# 660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%)

Save this PDF as:

Size: px
Start display at page:

Download "660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%)"

## Transcription

1 148 PHYSIOLOGY CASES AND PROBLEMS Case 26 Carbon Monoxide Poisoning Herman Neiswander is a 65-year-old retired landscape architect in northern Wisconsin. One cold January morning, he decided to warm his car in the garage. Forty minutes later, Mr. Neiswander's wife found him slumped in the front seat of the car, confused and breathing rapidly. He was taken to a nearby emergency department, where he was diagnosed with acute carbon monoxide poisoning and given 100% 0 2 to breathe. An arterial blood sample had an unusual cherry-red color. The values obtained in the blood sample are shown in Table TABLE 3-12 Mr. Neiswander's Arterial Blood Gases Pao, (arterial P02) 660 mm Hg (normal, 100 mm Hg, room air) Paco, (arterial Pc02) 36 mm Hg (normal, 40 mm Hg) % saturation 50% (normal, 95%-100%) rg hum_ QUESTIONS 1. In healthy people, the percent 0 2 saturation of hemoglobin in arterial blood is 95%-100%. Why was Mr. Neiswander's 0 2 saturation reduced to 50%? 2. What percentage of the heme groups on his hemoglobin were bound to carbon monoxide (CO)? 3. Draw a normal 0 2-hemoglobin dissociation curve, and superimpose the 02-hemoglobin dissociation curve that would have been obtained on Mr. Neiswander in the emergency department. What effect did CO poisoning have on his 0 2-binding capacity? What effect did CO poisoning have on the affinity of hemoglobin for 02? 4. How did CO poisoning alter 02 delivery to Mr. Neiswander's tissues? 5. What was the rationale for giving Mr. Neiswander 100% 0 2 to breathe? 6. In healthy people breathing room air, arterial P 02 (Pa 02) is approximately 100 mm Hg. Mr. Neiswander had a Pa02 of 660 mm Hg while breathing 100% 0 2. flow is a value of 660 mm Hg possible? [Hint: There is a calculation that will help you to determine whether this value makes sense. For that calculation, assume that Mr. Neiswander's respiratory quotient (CO, production/0 2 consumption) was What is an A-a gradient? What physiologic process does the presence or absence of an A-a gradient reflect? What was the value of Mr. Neiswander's A-a gradient while he was breathing 100% 0 2? What interpretation can you offer for this value?

2

3 150 PHYSIOLOGY CASES AND PROBLEMS pi ANSWERS AND EXPLANATIONS 1. Mr. Neiswander's percent 02 saturation was only SO% (normal, 95%-100%) because CO occupied 0 2-hinding sites on hemoglobin. In fact, CO binds avidly to hemoglobin, with an affinity that is more than 200 times that of 0 2. Thus, heme groups that should be bound to 02 were instead bound to CO. Hemoglobin that is bound to CO is called carboxyhemoglobin and has a characteristic cherry-red color. 2. Because the percent saturation of 0 2 was 50%, we can conclude that the remaining 50% of the heme sites were occupied by CO. 3. In the presence of CO, the 0 2-hemoglobin dissociation curve is altered (Figure 3-11). The maximum percent saturation of hemoglobin by 0 2 was decreased (in Mr. Neiswander's case, to 50%), resulting in decreased 0 2-binding capacity. A left shift of the curve also occurred because of a conformational change in the hemoglobin molecule caused by binding of CO. This conformational change increased the affinity of hemoglobin for the remaining bound 02. Carbon monoxide poisoning Figure 3-11 Effect of carbon monoxide on the 0 2-hemoglobin dissociation curve. Po, partial pressure of oxygen. (Reprinted with permission from Costanzo LS: BRS Physiology, 3rd ed. Baltimore, Lippincott Williams & Wilkins, 2003, p 143.) delivery to the tissues is the product of blood flow (cardiac output) and 02 content of the blood, as follows: 02 delivery = cardiac output x 02 content of blood The 02 content of blood is the sum of dissolved 0 2 and 02 bound to hemoglobin. Of these two components, 02-hemoglobin is, by far, the most important. In Mr. Neiswander's case, 0 2 delivery to the tissues was significantly reduced for two reasons: (1) CO occupied 02-binding sites on hemoglobin, decreasing the total amount of 0 2 carried on hemoglobin in the blood. (2) The remaining heme sites (those not occupied by CO) bound 0 2 with a higher affinity (consistent with a left shift of the 0 2-hemoglobin curve). This increase in affinity made it more difficult to unload 02 in the tissues. These two effects of CO combined to cause severe 0 2 deprivation in the tissues (hypoxia). 5. Mr. Neiswander was given 100% 02 to breathe for two reasons: (1) to competitively displace as much CO from hemoglobin as possible arid (2) to increase the dissolved 0 2 content in his blood. As you have learned, dissolved 0 2 normally contributes little to the total 02 content of blood. However, in CO poisoning, the 0 2-carrying capacity of hemoglobin is severely reduced (in this

