That rather rash statement is based

More information

Constancy checks of well-type ionization chambers with external-beam radiation units

Constancy checks of well-type ionization chambers with external-beam radiation units JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Constancy checks of well-type ionization chambers with external-beam radiation units Sara L. Hackett, 1a Benjamin Davis, 2 Andrew

More information

CHAPTER 4 PRE TREATMENT PATIENT SPECIFIC QUALITY ASSURANCE OF RAPIDARC PLANS

CHAPTER 4 PRE TREATMENT PATIENT SPECIFIC QUALITY ASSURANCE OF RAPIDARC PLANS 47 CHAPTER 4 PRE TREATMENT PATIENT SPECIFIC QUALITY ASSURANCE OF RAPIDARC PLANS 4.1 INTRODUCTION Advanced treatment techniques use optimized radiation beam intensities to conform dose distribution to the

More information

The Royal Australian and New Zealand College of Radiologists. FRANZCR Examination Part I Radiation Oncology. Radiotherapeutic Physics.

The Royal Australian and New Zealand College of Radiologists. FRANZCR Examination Part I Radiation Oncology. Radiotherapeutic Physics. FRANZCR Examination Part I Radiation Oncology Radiotherapeutic Physics Candidate No.: The Royal Australian and New Zealand College of Radiologists FRANZCR Examination Part I Radiation Oncology Radiotherapeutic

More information

TG-61 deals with: This part of the refresher course: Phantoms. Chambers. Practical Implementation of TG-61:

TG-61 deals with: This part of the refresher course: Phantoms. Chambers. Practical Implementation of TG-61: Practical Implementation of TG-61: II. Guidelines for clinical implementation of TG-61 J.P. Seuntjens Medical Physics Unit McGill University, Montreal General Hospital Montréal, Canada jseuntjens@medphys.mcgill.ca

More information

TG-51: Experience from 150 institutions, common errors, and helpful hints

TG-51: Experience from 150 institutions, common errors, and helpful hints TG-51: Experience from 150 institutions, common errors, and helpful hints Ramesh C. Tailor, Ph. D., William F. Hanson, Ph.D., and Geoffrey S. Ibbott, Ph.D. Department of Radiation Physics, University of

More information

Original Article. Effective Point of Measurement in Cylindrical Ion Chamber for Megavoltage Photon Beams

Original Article. Effective Point of Measurement in Cylindrical Ion Chamber for Megavoltage Photon Beams Iranian Journal of Medical Physics Vol. 10, No. 3, Summer 2013, 147-155 Received: April 22, 2013; Accepted: July 21, 2013 Original Article Effective Point of Measurement in Cylindrical Ion Chamber for

More information

Exradin Ion Chambers. What attributes make Exradin the smart choice? EXRADIN Ion Chambers

Exradin Ion Chambers. What attributes make Exradin the smart choice? EXRADIN Ion Chambers EXRADIN Ion Chambers Exradin Ion Chambers Exradin (EXacting RADiation INstrumentation) Ion Chambers have been built for over 33 years, are recognized by top research institutes and standards laboratories,

More information

Guideline for RMO Key comparison for Air kerma rate in 60 Co gamma radiation

Guideline for RMO Key comparison for Air kerma rate in 60 Co gamma radiation Guideline for RMO Key comparison for Air kerma rate in 60 Co gamma radiation This intercomparison will be carried out under the lead of KRISS with the cooperation of ARPANSA. This comparison has been approved

More information

1. Question Answer cgy / MU cgy / MU 2. Question Answer

1. Question Answer cgy / MU cgy / MU 2. Question Answer GS020113: Introduction to Medical Physics III: Therapy s to home work problem set assigned on 3/22/11 1. Question A patient is set up at 100 cm SSD on a 6 MVX machine. The dose rate at 10 cm in phantom

More information

Commissioning an IMRT System for MLC Delivery. Gary A. Ezzell., Ph.D. Mayo Clinic Scottsdale

Commissioning an IMRT System for MLC Delivery. Gary A. Ezzell., Ph.D. Mayo Clinic Scottsdale Commissioning an IMRT System for MLC Delivery Gary A. Ezzell., Ph.D. Mayo Clinic Scottsdale Taking the broad view of commissioning Commissioning elements Validating the dosimetry system Commissioning the

More information

Field size and depth dependence of wedge factor for internal wedge of dual energy linear accelerator