4 RESPIRATORY PHYSIOLOGY 151 case, by 50%), and dissolved 0, becomes, by default, relatively more significant. By increasing the fraction of 0 2 in inspired air to 100% (room air is 21% 0 2), the Po, in Mr. Neiswander's alveolar gas and arterial blood will be increased, which will increase the dissolved 0 2 content (dissolved 0 2 = P02 x solubility of 02 in blood). 6. While Mr. Neiswander was breathing 100% 0 2, the measured value for Pao, was strikingly high (660 mm Hg). Because pulmonary capillary blood normally equilibrates with alveolar gas, arterial Po, (Pao,) should be equal to alveolar P02 (PA02). Therefore, the question that we really need to answer is: Why was the PA mm Hg? The alveolar gas equation is used to calculate the expected value for PA, (as described 102in Case 20). For the alveolar gas equation, we need to know the values for Po, of inspired air PAcoz, and respiratory quotient. Pro, is calculated from the barometric pressure (corrected for water vapor pressure) and the fraction of 0 2 in inspired air (F1 02 ). In Mr. Neiswander's case, Frog is 1.0, or 100%. PAc02iS equal to Pac02, which is given. The respiratory quotient is 0.8. Thus: Pio, (PB PH 2O) x = (760 mm Hg 47 mm Hg) x 1.0 = 713 mm Hg PA 02 = Proz PACO2 R = 713 mm Hg 36 mm Hg 0.8 = 668 mm Hg From this calculation, we know that when Mr. Neiswander breathed 100% 0 2, his alveolar P02 (PA02) was expected to be 668 mm Hg. Assuming that his systemic arterial blood was equilibrated with alveolar gas, the measured Pao, of 660 mm Hg makes perfect sense. 7. The A a gradient is the difference in Po, between alveolar gas ("A") and arterial blood ("a"). In other words, the A a gradient tells us whether equilibration of 02 between alveolar gas and pulmonary capillary blood has occurred. If the A a gradient is zero or close to zero, then perfect (or nearly perfect) equilibration of 0 2 occurred, as is normally the case. Increases in the A a gradient indicate a lack of equilibration, as with a ventilation perfusion (V/Q) defect (e.g., obstructive lung disease), when a diffusion defect is present (e.g., fibrosis), or with a right-to-left cardiac shunt (i.e., a portion of the cardiac output bypasses the lungs and is not oxygenated). Mr. Neiswander's PAo, was calculated from the alveolar gas equation (see Question 6), and his Pao, was measured in arterial blood. His A a gradient is the difference between the two values: A a gradient = PA02 Pa02 = 668 mm Hg 660 mm Hg = 8 mm Hg This small difference between the Po, of alveolar gas and the Po, of arterial blood implies that pulmonary capillary blood equilibrated almost perfectly with alveolar gas. In other words, CO poisoning caused no problems with V/Qmatching or 02 diffusion.

5 152 PHYSIOLOGY CASES AND PROBLEMS,=:Key topics A a gradient Alveolar gas equation Carbon monoxide (CO) poisoning Diffusion of 02 Left shift of the 0 2 hemoglobin dissociation curve 0 2 hemoglobin dissociation curve Right-to-left cardiac shunts Ventilation perfusion (V/0) ratio

### Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D.

Physical Chemistry of Gases: Gas Exchange Linda Costanzo, Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. Application of the gas laws to pulmonary physiology. 2. How to

### CHAPTER 6. Oxygen Transport. Copyright 2008 Thomson Delmar Learning

CHAPTER 6 Oxygen Transport Normal Blood Gas Value Ranges Table 6-1 OXYGEN TRANSPORT Oxygen Dissolved in the Blood Plasma Dissolve means that the gas maintains its precise molecular structure About.003

### I Physical Principles of Gas Exchange

Respiratory Gases Exchange Dr Badri Paudel, M.D. 2 I Physical Principles of Gas Exchange 3 Partial pressure The pressure exerted by each type of gas in a mixture Diffusion of gases through liquids Concentration

### Oxygen and Carbon dioxide Transport. Dr. Laila Al-Dokhi

Oxygen and Carbon dioxide Transport Dr. Laila Al-Dokhi Objectives 1. Understand the forms of oxygen transport in the blood, the importance of each. 2. Differentiate between O2 capacity, O2 content and

### Respiratory physiology II.

Respiratory physiology II. Learning objectives: 29. Pulmonary gas exchange. 30. Oxygen transport in the blood. 31. Carbon-dioxide transport in the blood. 1 Pulmonary gas exchange The transport mechanism

### HCO - 3 H 2 CO 3 CO 2 + H H H + Breathing rate is regulated by blood ph and C02. CO2 and Bicarbonate act as a ph Buffer in the blood

Breathing rate is regulated by blood ph and C02 breathing reduces plasma [CO2]; plasma [CO2] increases breathing. When C02 levels are high, breating rate increases to blow off C02 In low C02 conditions,

### Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing

Chapter 17 The Respiratory System: Gas Exchange and Regulation of Breathing Overview of Pulmonary Circulation o Diffusion of Gases o Exchange of Oxygen and Carbon Dioxide o Transport of Gases in the Blood

### Pulmonary Circulation Linda Costanzo Ph.D.

Pulmonary Circulation Linda Costanzo Ph.D. OBJECTIVES: After studying this lecture, the student should understand: 1. The differences between pressures in the pulmonary and systemic circulations. 2. How

By Adam Hollingworth Table of Contents Oxygen Cascade... 2 Diffusion... 2 Laws of Diffusion... 2 Diffusion & Perfusion Limitations... 3 Oxygen Uptake Along Pulmon Capillary... 4 Measurement of Diffusing

### VENTILATION AND PERFUSION IN HEALTH AND DISEASE. Dr.HARIPRASAD VS

VENTILATION AND PERFUSION IN HEALTH AND DISEASE Dr.HARIPRASAD VS Ventilation Total ventilation - total rate of air flow in and out of the lung during normal tidal breathing. Alveolar ventilation -represents

### PROBLEM SET 9. SOLUTIONS April 23, 2004

Harvard-MIT Division of Health Sciences and Technology HST.542J: Quantitative Physiology: Organ Transport Systems Instructors: Roger Mark and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY Departments

### Respiration - Human 1

Respiration - Human 1 At the end of the lectures on respiration you should be able to, 1. Describe events in the respiratory processes 2. Discuss the mechanism of lung ventilation in human 3. Discuss the

### Lung Volumes and Capacities

Lung Volumes and Capacities Normally the volume of air entering the lungs during a single inspiration is approximately equal to the volume leaving on the subsequent expiration and is called the tidal volume.

### Respiratory System Study Guide, Chapter 16

Part I. Clinical Applications Name: Respiratory System Study Guide, Chapter 16 Lab Day/Time: 1. A person with ketoacidosis may hyperventilate. Explain why this occurs, and explain why this hyperventilation

### Alveolus and Respiratory Membrane

Alveolus and Respiratory Membrane thin membrane where gas exchange occurs in the lungs, simple squamous epithelium (Squamous cells have the appearance of thin, flat plates. They fit closely together in

### Physiology Unit 4 RESPIRATORY PHYSIOLOGY

Physiology Unit 4 RESPIRATORY PHYSIOLOGY In Physiology Today Respiration External respiration ventilation gas exchange Internal respiration cellular respiration gas exchange Respiratory Cycle Inspiration