Field size and depth dependence of wedge factor for internal wedge of dual energy linear accelerator Journal of BUON 8: 55-59, 2003 2003 Zerbinis Medical Publications. Printed in Greece ORIGINAL ARTICLE Field size and depth dependence of wedge factor for internal wedge of dual energy linear accelerator

More information

User Manual. RW3 Slab Phantom T29672 and T

User Manual. RW3 Slab Phantom T29672 and T User Manual RW3 Slab Phantom Contents Operating Manual Technical Manual Service Manual D188.131.00/07 en 2015-07 Hn General Information General Information The product bears the CE-mark "CE" in accordance

More information

13 QUALITY ASSURANCE OF A LINEAR ACCELERATOR 13.1 COLLIMATOR ISOCENTER, JAWS, LIGHT FIELD VS INDICATORS, COLLIMATOR ANGLE INDICATORS.

13 QUALITY ASSURANCE OF A LINEAR ACCELERATOR 13.1 COLLIMATOR ISOCENTER, JAWS, LIGHT FIELD VS INDICATORS, COLLIMATOR ANGLE INDICATORS. 13 QUALITY ASSURANCE OF A LINEAR ACCELERATOR 13.1 COLLIMATOR ISOCENTER, JAWS, LIGHT FIELD VS INDICATORS, COLLIMATOR ANGLE INDICATORS. 13.1.1 TRAINING GOAL 13.1.1.1 Among the responsabilities of a medical

More information

Proton Therapy QA Tools

Proton Therapy QA Tools Proton Therapy QA Tools A complete range of tools for absolute dosimetry, machine QA and patient plan verification Introduction During the past years more and more heavy particle therapy centers, especially

More information

Outline. Chapter 11 Treatment Planning Single Beams. Patient dose calculation. Patient dose calculation. Effect of the curved contour surface

Outline. Chapter 11 Treatment Planning Single Beams. Patient dose calculation. Patient dose calculation. Effect of the curved contour surface Chapter 11 reatment Planning Single Beams Radiation Dosimetry I Outline Basic terminology Curved contour surface correction (bolus, compensators, wedges) Oblique beam incidence Correction for tissue inhomogeneities

More information

Absorption measurements for a carbon fiber couch top and its modelling in a treatment planning system

Absorption measurements for a carbon fiber couch top and its modelling in a treatment planning system Absorption measurements for a carbon fiber couch top and its modelling in a treatment planning system G. Kunz, F. Hasenbalg, P. Pemler 1 1 Klinik für Radio-Onkologie und Nuklearmedizin, Stadtspital Triemli

More information

Chapter I Standard application in photon dosimetry José Guilherme Pereira Peixoto Maria da Penha Potiens

Chapter I Standard application in photon dosimetry José Guilherme Pereira Peixoto Maria da Penha Potiens Chapter I Standard application in photon dosimetry José Guilherme Pereira Peixoto Maria da Penha Potiens The characteristic ionizing radiation response is defined by the relationship between the stimulus

More information

Badan Jadrowych Nuclear Research Institute. Report INR No. 739/XIX/D CERN LIBRARIES, GENEVA CM-P Differential Recombination Chamber

Badan Jadrowych Nuclear Research Institute. Report INR No. 739/XIX/D CERN LIBRARIES, GENEVA CM-P Differential Recombination Chamber Badan Jadrowych Nuclear Research Institute Report INR No. 739/XIX/D CERN LIBRARIES, GENEVA CM-P00100517 Differential Recombination Chamber by M. Zel'chinskij K. Zharnovetskij Warsaw, June 1966 Translated

More information

Larry A. DeWerd, Ph.D., FAAPM UW ADCL & Dept. of Medical Physics University of Wisconsin

Larry A. DeWerd, Ph.D., FAAPM UW ADCL & Dept. of Medical Physics University of Wisconsin Larry A. DeWerd, Ph.D., FAAPM UW ADCL & Dept. of Medical Physics University of Wisconsin NCCAAPM Meeting Oct 11,2013 Larry DeWerd has a partial interest in Standard Imaging Talks from people who have been

More information

Monitor Unit Calculations Part 2. Calculation of machine setting. Collimator setting

Monitor Unit Calculations Part 2. Calculation of machine setting. Collimator setting Monitor Unit Calculations Part 2 George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Calculation of machine setting reference dose machine setting =, reference dose