Question 1: Define vital capacity. What is its significance? Vital capacity is the maximum volume of air that can be exhaled after a maximum inspiration. It is about 3.5 4.5 litres in the human body. It

### Blood gas adventures at various altitudes. Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch

Blood gas adventures at various altitudes Friedrich Luft Experimental and Clinical Research Center, Berlin-Buch Mount Everest 8848 M Any point in bird watching here? Respiration is gas exchange: the process

### 4. For external respiration to occur effectively, you need three parameters. They are:

Self Assessment Module D Name: ANSWER KEY 1. Hypoxia should be assumed whenever the PaO 2 is below 45 mm Hg. 2. Name some clinical conditions that will result in hyperventilation (respiratory alkalosis).

### GAS EXCHANGE & PHYSIOLOGY

GAS EXCHANGE & PHYSIOLOGY Atmospheric Pressure Intra-Alveolar Pressure Inspiration 760 mm HG at Sea Level (= 1 atm) Pressure due to gases (N2, O2, CO2, Misc.) Pressure inside the alveolus (air sac) Phrenic

### Respiratory Physiology

chapter 4 Respiratory Physiology I. LUNG VOLUMES AND CAPACITIES A. Lung volumes (Figure 4-1) 1. Tidal volume (TV) is the volume inspired or expired with each normal breath. 2. Inspiratory reserve volume

### Chapter 23. Gas Exchange and Transportation

Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity and minor gases argon,

### Chapter 23. Gas Exchange and Transportation

Chapter 23 Gas Exchange and Transportation What is air? Mixture of gasses 78.6 % nitrogen 20.9% oxygen 0.04% carbon dioxide 0 4% water vapor depending on temperature and humidity other minor gases argon,

Respiratory Physiology By Adeyomoye O.I Outline Introduction Hypoxia Dyspnea Control of breathing Ventilation/perfusion ratios Respiratory/barometric changes in exercise Intra-pulmonary & intra-pleural

### Section 01: The Pulmonary System

Section 01: The Pulmonary System Chapter 12 Pulmonary Structure and Function Chapter 13 Gas Exchange and Transport Chapter 14 Dynamics of Pulmonary Ventilation HPHE 6710 Exercise Physiology II Dr. Cheatham

### Transport of Oxygen and Carbon Dioxide in Blood and Tissue Fluids

C H A P T E R 4 Transport of Oxygen and Carbon Dioxide in Blood and Tissue Fluids Once oxygen has diffused from the alveoli into the pulmonary blood, it is transported to the peripheral tissue capillaries

### Experiment B-3 Respiration

1 Experiment B-3 Respiration Objectives To study the diffusion process of oxygen and carbon dioxide between the alveoli and pulmonary capillaries. To determine the percentage of oxygen in exhaled air while

### Exam Key. NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: % of grade in class

NROSCI/BIOSC 1070 and MSNBIO 2070 Exam # 2 October 28, 2016 Total POINTS: 100 20% of grade in class 1) An arterial blood sample for a patient at sea level is obtained, and the following physiological values

### Control of Respiration. Central Control of Ventilation

Central Control of Goal: maintain sufficient ventilation with minimal energy Process steps: mechanics + aerodynamics Points of Regulation Breathing rate and depth, coughing, swallowing, breath holding

### alveoli Chapter 42. Gas Exchange elephant seals gills AP Biology

alveoli Chapter 42. Gas Exchange gills elephant seals Gas exchange O 2 & CO 2 exchange exchange between environment & cells provides O 2 for aerobic cellular respiration need moist membrane need high

### SIMULATION OF THE HUMAN LUNG. Noah D. Syroid, Volker E. Boehm, and Dwayne R. Westenskow

SMULATON OF THE HUMAN LUNG Noah D. Syroid, Volker E. Boehm, and Dwayne R. Westenskow Abstract A human lung simulator was implemented using a model based on the Fick principle. The simulator is designed