More information

INTERCOMPARISON OF IONIZATION CHAMBER CALIBRATION FACTORS IN THE IAEA/WHO NETWORK OF SSDLS

INTERCOMPARISON OF IONIZATION CHAMBER CALIBRATION FACTORS IN THE IAEA/WHO NETWORK OF SSDLS A9744593 INTERCOMPARISON OF IONIZATION CHAMBER CALIBRATION FACTORS IN THE IAEA/WHO NETWORK OF SSLS Ladislav Czap, Georg Matscheko and Pedro Andreo osimetry and Medical Radiation Physics Section, ivision

More information

A beam-matching concept for medical linear accelerators

A beam-matching concept for medical linear accelerators Acta Oncologica, 2009; 48: 192200 ORIGINAL ARTICLE A beam-matching concept for medical linear accelerators DAVID SJÖSTRÖM, ULF BJELKENGREN, WIVIANN OTTOSSON & CLAUS F. BEHRENS Copenhagen University Hospital,

More information

Zoubir Ouhib Lynn Cancer Institute

Zoubir Ouhib Lynn Cancer Institute Zoubir Ouhib Lynn Cancer Institute April 2015 Speaker for ELEKTA Brachytherapy using miniature X-ray sources Energy

More information

Monitor Unit Verification for Small Fields

Monitor Unit Verification for Small Fields Monitor Unit Verification for Small Fields Patrick Higgins, Ph.D University of Minnesota Department of Radiation Oncology October 10, 2013 The Issues: How do we verify the monitor units calculated by the

More information

Commissioning of Elekta 6MV FFF Versa HD and Pinnacle

Commissioning of Elekta 6MV FFF Versa HD and Pinnacle Commissioning of Elekta 6MV FFF Versa HD and Pinnacle Poster No.: R-0044 Congress: Type: Authors: Keywords: DOI: 2014 CSM Scientific Exhibit L. Bendall, I. Patel, N. McGrath, C. Rowbottom; MANCHESTER/

More information

Dosimetric Calculations. Lonny Trestrail

Dosimetric Calculations. Lonny Trestrail Dosimetric Calculations Lonny Trestrail 20 October 2008 Objectives Dose Distribution Measurements PDD, OCR TAR, SAR, TPR, TMR, SPR, SMR Arc or Rotational Therapy Isodose Curves Point Dose Calculations

More information

Technical protocol of APMP key comparison for measurement of air kerma for 60 Co (APMP.RI(I)-K1.1)

Technical protocol of APMP key comparison for measurement of air kerma for 60 Co (APMP.RI(I)-K1.1) Technical protocol of APMP key comparison for measurement of air kerma for 60 Co (APMP.RI(I)-K1.1) 1. Introduction A regional APMP.RI(I)-K1 comparison of the standards for air kerma for 60 Co occurred

More information

Commissioning and periodic tests of the Esteya electronic brachytherapy system

Commissioning and periodic tests of the Esteya electronic brachytherapy system Review paper Educational Activity Commissioning and periodic tests of the Esteya electronic brachytherapy system Cristian Candela-Juan, PhD 1, Yury Niatsetski, MSc 2, Zoubir Ouhib, PhD 3, Facundo Ballester,

More information

THE development of more advanced techniques in radiotherapy,

THE development of more advanced techniques in radiotherapy, 1 A Geant4-based simulation of an accelerator s head used for Intensity Modulated Radiation Therapy F. Foppiano, B. Mascialino, M.G. Pia, M. Piergentili. Abstract We present a Geant4-based simulation,

More information

Perturbation Correction of a Cylindrical Thimble-type Chamber. in a Graphite Phantom for 60Co Gamma Rays*

Perturbation Correction of a Cylindrical Thimble-type Chamber. in a Graphite Phantom for 60Co Gamma Rays* Rapport BIPM-86/l4 Perturbation Correction of a Cylindrical Thimble-type Chamber in a Graphite Phantom for 60Co Gamma Rays* by C.E. de Almeida**, A.-M. Perroche-Roux and M. Boutillon Bureau International

More information

IAEA-TECDOC-1455 Implementation of the International Code of Practice on Dosimetry in Radiotherapy (TRS 398): Review of testing results