### medical physiology :: Pulmonary Physiology in a Nutshell by:

medical physiology :: Pulmonary Physiology in a Nutshell by: Johan H Koeslag Medical Physiology Stellenbosch University PO Box 19063 Tygerberg, 7505. South Africa Mail me INTRODUCTION The lungs are not

### These two respiratory media (air & water) impose rather different constraints on oxygen uptake:

Topic 19: OXYGEN UPTAKE AND TRANSPORT (lectures 29-30) OBJECTIVES: 1. Be able to compare air vs. water as a respiratory medium with respect to oxygen content, diffusion coefficient, viscosity and water

### Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 21-23

nd Lecture Fri 06 Mar 009 Vertebrate Physiology ECOL 437 (MCB/VetSci 437) Univ. of Arizona, spring 009 Kevin Bonine & Kevin Oh Oxygen, Carbon Dioxide Respiration Gas Transport Chapter 1-3 1 Housekeeping,

### The Safe Use and Prescription of Medical Oxygen. Luke Howard

The Safe Use and Prescription of Medical Oxygen Luke Howard Consultant Respiratory Physician Imperial College Healthcare NHS Trust & Co-Chair, British Thoracic Society Emergency Oxygen Guideline Group

### Physiology of Respiration

Physiology of Respiration External Respiration = pulmonary ventilation breathing involves 2 processes: inspiration expiration Inspiration an active process involves contraction of diaphragm innervated

### Chapter 23: Respiratory System

Chapter 23: Respiratory System I. Functions of the Respiratory System A. List and describe the five major functions of the respiratory system: 1. 2. 3. 4. 5. II. Anatomy and Histology of the Respiratory

### Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective

Point-of-Care Testing: A Cardiovascular Perfusionist s Perspective Cory M. Alwardt, PhD, CCP Chief Perfusionist/ECMO Coordinator Assistant Professor of Surgery Mayo Clinic Hospital, Phoenix alwardt.cory@mayo.edu

### Introduction. Respiration. Chapter 10. Objectives. Objectives. The Respiratory System

Introduction Respiration Chapter 10 The Respiratory System Provides a means of gas exchange between the environment and the body Plays a role in the regulation of acidbase balance during exercise Objectives

### 1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/

1 CHAPTER 17 BREATHING AND EXCHANGE OF GASES https://biologyaipmt.com/ CHAPTER 17 BREATHING AND EXCHANGE OF GASES Oxygen (O2) is utilised by the organisms to indirectly break down nutrient molecules like

RC-178 a/a ratio Better a/a= PaO2 ACM than PAO2 guessing!! 1 A relative RC-178 a/a ratio way to judge the lungs ability to transport O2. Determine new FIO2 to achieve PaO 2 amount that got through the:

### Chapter 22 The Respiratory System

Chapter 22 The Respiratory System 1 Respiration Pulmonary ventilation (breathing): movement of air into and out of the lungs External respiration: O 2 and CO 2 exchange between the lungs and the blood

### CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY

CARBON DIOXIDE METABOLISM AND CAPNOGRAPHY CARBON DIOXIDE METABOLISM Production Transportation Elimination Carbon Dioxide production CO 2 is the metabolite produced by the utilization by cells of oxygen

### Comparative Physiology 2007 First Midterm Exam. 1) 16 pts. 2) 12 pts. 3) 40 pts. 4) 10 pts. 5) 17 pts. 6) 5 pts. Total

Name Comparative Physiology 2007 First Midterm Exam 1) 16 pts 2) 12 pts 3) 40 pts 4) 10 pts 5) 17 pts 6) 5 pts Total 1. All vertebrates yawn, yet we don t know why. A) Propose a possible functional explanation

### Respiratory Physiology Gaseous Exchange

Respiratory Physiology Gaseous Exchange Session Objectives. What you will cover Basic anatomy of the lung including airways Breathing movements Lung volumes and capacities Compliance and Resistance in

### 2) an acute situation in which hypoxemia is suspected.

I. Subject: Oxygen Therapy II. Policy: Oxygen therapy shall be initiated upon a physician's order by health care professionals trained in the set-up and principles of safe oxygen administration. Oxygen

### NOTES: CH 42, part 2 - Gas Exchange in Animals

NOTES: CH 42, part 2 - Gas Exchange in Animals Functions of the Respiratory System: 1) Air distribution / gaseous exchange; 2) Filter, warm & humidify air we breathe; 3) Influence speech; 4) Help maintain

### VENTILATORS PURPOSE OBJECTIVES

VENTILATORS PURPOSE To familiarize and acquaint the transfer Paramedic with the skills and knowledge necessary to adequately maintain a ventilator in the interfacility transfer environment. COGNITIVE OBJECTIVES

### (a) (i) Describe how a large difference in oxygen concentration is maintained between a fish gill and the surrounding water.