IAEA-TECDOC-1455 Implementation of the International Code of Practice on Dosimetry in Radiotherapy (TRS 398): Review of testing results IAEA-TECDOC-1455 Implementation of the International Code of Practice on Dosimetry in Radiotherapy (TRS 398): Revie of testing results Final report of the Coordinated Research Projects on Implementation

More information

CLINICAL IMPLEMENTATION OF RAPIDARC Treatment Planning Strategies to Improve Dose Distributions

CLINICAL IMPLEMENTATION OF RAPIDARC Treatment Planning Strategies to Improve Dose Distributions CLINICAL IMPLEMENTATION OF RAPIDARC Treatment Planning Strategies to Improve Dose Distributions Rebecca M. Howell, Ph.D., D.A.B.R, The University of Texas at M.D. Anderson Cancer Center Overview 2 Commissioning

More information

Setting up and carrying out a check source measurement

Setting up and carrying out a check source measurement Setting up and carrying out a check source measurement 1 Introduction Ionisation chambers are relatively fragile devices and can be faulty with little or no visible sign of damage. Because of this, most

More information

Introduction. Materials and Methods

Introduction. Materials and Methods STANDARD WEDGE AND TRAY TRANSMISSION VALUES FOR VARIAN, SEIMENS, ELEKTA/PHILIPS ACCELERATORS; A QUALITY ASSURANCE TOOL David S. Followill, Nadia Hernandez, and William F. Hanson Introduction The Radiological

More information

ANALYSIS OF OFF-AXIS ENHANCDED DYNAMIC WEDGE DOSIMETRY USING A 2D DIODE ARRAY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL

ANALYSIS OF OFF-AXIS ENHANCDED DYNAMIC WEDGE DOSIMETRY USING A 2D DIODE ARRAY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL ANALYSIS OF OFF-AXIS ENHANCDED DYNAMIC WEDGE DOSIMETRY USING A 2D DIODE ARRAY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL FOR THE DEGREE MASTER OF ARTS BY CHARLES TRAVIS WEBB

More information

GEANT4 SIMULATION OF AN ACCELERATOR HEAD FOR INTENSITY MODULATED RADIOTHERAPY

GEANT4 SIMULATION OF AN ACCELERATOR HEAD FOR INTENSITY MODULATED RADIOTHERAPY The Monte Carlo Method: Versatility Unbounded in a Dynamic Computing World Chattanooga, Tennessee, April 17-21, 2005, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2005) GEANT4 SIMULATION OF

More information

The MC commissioning of CyberKnife with MLC (Tips and Tricks)

The MC commissioning of CyberKnife with MLC (Tips and Tricks) The MC commissioning of CyberKnife with MLC (Tips and Tricks) Alain Guemnie Tafo, PhD UPMC Pinnacle, Harrisburg, PA Institute Gustave Roussy, Villejuif, France Disclaimer & Disclosure The views expressed

More information

Cover Page for Lab Report Group Portion. Pump Performance

Cover Page for Lab Report Group Portion. Pump Performance Cover Page for Lab Report Group Portion Pump Performance Prepared by Professor J. M. Cimbala, Penn State University Latest revision: 02 March 2012 Name 1: Name 2: Name 3: [Name 4: ] Date: Section number:

More information

TG-119 IMRT Commissioning Tests Instructions for Planning, Measurement, and Analysis Version 10/21/2009

TG-119 IMRT Commissioning Tests Instructions for Planning, Measurement, and Analysis Version 10/21/2009 TG-119 IMRT Commissioning Tests Instructions for Planning, Measurement, and Analysis Version 10/21/2009 DISCLAIMER: This publication and associated spreadsheets and digital files are based on sources and

More information

Commissioning and quality assurance of a commercial intensity modulated radiotherapy (IMRT) treatment planning system PrecisePLAN

Commissioning and quality assurance of a commercial intensity modulated radiotherapy (IMRT) treatment planning system PrecisePLAN 22 Turkish Journal of Cancer Volume 37, No.1, 2007 Commissioning and quality assurance of a commercial intensity modulated radiotherapy (IMRT) treatment planning system PrecisePLAN SATISH PELAGADE 1, KALPANA

More information

SnapShot IMRT with compensators and FFF beams

SnapShot IMRT with compensators and FFF beams SnapShot IMRT with compensators and FFF beams Vladimir Feygelman, PhD (1) Moffitt Cancer Center, Tampa, FL, USA Disclosure VF has a sponsored research agreement with.decimal. A short history of radiotherapy

More information

Investigation of Buildup Dose for Therapeutic Intensity Modulated Photon Beams in Radiation Therapy

Investigation of Buildup Dose for Therapeutic Intensity Modulated Photon Beams in Radiation Therapy University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 7-14-2010 Investigation of Buildup Dose for Therapeutic Intensity Modulated Photon Beams in Radiation Therapy

More information

Math Review. Overview

Math Review. Overview Drawn by Steve Yan, CMD Math Review Shirley Ann Pinegar-Johnston MS RT(R)(T)CMD Overview Drawn by Steve Yan, CMD Divergence & Intensity DIVERGENCE X-rays travel in Straight but Divergent lines INTENSITY

More information

In air calibration of an HDR 192 Ir brachytherapy source using therapy ion chambers

In air calibration of an HDR 192 Ir brachytherapy source using therapy ion chambers Original Article Free full text available from www.cancerjournal.net In air calibration of an HDR 192 Ir brachytherapy source using therapy ion chambers ABSTRACT The Gammamed Plus 192 Ir high dose rate

More information

E X R A D I N. Parallel Plate Ion Chambers User Manual DOC #

E X R A D I N. Parallel Plate Ion Chambers User Manual DOC # E X R A D I N Parallel Plate Ion Chambers User Manual R DOC #80332-02 E X R A D I N Parallel Plate Ion Chambers User Manual STANDARD IMAGING INC. 7601 Murphy Drive Middleton, WI 53562 TEL 800.261.4446

More information

Victoreen B. Operators Manual. Image Intensifier Ion Chamber

Victoreen B. Operators Manual. Image Intensifier Ion Chamber Victoreen 6000-530B Image Intensifier Ion Chamber Operators Manual March 2005 Manual No 6000-530B-1 Rev. 4 2004, 2005 Fluke Corporation, All rights reserved. All product names are trademarks of their respective

More information

Comparison of ionization chambers of various volumes for IMRT absolute dose verification

Comparison of ionization chambers of various volumes for IMRT absolute dose verification Comparison of ionization chambers of various volumes for IMRT absolute dose verification Leonid B. Leybovich, a) Anil Sethi, and Nesrin Dogan Department of Radiation Oncology, Loyola University Medical

More information

High Speed Direct SAD Radiosurgery Beam Scanner

High Speed Direct SAD Radiosurgery Beam Scanner Open Access Original Article DOI: 10.7759/cureus.20 High Speed Direct SAD Radiosurgery Beam Scanner Walter Nikesch 1, James M. Hevezi 2, Irene Monterroso 3, Daniel Navarro 4, James G. Schwade 5 1. CyberKnife

More information

The Resistive Plate Chamber detectors at the Large Hadron Collider experiments. Danube School, September 8-13, 2014 Novi Sad

The Resistive Plate Chamber detectors at the Large Hadron Collider experiments. Danube School, September 8-13, 2014 Novi Sad The Resistive Plate Chamber detectors at the Large Hadron Collider experiments Roberto Guida PH-DT-DI Danube School, September 8-13, 2014 Novi Sad Ionization chambers Ionizing particles are producing primary

More information

Validation of Treatment Planning Dose Calculations: Experience Working with Medical Physics Practice Guideline 5.a.

Validation of Treatment Planning Dose Calculations: Experience Working with Medical Physics Practice Guideline 5.a. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 2017, 6, 57-72 http://www.scirp.org/journal/ijmpcero ISSN Online: 2168-5444 ISSN Print: 2168-5436 Validation of Treatment

More information

OxyScan Graphic. Operating Instructions. UMS Micro-oxygen sensor 501. Microprocessor instrument

OxyScan Graphic. Operating Instructions. UMS Micro-oxygen sensor 501. Microprocessor instrument OxyScan Graphic Operating Instructions UMS Micro-oxygen sensor 501 Microprocessor instrument Introduction Thank you for choosing the UMS Micro Oxygen Sensor 501 - a highly advanced product! Please read

More information

Practical approach and problems in in-situ RGA calibration

Practical approach and problems in in-situ RGA calibration Practical approach and problems in in-situ RGA calibration Oleg Malyshev and Keith Middleman Vacuum Science Group, ASTeC Accelerator Science and Technology Centre STFC Daresbury Laboratory UK Workshop