1. Answers should be written in continuous prose. Credit will be given for biological accuracy, the organisation and presentation of information and the way in which an answer is expressed. Fick s law

### Explain how the structure of the gas exchange system of an insect ensures that there is a large surface area for gas exchange.

1 Gas exchange takes place by diffusion. surfacearea differenceinconcentration diffusion lengthof diffusionpath a The diagram shows part of an insect tracheal system. i Explain how the structure of the

### Applied Physics Topics 2

Applied Physics Topics 2 Dr Andrey Varvinskiy Consultant Anaesthetist Torbay Hospital, UK EDAIC Paper B Lead and Examiner TOPICS 2 Gas Laws Other Laws: Dalton, Avogadro Critical temperature Critical pressure

### Appendix 2. Basic physical properties applied to the respiratory system

Appendix 2. Basic physical properties applied to the respiratory system Fluid is a general definition of a state of matter characterized by a weak intermolecular connection (Van der Waal's cohesive forces),

### B. A clinical emergency exists in which a profound hypoxia is determined to be present.

I. Subject: Oxyhood-Oxygen Therapy for Neonates II. Policy: Oxygen therapy by oxyhood shall be initiated upon a physician's order by nurses and Respiratory Therapy personnel trained in the principles of

### Initiation and Management of Airway Pressure Release Ventilation (APRV)

Initiation and Management of Airway Pressure Release Ventilation (APRV) Eric Kriner RRT Pulmonary Critical Care Clinical Specialist Pulmonary Services Department Medstar Washington Hospital Center Disclosures

### CASE CONFERENCES. The Clinical Physiologist Section Editors: John Kreit, M.D., and Erik Swenson, M.D.

The Clinical Physiologist Section Editors: John Kreit, M.D., and Erik Swenson, M.D. Treating Hypoxemia with Supplemental Oxygen Same Game, Different Rules Darryl Y. Sue CASE CONFERENCES Division of Respiratory

### (Slide 1) Lecture Notes: Respiratory System

(Slide 1) Lecture Notes: Respiratory System I. (Slide 2) The Respiratory Tract A) Major structures and regions of the respiratory Tract/Route INTO body 1) nose 2) nasal cavity 3) pharynx 4) glottis 5)

### Human gas exchange. Question Paper. Save My Exams! The Home of Revision. Cambridge International Examinations. 56 minutes. Time Allowed: Score: /46

Human gas exchange Question Paper Level Subject Exam oard Topic Sub Topic ooklet O Level iology ambridge International Examinations Respiration Human gas exchange Question Paper Time llowed: 56 minutes

### Circulation and Gas Exchange Chapter 42

Circulation and Gas Exchange Chapter 42 Circulatory systems link exchange surfaces with cells throughout the body Diffusion is only efficient over small distances In small and/or thin animals, cells can

### Chapter 16 Respiration. Respiration. Steps in Respiration. Functions of the respiratory system

Chapter 16 Respiration Functions of the respiratory system Respiration The term respiration includes 3 separate functions: Ventilation: Breathing. Gas exchange: Occurs between air and blood in the lungs.