More information

WEDGE FILTERS FOR MEGAVOLTAGE ROENTGEN RAY BEAMS

WEDGE FILTERS FOR MEGAVOLTAGE ROENTGEN RAY BEAMS Acta Radiologica Oncology 23 (1984) Fusc. 6 FROM THE RADIATION THERAPY DEPARTMENT, ANTON1 VAN LEEUWENHOEK HOSPITAL, THE NETHERLANDS CANCER INSTITUTE, AMSTERDAM, THE PHILIPS MEDICAL SYSTEMS DIVISION, BEST,

More information

The Effect of Immobilisation Devices on Radiotherapy Dose Distributions. Alison Gray August 2007

The Effect of Immobilisation Devices on Radiotherapy Dose Distributions. Alison Gray August 2007 The Effect of Immobilisation Devices on Radiotherapy Dose Distributions A thesis submitted in fulfilment of the requirements for the Degree of Master of Applied Science (Medical and Health Physics) By

More information

How to Design Medical Accelerator Systems for Reliability: IBA PT System

How to Design Medical Accelerator Systems for Reliability: IBA PT System How to Design Medical Accelerator Systems for Reliability: IBA PT System Yves Jongen Founder & Chief Research Officer Ion Beam Applications s.a. Belgium 1 Outline A short introduction of a proton therapy

More information

Commissioning of a new total body irradiation protocol

Commissioning of a new total body irradiation protocol University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2012 Commissioning of a new total body irradiation protocol Zoe Baldwin University

More information

Numerical Tools for LCLS-II Vacuum Systems

Numerical Tools for LCLS-II Vacuum Systems Numerical Tools for LCLS-II Vacuum Systems G. Lanza, D. Gill, SLAC National Accelerator Laboratory AVS, November 2 nd 2017 Doc. N. SLAC-PUB-17166 Work described in this presentation is supported by the

More information

Calibration Summary of Test Report No.: Sample

Calibration Summary of Test Report No.: Sample Calibration Summary of Test Report No.:30043 Rion Type: NL52/EX Serial no: 00732122 Customer: Scantek, Inc. Address: 6430 Dobbin Rd., Suite C, Columbia MD, 21045 Contact Person: Mariana Buzduga Phone No.:

More information

Achievable accuracy of radiation dose measurement for linear accelerators using different protocols

Achievable accuracy of radiation dose measurement for linear accelerators using different protocols United Arab Emirates University Scholarworks@UAEU Theses Electronic Theses and Dissertations 4-2016 Achievable accuracy of radiation dose measurement for linear accelerators using different protocols Mariam

More information

Jefferson Lab Bubble Chamber Experiment Update and Future Plans. C(a,g) 16 O. Claudio Ugalde

Jefferson Lab Bubble Chamber Experiment Update and Future Plans. C(a,g) 16 O. Claudio Ugalde Jefferson Lab Bubble Chamber Experiment Update and Future Plans 12 C(a,g) 16 O Claudio Ugalde Collaboration Whitney Armstrong Melina Avila Kevin Bailey Tom O Connor Ernst Rehm Seamus Riordan Brad DiGiovine

More information

Certification of AMS acc. EN 15267, Part 3 - Overview and First Experience -

Certification of AMS acc. EN 15267, Part 3 - Overview and First Experience - Certification of AMS acc. EN 15267, Part 3 - Overview and First Experience - Dr. Wolfgang Jockel, Martin Schneider, TÜV Rheinland Group, D-51105 Cologne / Germany 1. Introduction A new basis for the certification

More information

Variable Depth Bragg Peak Test Method

Variable Depth Bragg Peak Test Method Variable Depth Bragg Peak Test Method C. Foster (FCS), P. O Neill, B. Reddell (NASA/JSC), K. Nguyen, B. Jones (Jacobs Technology), N. Roche, S. Buchner (NRL) Acknowledgement: A. Rusek, M. Sivertz, and

More information

7.65 ±0.05 mm of lead. The maximum energy of the bremsstrahlung photons was calibrated using the threshold for the D(-y,n)H reaction at

7.65 ±0.05 mm of lead. The maximum energy of the bremsstrahlung photons was calibrated using the threshold for the D(-y,n)H reaction at Am 7Roentgenolia6:ia6oia65, 1976 CENTRAL AXIS DEPTH DOSE FOR A 2.5 MV VAN DE GRAAFF GENERATOR DAVID W. ANDERSON, DAVID E. RAESIDE, REBA I. ADAMS, AND MYRON R. GOEDE 2 ABSTRACT: Central axis percentage