### Hyperbaric Oxygen Therapy

Hyperbaric Oxygen Therapy WWW.RN.ORG Reviewed September 2017, Expires September 2019 Provider Information and Specifics available on our Website Unauthorized Distribution Prohibited 2017 RN.ORG, S.A.,

### (A) The partial pressure in the lungs is higher than in the blood, and oxygen diffuses out of the lungs passively.

DAT Biology - Problem Drill 12: The Respiratory System Question No. 1 of 10 1. Which statement about the partial pressure of oxygen inside the lungs is correct? Question #01 (A) The partial pressure in

### Diffusion. Dr. Gyanendra Agrawal Senior Resident Deptt. of Pulmonary Medicine PGIMER, Chandigarh

Diffusion Dr. Gyanendra Agrawal Senior Resident Deptt. of Pulmonary Medicine PGIMER, Chandigarh Diffusion Primary function of lung gas exchange Movement of gas across the blood gas interface is by simple

### Why a Pulmonary Function Laboratory?

DALIIOUSIE MEDICAL JOURNAL 5 Why a Pulmonary Function Laboratory? Dr. L. Cudkowicz, M.D., M.R.C.P. A senior medical student recently posed this question with sincerity and, after an initial reluctance

### SPQ Module 9 Breathing at Altitude

SPQ Module 9 Breathing at Altitude For most people traveling 1130 kilometers on foot over a frozen ice cap with no support would be daunting enough without facing the prospect of being short of breath

### 1) Kety and others have attempted to predict

BY J. W. SEVERINGHAUS 2 (From the Department of Anesthesia, Hospital of the University of Pennsylvania, and Harrison Department of Surgical Research, University of Pennsylvania, Philadelphia, Pa.) (Submitted

### Lab 17. The Respiratory System. Laboratory Objectives

Lab 17 The Respiratory System Laboratory Objectives Identify and describe the anatomical structures of the respiratory system. Describe the relationship between volume and pressure. Describe changes in

### PART ONE CHAPTER ONE PRIMARY CONSIDERATIONS RELATING TO THE PHYSIOLOGICAL AND PHYSICAL ASPECTS OF THE MECHANICAL VENTILATION OF THE LUNG

PART ONE CHAPTER ONE PRIMARY CONSIDERATIONS RELATING TO THE PHYSIOLOGICAL AND PHYSICAL ASPECTS OF THE MECHANICAL VENTILATION OF THE LUNG POSSIBLE ORIGIN OF THE MECHANICAL VENTILATION OF THE LUNG- The first

### SCUBA - self contained underwater breathing apparatus. 5 million sport scuba divers in U.S. 250, ,000 new certifications annually in U.S.

SCUBA - self contained underwater breathing apparatus 5 million sport scuba divers in US 250,000-400,000 new certifications annually in US Diving occurs in oceans, freshwater lakes, rivers and quarries

### Multiple modeling in the study of interaction of hemodynamics and gas exchange

Computers in Biology and Medicine 31 (2001) 59 72 www.elsevier.com/locate/compbiomed Multiple modeling in the study of interaction of hemodynamics and gas exchange Anqi Qiu, Jing Bai Institute of Biomedical

### EMERGENCY MEDICINE AND THE LABORATORY. Ehsan Bolvardi(MD)

EMERGENCY MEDICINE AND THE LABORATORY Ehsan Bolvardi(MD) bolvardie@mums.ac.ir Objective ED and laboratory Inappropriate use of laboratory ABG sampling ABG sampling error Introduction The laboratory is

### Masaji Mochizuki ABSTRACT. ]p(deox). The Haldane effects of [CO2] and [HCO3. ] were obtained by subtracting [CO2]p(ox) from [CO2]p(deox) and [HCO3

Yamagata Med J 2006242)51-58 in vivo Masaji Mochizuki Emeritus Professor of Yamagata University, Yamagata, Japan Geriatric Respiratory Research Center, Nishimaruyama Hospital, Chuo-Ku, Sapporo, Japan Accepted

### LAB 7 HUMAN RESPIRATORY LAB. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

66 LAB 7 HUMAN RESPIRATORY LAB Assignments: Due before lab: Quiz: Three Respiratory Interactive Physiology Animations pages 69 73. Complete the charts on pgs. 67 and 68 and read directions for using BIOPAC

### DECOMPRESSION THEORY - NEO-HALDANE MODELS

DECOMPRESSION THEORY - NEO-HALDANE MODELS This section describes the Haldane or neo-haldane decompression theories. On each dive the divers body takes up inert gasses, like Nitrogen. After the dive the

### Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses.