More information

Hydronic Systems Balance

Hydronic Systems Balance Hydronic Systems Balance Balancing Is Misunderstood Balancing is application of fundamental hydronic system math Balance Adjustment of friction loss location Adjustment of pump to requirements By definition:

More information

UsER manual for Watersens ph -REDOX

UsER manual for Watersens ph -REDOX UsER manual for Watersens -REDOX Cl 8 1 2 6 3 3 7 7 4 4 4 4 Parts List 1 Redox Probe 1 x 2 PH Probe 1 x 5 Tube Weight 2 x 6 Connection Valve 1 x chlorine 3 Chlorine and Pumps 2 x 7 Dosing Valve 2 x 5 5

More information

Experiment 13: Make-Up Lab for 1408/1420

Experiment 13: Make-Up Lab for 1408/1420 Experiment 13: Make-Up Lab for 1408/1420 This is only for those that have approval. Students without approval will not be allowed to perform the lab. The pre-lab must be turned in at the beginning of lab.

More information

Thimble Ionization Chambers

Thimble Ionization Chambers Thimble Ionization Chambers User Manual WWW..COM Thimble Ionization Chambers STANDARD IMAGING INC. 3120 Deming Way Middleton, WI 53562-1461 Dec / 2010 2010 Standard Imaging Inc. DOC #80322-16 TEL 800.261.4446

More information

User s Booklet for the Wyatt minidawn Light Scattering Instrumentation

User s Booklet for the Wyatt minidawn Light Scattering Instrumentation User s Booklet for the Wyatt minidawn Light Scattering Instrumentation The Wyatt minidawn Light Scattering instrument is able to measure the weight average molecular weight of a synthetic polymer or a

More information

RADIOLOGY/ FLUOROSCOPY 15 RAD-CHECK PLUS X-RAY EXPOSURE METER

RADIOLOGY/ FLUOROSCOPY 15 RAD-CHECK PLUS X-RAY EXPOSURE METER RADIOLOGY/ FLUOROSCOPY 15 RAD-CHECK PLUS X-RAY EXPOSURE METER Proven Rad-Check technology specifically designed to provide you with the ultimate in versatility and cost-effective operation. Fast and easy

More information

Performance assessment of the BEBIG MultiSource R high dose rate brachytherapy treatment unit

Performance assessment of the BEBIG MultiSource R high dose rate brachytherapy treatment unit IOP PUBLISHING Phys. Med. Biol. 54 (2009) 7417 7434 PHYSICS IN MEDICINE AND BIOLOGY doi:10.1088/0031-9155/54/24/011 Performance assessment of the BEBIG MultiSource R high dose rate brachytherapy treatment

More information

Bioequivalence: Saving money with generic drugs

Bioequivalence: Saving money with generic drugs The Right Stuff: Appropriate Mathematics for All Students Promoting the use of materials that engage students in meaningful activities that promote the effective use of technology to support mathematics,

More information

Clinical Implementation of Volumetric Modulated Arc Therapy

Clinical Implementation of Volumetric Modulated Arc Therapy Clinical Implementation of Volumetric Modulated Arc Therapy UT M.D. Anderson Cancer Center Ramaswamy Sadagopan, Rebecca M. Howell, Weiliang Du and Peter Balter Definition 2 Intensity Modulated Arc therapy

More information

Surface buildup dose dependence on photon field delivery technique for IMRT

Surface buildup dose dependence on photon field delivery technique for IMRT Surface buildup dose dependence on photon field delivery technique for IMRT Shigeru Yokoyama, Peter L. Roberson, Dale W. Litzenberg, Jean M. Moran, and Benedick A. Fraass Department of Radiation Oncology,

More information

Level MEASUREMENT 1/2016

Level MEASUREMENT 1/2016 Level MEASUREMENT 1/2016 AGENDA 2 A. Introduction B. Float method C. Displacer method D. Hydrostatic pressure method E. Capacitance method G. Ultrasonic method H. Radar method I. Laser method J. Level

More information

Equation 1: F spring = kx. Where F is the force of the spring, k is the spring constant and x is the displacement of the spring. Equation 2: F = mg