Chemistry Ms. Ye Name Date Block Graham s Law of Diffusion- Under ideal conditions, the rates at which different gases diffuse (spread out) are proportional to their molar masses. In other words, gas molecules

### Respiratory Pulmonary Ventilation

Respiratory Pulmonary Ventilation Pulmonary Ventilation Pulmonary ventilation is the act of breathing and the first step in the respiratory process. Pulmonary ventilation brings in air with a new supply

### Name: Period: Date: CHAPTER 10 NOTES 10.3: The Gas Laws

Name: Period: Date: 1. Define gas laws: CHAPTER 10 NOTES 10.3: The Gas Laws 2. What units do the following measurements need to be in to describe gases? Boyle s Law a. Temperature b. Volume c. Pressure

### Analysis of Mathematical Models of the Human Lung

Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2013 Analysis of Mathematical Models of the Human Lung Cooper Racheal Virginia Commonwealth University Follow

### Respiratory System -Training Handout

Respiratory System -Training Handout Karen L. Lancour National Rules Committee Chairman Life Science FUNCTIONS: Provides oxygen to the blood stream and removes carbon dioxide Enables sound production or

### ACTIVITY 17: GAS EXCHANGE Period

ACTIVITY 17: GAS EXCHANGE Name Period SYSTEMS ANALYSIS: Complete the system analysis for the experiment performed in the Conservation of Mass: Chemical Change lab. Be sure to follow the systems analysis

### Fall 2004 Homework Problem Set 9 Due Wednesday, November 24, at start of class

0.30 Fall 004 Homework Problem Set 9 Due Wednesday, November 4, at start of class Part A. Consider an iron surface which serves as a catalyst for the production of ammonia from nitrogen and hydrogen. The

Subject: Transport Code: 2803/01 Session: June Year: 2002 Mark Scheme MAXIMUM MARK 45 ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS 1. Please ensure that you use the final version of the Mark Scheme.

### Subject: Transport Code: 2803/01. Session: June Year: Mark Scheme

Subject: Transport Code: 2803/01 Session: June Year: 2002 MAXIMUM MARK 45 ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS 1. Please ensure that you use the final version of the. You are advised to destroy

### Boards and Beyond: Pulmonary

Boards and Beyond: Pulmonary A Companion Book to the Boards and Beyond Website Jason Ryan, MD, MPH i ii Table of Contents Pulmonary Anatomy 1 Treatment of COPD/Asthma 45 Pulmonary Physiology 4 Pneumonia

### Unit 8 B: Respiration

Unit 8 B: Respiration Respiration: Respiration is a chemical reaction that happens in all living cells. It is the way that energy is released from glucose, for our cells to use to keep us functioning.

### The AEROTOXIC SYNDROME Professor Michael Bagshaw United Kingdom

The AEROTOXIC SYNDROME Professor Michael Bagshaw United Kingdom Concerns have been raised by unions representing pilots and cabin crew about the possible effects on aircrew health of oil/hydraulic fluid

### Pop Quiz. What produces mucus, HCl and pepsinogen in the stomach? List a water soluable vitamin What is a ruminant stomach?

Pop Quiz What produces mucus, HCl and pepsinogen in the stomach? List a water soluable vitamin What is a ruminant stomach? Respiratory System Review Cellular respiration: obtain glucose and oxygen, get

### What does the % represent on the beakers?

DISSOLVED OXYGEN VIDEO FAQs What does the % represent on the beakers? What are the glass tubes to beakers for? How is the temperature being kept the same (at 5 o then 35 o )? What is salinity in parts

### The Physiology of INERGEN Fire Extinguishing Agent

WHITE PAPER The Physiology of INERGEN Fire Extinguishing Agent INERGEN Clean Agent Fire Suppression System One Stanton Street / Marinette, WI 54143-2542, USA / +1-715-735-7411 / www.ansul.com Copyright

### Pulmonary Ventilation

Pulmonary Ventilation - Goals of respiration: o Provided O 2 to the tissues/remove CO 2 - To achieve these goals, resp. is divided into 4 events: 1. Pulm. Ventilation = exchange of resp. gases between