Equation 1: F spring = kx. Where F is the force of the spring, k is the spring constant and x is the displacement of the spring. Equation 2: F = mg 1 Introduction Relationship between Spring Constant and Length of Bungee Cord In this experiment, we aimed to model the behavior of the bungee cord that will be used in the Bungee Challenge. Specifically,

More information

COMPARISON BETWEEN PHYSICAL WEDGES AND VIRTUAL WEDGES IN LINAC

COMPARISON BETWEEN PHYSICAL WEDGES AND VIRTUAL WEDGES IN LINAC COMPARISON BETWEEN PHYSICAL WEDGES AND VIRTUAL WEDGES IN LINAC by TAN ZI XIANG Thesis submitted in fulfillment of the requirements for the degree of Master of Science (Medical Physics) February 2015 ACKNOWLEDGEMENT

More information

Electronic relative and differential pressure switch type 616

Electronic relative and differential pressure switch type 616 Electronic relative and differential pressure switch type 616 Pressure range 0... 0.1 25 bar The switching points of the pressure switch type 616 can be potentiometer adjusted by the customer, or set in

More information

Long term stability tests of INO RPC prototypes

Long term stability tests of INO RPC prototypes Long term stability tests of INO RPC prototypes While the problem of sudden aging in the glass RPC prototypes is being investigated, a few RPCs of dimension 40 cm 30 cm were fabricated, using glass procured

More information

Micro Motion Pressure Drop Testing

Micro Motion Pressure Drop Testing 12/2018 Micro Motion Pressure Drop Testing www.emerson.com/micromotion Introduction Micro Motion has traditionally taken a very conservative approach to pressure drop, with single pressure measurements

More information

Analysis of RPC Performance with Different Gas Mixture

Analysis of RPC Performance with Different Gas Mixture Analysis of RPC Performance with Different Gas Mixture Cern Summer Student Programme Report Xing FAN xfan@icepp.s.u-tokyo.ac.jp 11/Sep/2015 Supervisor: Beatrice Mandelli (CERN PH-DT) 1 Introduction 1.1

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 6 Table of Contents 1. PURPOSE...2 2. PARAMETERS...2 2.1 General Considerations...2 3 DESCRIPTION OF PROCEDURE...2 3.1 Model Design and Construction...2 3.2 Measurements...3 3.5 Execution of

More information

Dynamic wedges dosimetry and quality control

Dynamic wedges dosimetry and quality control Original Paper Received: 2005.06.07 Accepted: 2006.02.28 Published: 2006.04.28 Authors Contribution: A Study Design B Data Collection C Statistical Analysis D Data Interpretation E Manuscript Preparation

More information

IAEA-TECDOC-1274 Calibration of photon and beta ray sources used in brachytherapy

IAEA-TECDOC-1274 Calibration of photon and beta ray sources used in brachytherapy IAEA-TECDOC-1274 Calibration of photon and beta ray sources used in brachytherapy Guidelines on standardized procedures at Secondary Standards Dosimetry Laboratories (SSDLs) and hospitals March 2002 The

More information

Alphasense 4-20 ma transmitters offer convenience and easy maintenance for toxic sensors:

Alphasense 4-20 ma transmitters offer convenience and easy maintenance for toxic sensors: ALPHASENSE USER MANUAL Page 1 4-20mA Transmitter for Toxic Sensors UMTOX-1 Issue 4 1 INTRODUCTION The Transmitter PCB includes circuitry for a three electrode toxic sensor to convert the µa output signal

More information

Sailboat Mast charging due to Corona current in an Electric Field

Sailboat Mast charging due to Corona current in an Electric Field Sailboat Mast charging due to Corona current in an Electric Field Rev 1. March, 2012 Corona currents occur in strong electric fields and likely explain some of the strange shocks, popping or buzzing that

More information

Gas Laws. Introduction

Gas Laws. Introduction Gas Laws Introduction In 1662 Robert Boyle found that, at constant temperature, the pressure of a gas and its volume are inversely proportional such that P x V = constant. This relationship is known as

More information

Lab 1. Adiabatic and reversible compression of a gas

Lab 1. Adiabatic and reversible compression of a gas Lab 1. Adiabatic and reversible compression of a gas Introduction The initial and final states of an adiabatic and reversible volume change of an ideal gas can be determined by the First Law of Thermodynamics

More information

Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media

Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media N Tyagi 1, B H Curran, P L Roberson, J M Moran, E Acosta and B A Fraass Department

More information